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MINKOWSKI'S FUNDAMENTAL INEQUALITY FOR
REDUCED POSITIVE QUADRATIC FORMS (II)

E. S. BARNES

(Received 10 May 1978)

Abstract

A convex polytope^(ot) was defined in Barnes (1978) as the set of Minkowski-reduced forms with
prescribed diagonal coefficients aua2,...,«.*. A local minimum of the determinant D(J) over^(a)
must occur at a vertex of ^(a) . Here a criterion is obtained for a given vertex to provide a local
minimum, completely analogous to Voronoi's criterion for a perfect form to be extreme.

Subject classification {Amer. Math. Soc. (MOS) 1970): primary 10 E 25; secondary 10 E 20.

1. Introduction

We use the definitions introduced in Part I (Barnes, 1978): Jl is the polyhedral
cone of Minkowski-reduced forms in n variables; ®(a) is the subset of M consisting
of those positive forms f(x) = YA°U XI XJ f ° r which

(1.1) au = ai ( f= l , . . . , « ) ,

where necessarily

(1.2) 0<a 1 <a 2 *S. . .<a n .

2{a) is in fact a convex polytope.
The convexity of the determinantal surface D(f) = constant implies that the

minimum value of D over S>{a), or indeed any local minimum, is attained only
at a vertex of $)(<£). However, it is not necessarily true that a vertex v of Q>(<x)
provides a local minimum of D(f) for fe 3>(pi); a vertex for which this is true we call
extreme with respect to @(<x), or, for brevity, 2-extreme.

The main purpose of this article is to establish an analogue of Voronoi's (1907)
well-known criterion for a form to be extreme in the classical sense, namely that
it be perfect and eutactic. The analogue of a perfect form is clearly a vertex of 3>(<x).
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2 E. S. Barnes [2]

We construct the analogue of a eutactic form as follows. Recall first that / is
Minkowski-reduced if and only if, for all i= 1,...,« and all integral x,

(1.3) Kx)>ait if g.c.d.(xt,xi+1,...,xn)=l.

If / e ^ ( a ) , denote by mk (k = 1, ...,t) those x, other than unit vectors, for which
equality holds in (1.3) (as usual, we identify x and — x in such statements). Then
we say that / is Si-eutactic if its adjoint F is expressible in the form

(1.4) F(x) = £ AtJ x, Xj = £ pk K x)2 + £ at xf,
I I I

where the pk, at are real numbers and

(1.5) Pk>0 (* = 1,...,/).

THEOREM 1. A form fe3i(<x) is 3)-extreme if and only if it is a vertex of 3){a) and
is 3-eutactic.

The proof of this theorem will be based on the ideas used in the proof of Voronoi's
Theorem given in Barnes (1957); as there, we need

THEOREM 2 (Stiemke, 1915). The system of linear inequalities
P

(1.6) Z ' U " J = 0> uJ>0 (i=l,—,m;j=l,...,p)
j=i

has a solution u if and only if every solution v of the dual system
m

(1.7) I ' u V f > 0 ( /=l , . . . , />)
i=i

satisfies

We shall also need the following simple geometrical result:

LEMMA 1. Let K be an N-dimensional convex set and p a point of bdK, in a neigh-
bourhood of which K is strictly convex and bdK is smooth. Let h be the tangent plane
to K at p and h+ the open half-space determined by h and containing int K. Let P
be a convex polytope with a vertex at p, and suppose that the whole of P in some
punctured neighbourhood of 'p lies in h+. Then there exists a punctured neighbourhood
Bofjt such that if q E BnP then q e int K.

2. Proof of Theorem 1

We begin with the appropriate analogue of the Lemma of Barnes (1957):

LEMMA 2. If fe3>{«), then f is ^-extreme if and only if there exists no non-trivial
quadratic form g(x) = Z i ^u x' XJ satisfying
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[3] Minkowski's reduced positive quadratic forms [II] 3

(2.1) #(e,) = 0 ( / = 1 , . . . , » ) ,

(2.2) g(mk)>0 ( * = 1 , . . . , / ) ,

(2.3) (F,g)=YiAiJbiJ^0.

PRCX)F. (i) Suppose that (2.1), (2.2), (2.3) have a non-trivial solution g. Choose
one with, say max \bu\ = 1, and set/ ' =f+sg where e>0 is small.

Then/'e^(ot). For firstly

/ '(e,)=/(ei) = ai (/= 1,...,»);

and, for any k = 1,..., ? for which m* satisfies (1.3) with equality for some /,

=f(mk)+Eg(mk) = ocl

Next, there exist only finitely many other x in (1.3) which are necessary to specify
M and, for all of these, f(x)>ait = <xt, whence also /'(x)>oc£ if e is sufficiently
small.

Now the tangent plane h to the determinantal surface (using <p as current co-
ordinates in the coefficient space) at / is

Since

it follows that / ' lies in the closed half-space opposite to that containing the surface
detf = det/; hence, since this surface is strictly convex a n d / ' # / , det/ '<det/ .

It follows from these results that / is not ̂ -extreme.
(ii) Suppose that (2.1), (2.2), (2.3) have only the trivial solution; le t / ' =f+g

be any form in <F(ot) close to / . Then

/'(e() = a, = /(e,), so that g(e,) = 0 (/ = 1,...,«);
f'(mk)> a, =f(mk), so thatg(mk)^0 (k = 1,...,/).

Since g is non-trivial, our hypothesis implies that (2.3) is false, so that (F,g) > 0 and

(2-4) (F,f) =

We now apply Lemma 1, taking A t̂o be the determinantal body det cp > det/, h the
tangent plane (F,<p)=(F,f), and P the polytope ^(a). Using in particular (2.4),
we see that the hypotheses of the lemma hold and it follows that, if/' is sufficiently
close to / in 3>(a), but distinct from / , then det/ ' > det/. Thus / is ^-extreme.
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4 E. S. Barnes [4]

PROOF OF THEOREM 1. Using the coefficients bu of the form g, write (2.1)-(2.3) as

(2.5)

(i = 1,.

We identify this with the system (1.7), with blub12,...,bnn playing the part of the
variables vuv2,...,vm. Then (1.6) becomes, using variables Xt,fi, (i = 1,...,«),

(2.6)

t A,>0, Hi>0, pk>0, v>0.

(a) Suppose that / is ©-extreme. By Lemma 2, every solution of (2.5) is trivial

and so certainly has equality throughout; it follows at once that / i s a vertex of

©(a). Also, by Stiemke's Theorem, (2.6) has a solution; dividing through by v,

we may suppose that the solution has v = 1; multiplying by x, Xj and summing,

we obtain

F(x) =YJAuxlXj=YJ pk (mj x)2 + ^ (A( -fi,) x\
I I I

which gives (1.4), with (1.5), noting that (T, = Xt—fit is unrestricted in sign.
(b) Suppose next that / is a vertex of ^(a) and is ©-eutactic. Then (2.6) has a

solution and so, by Stiemke's Theorem, any solution g of (2.5) satisfies (2.5) with
equality throughout; since / is a vertex of i?(a) it then follows that g=0. It now
follows from Lemma 2 that / is ©-extreme.

3. An example

As noted in Part I, the quaternary form

(3.1) /(x) = ax\ + axi x2 — axy x3 — axt x* + bx\ — bx2 xA + cx\ + cx3 x4 + dx\

is a vertex of ©(«) = 3)(a, b, c, d) which is however not ©-extreme for some values
of a, b, c, d (where we still of course assume (1.2), that is

(3.2)

THEOREM 2. Suppose that a<b. Then the form (3.1), subject to (3.2), is ^-extreme
if and only if

(3.3) ad<bc.
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PROOF. It is easily verified that for the form (3.1), neglecting unit vectors, there
are just seven relations (1.3) that hold with equality, namely

/(-1,1,0,0) = b, /(l,0,l,0) = c,
/(l,0,0,1) =/(0,1,0,1) =/(0,0, - 1,1) =/(0,1, -1,1) = / ( - 1 , 1 , -1,1) = d.

These suffice to establish that / is a vertex of £̂ (ot).
[Note: If a = b, there is one further relation /(I, — 1,1,0) = c and the following

analysis therefore does not apply.]
The identity (1.4) is now

4
(3.4)

and this yields

PA =

If now ad^bc, then p^^O and so, by Theorem 2, / is not ^-extreme. If however
ad<bc, it is easy to verify that (3.4) is soluble with all pk>0; one may take p7

sufficiently small and positive and then determine pu ...,p6 from the relations

Pi = -A12-Pn, p2 = Ax3—pn, p3=AlA+p1,
p6= -A23-p-j.

+PA
4

+ Pl(-Xi+X2-X3+X4)
2+ £

4. A refinement of Theorem 1

Among the inequalities (1.3) there is a finite set which implies all remaining
inequalities; that is, there is a finite set S of vectors x for which the corresponding
equations /(x) = au define the facets of Jt. In determining ®(oc) and its vertices,
it suffices of course to consider only this minimal set of inequalities. However,
the application of Theorem 1 is complicated by the need to know all the examples
of equality in (1.3) for a given form /. Fortunately it turns out to be necessary, in
testing whether a vertex / of 3)(t£) is ̂ -extreme, to consider only vectors in S:

THEOREM 3. Let f be a vertex of 3>(<x.) and mk(k = 1,..., r) (r ̂  t) be the vectors of
S, other than unit vectors, for which equality holds in (1.3) Then f is S>-extreme if and
only if f is eutactic with respect to this set of vectors, that is, if

(4.1) F(x) = £ A U Xi Xj = £ />; K x)2 + £ a\ x\
1 1 1

for some real pk,o\ satisfying pk>0(k = 1,..., r).
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For the proof of Theorem 4 it clearly suffices to establish the corresponding
strengthening of Lemma 2, namely

LEMMA3. Letfe3>(a)andletmk{k = 1,...,r) be those xeS, other than unit vectors,
for which equality holds in (1.3). Then f is ^-extreme if and only if there exists no
non-trivial quadratic form g satisfying

(4.2) g(ef) = 0 0 = 1,...,«), g(mk)>0 (k=l,...,r), (F,g)^0.

PROOF. Only one modification is needed in the proof given for Lemma 2, namely
for the assertion in part (i) that / ' e S>(a). We now have

and, for each k = 1,..., r and the corresponding i,

f'(mk) = f(mk) + eg(mk)^f(mk) = a,.

Next, if x e 5 but is not a unit vector or one of m,,. . . , mr, our hypothesis implies that
f(x)>au, whence also f'(\)>ati = a, if e is sufficiently small. Since S is finite, it
follows that/ '(x) ^ at for all x e S (and corresponding /), and hence, by definition of
S, for all integral x.
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