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A general infrastructure for tokamak controllers based on data-driven neural net models
is presented. The paradigm allows for more flexible choices of both the underlying
model and the desired controlled variables and targets. The system is implemented
and tested on the DIII-D tokamak, enacting simultaneous pressure and temperature
control via a finite-set model-predictive controller. Traditional control methods such as
proportional–integral–derivative (PID) have proven effective for decoupled control tasks,
but scale poorly when trying to achieve more complicated goals such as full state control.
This is exactly where model-based controllers succeed.
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1. Introduction

Modern tokamaks tend to use proportional–integral–derivative (PID) controllers, rather
than more advanced controllers such as model-predictive control (MPC), H-infinity, or
reinforcement learning. PID controllers need trial-and-error tuning to obtain desired
results, which requires many shots even when pre-tuned with simulations offline. However,
operators largely are willing to pay this cost because it is infeasible to debug more
sophisticated control schemes under a time crunch. Creating a more accurate yet
still intuitive and interpretable control would save shots and time, thereby increasing
experimental efficiency.

The most robust control mechanisms at the moment are for plasma current, radial
position, vertical position and (to a lesser extent) last closed flux surface (LCFS) shape.
On top of these base controls, other control algorithms are also sometimes employed.
Error fields and resistive wall modes (RWMs) have been controlled via non-axisymmetric
magnetic coils; sawteeth and neoclassical tearing modes (NTMs) can be controlled via
steerable electron cyclotron current drive (see Walker et al. 2020).
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One of the most difficult control problems, however, is full-profile magnetic and
kinetic control. Theoretically, many of the modes and parameters that determine fusion
performance are derived from these profiles; so by controlling the profiles the operator
is directly controlling the quantities that matter. For example, pressure gradients around
rational flux surfaces trigger magnetohydrodynamic (MHD) instabilities; kinetic profiles
largely determine bootstrap current; and RWM/NTM stability depends on both pressure
and rotational velocity. In modern tokamaks, some of the primary knobs for profile control
include neutral beams, electron cyclotron waves, ion cyclotron waves, lower hybrid waves,
helicon, cold gas fueling, pellet fueling, current ramp rate of the central solenoid and 3D
coils (Humphreys et al. 2015).

A 2004 JET experiment (Laborde et al. 2005) used lower hybrid current drive (LHCD),
ion-cyclotron resonance heating (ICRH) and neutral beam injection (NBI) in order to
control eight basis functions characterising the safety factor q and the normalised electron
temperature gradient ρ∗

Te
. Both profile and actuator quantities were assumed to be linear

perturbations around an experimentally determined steady-state reference. The power
deposition profiles from the actuators were assumed fixed (and determined from the
reference around which they were linearised). A linear, time-independent response of
the profiles to the three actuator values was also assumed. The system response matrix
was empirically determined from previous open-loop experiments perturbing the plasma
around the reference. This matrix was then used for proportional–integral (PI) feedback
in an experiment simultaneously controlling q and ρ∗

Te
. A variety of other initiatives in

the late 1990s/early 2000s also sought to control a limited number of proxy quantities for
the profile shape. Some used similar system identification methods for locally linearised
model-based control, e.g. Moreau et al. (2011) for DIII-D and JT-60 U. Others used
simpler feedback (mostly proportional) control, e.g. Ferron et al. (2006) for DIII-D,
Wijnands et al. (1997) for Tore Supra and Fujita & the JT-60 Team (2006) for JT-60 U.

However, more complete control over all profiles (rather than a small number of
proxies for individual profile shapes) and global models (rather than carefully tuned
local linearisations) are required for some control applications. Through the 2010s a
first-principles, model-driven approach was developed for controlling the full q profile
(Barton et al. 2013; Wehner et al. 2016). The density profile is assumed to maintain
a reference shape while varying linearly with the target density actuator n̄e (which is
achieved via gas puffing by a separate control loop). The temperature profile is also
assumed to maintain a reference shape, and scale like (Ip/Iref

p )
γ (Ptot/P

ref
tot )

ε(n̄e/n̄ref
e )

ζ for
empirically determined coefficients γ , ε and ζ ; and actuators of plasma current Ip, total
power Ptot and target density n̄e. The ion and electron temperatures are assumed equal,
and the plasma Zeff is assumed constant in space and time. Non-inductive current drive
from each electron cyclotron gyrotron and each neutral beam is assumed to scale with a
reference deposition profile times its power. Using simulations, intuition, and experimental
data from the scenario of interest, the reference profiles, reference actuators, empirical
coefficients and other parameters are chosen. All of these assumptions combined allow
for a linear poloidal flux diffusion (and in turn safety factor q) equation with an effective
actuator set u = f (Ip, n̄e,P) for P the individual power from each neutral beam and each
electron cyclotron heating gyrotron, and f a nonlinear mapping from real to effective
actuators.

Via finite difference, the flux diffusion equation in turn allows a linear state-space
mapping θ(t + 1) = Aθ(t)+ Bu(t) with θ = f (q) for f a nonlinear mapping. This
state-space form, where the state evolution is a linear mapping of the present state and
actuators, allows an abundance of existing control techniques to be employed. Recent
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experiments involved simultaneous control of the interior points of the q profile via
linear MPC to actuate individual powers of neutral beams and the target density, while
constraining the model to use a feedforward (i.e. pre-programmed) electron cyclotron
heating power. The total power from the beams is constrained to hit a desired total
stored energy. The stored energy is assumed to evolve like dE/dt = −(E/τE)+ P, where
the energy confinement time τE is obtained from the H98 scaling (ITER Physics Expert
Group on Confinement and Transport 1999); and the injected power P is assumed to
consist only of the neutral beam heating because that is the dominant component. A
PI controller is used to determine the best total injected neutral beam power to hit a
target stored energy. Meanwhile, Ip is excluded from the MPC framework and set by a
separate linear–quadratic–integral (LQI) control loop (described by Boyer et al. 2013) to
hit a desired edge q profile value q95. In essence then, the group has now demonstrated
simultaneous q profile plus scalar kinetic (via the stored energy) control on DIII-D in a
pseudo-first-principles framework, which was tested specifically for the high-qmin scenario
(Holcomb et al. 2015).

An otherwise similar approach to first-principles control instead considers the full
nonlinear diffusion equations and locally linearises at each timestep. This method was
used in a MPC framework to perform offline simulations (Felici & Sauter 2012), scenario
optimisation (Teplukhina et al. 2017), online state estimation (Felici et al. 2011) and
realtime q profile plus βn control on the TCV tokamak (Maljaars et al. 2015, 2017). This
local linearisation makes it easier to start from arbitrarily difficult equations, which means
more naturally including kinetic profile diffusion (Te, Ti and ne to date) in addition to
current profile diffusion (Felici et al. 2018).

Unfortunately, after many decades of work developing transport equations the dynamics
are still not well-captured, especially for kinetic profiles. The density profile is notoriously
hard to predict; and all set-ups require some information at the edge (usually values at
ρ ∼ 0.8) to give decent results. In all the aforementioned methods, there are ad hoc
assumptions required to obtain the diffusion equations to give semi-accurate results. As
more progress continues to be made on the described models, we instead propose a new
paradigm for control that uses a fully data-driven model to predict dynamics, and use
that model to control all points on all profiles simultaneously. Specifically, we seek to use
machine learning and other techniques to generate a model for the plasma state from a
large database of experimental data. We then seek to use this model in a model-driven
control framework. Machine learning has already been implemented for other areas of
tokamak control, especially for disruption prediction (Montes et al. 2019; Rea et al. 2019;
Fu et al. 2020). In this paper, we build on the work of (Abbate, Conlin & Kolemen 2021)
and (Jalalvand et al. 2021) to perform plasma profile control. We describe our workflow
to train and deploy deep-learning plasma evolution models in control algorithms on the
DIII-D tokamak (Luxon & Davis 1985), within the infrastructure of the machine’s standard
plasma control system (PCS) (Penaflor et al. 2001). The framework is well-modularised
so that anyone could train a model with the offline dataset, and then plug their control
algorithm into the PCS via these tools. In this paper, we describe this infrastructure, and
demonstrate it with an initial, simple test on the device: neural-net-based finite set control
of the core pressure and electron temperature via beam power modulation.

2. Infrastructure design

Controllers can be viewed as black boxes that map states to actions. These can be
anything from simple PID controllers to much more advanced reinforcement learning
algorithms.
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FIGURE 1. Diagram of the new infrastructure for machine learning control on DIII-D.
Historical data are used to train a machine learning model to predict plasma evolution, which
is then converted into PCS code using Keras2C. The model is used in realtime to predict plasma
evolution under different actuator options, and the option that results in predictions closest to
user-defined targets is used to evolve the plasma state at each timestep. Blue corresponds to the
parameters a user should change before experiments and during shots (as we describe in the
Initial experimental control test section); black corresponds to infrastructure described in this
section that a user generally would not change; and green corresponds to the state, which is
defined by the behaviour of the plasma.

We have built a basic infrastructure for implementing model-based, data-driven control
of plasma profiles. As shown in figure 1, the infrastructure includes:

(i) a workflow for generating data both offline and within the PCS of the same form so
that models can be trained offline and deployed on the same type of data online;

(ii) a user-interface in the control system to specify both the value and importance
(‘weight’) of each controlled state; at present, this includes 33 spatial components
from each plasma profile;

(iii) a code for converting neural networks written with the Python deep learning library
Keras (Chollet 2015) into realtime-compatible C code to be used in PCSs, called
Keras2C (Conlin et al. 2021).

These basic components comprise a code infrastructure within the DIII-D PCS modular
enough to easily train a plasma evolution model, and swap in any control algorithm that
uses such a model. Each of the components is described in this section.
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Name Offline source Online source Units

Profiles ne Zipfit mtanh 1019 m−3

Te Zipfit mtanh keV
Rotation Zipfit spline kHz
ι = 1/q EFITRT2 EFITRT2 —
Pressure EFITRT2 EFITRT2 Pa

Actuators Injected power pinj VEP MW
Injected torque tinj VEP N m
Target current iptipp iptipp A
Target density dstdenp dstdenp 1019 m−3

Line average density dssdenest dssdenest 1019 m−3

TABLE 1. Signals available both in realtime and offline for training control models and
algorithms. ‘Source’ denotes the MDS+ pointname or algorithm used to generate the data.
iptipp is the plasma current setpoint. dstdenp is the interferometer average density target
setpoint. VEP is a subcontroller that sets individual beam powers to achieve the algorithm’s
requested pinj and tinj.

2.1. Dataset curation
The MDSplus accessing tool TokSearch (Sammuli et al. 2018) is leveraged to generate
an offline database of timetraces from previous experiments (about 150 000 samples
from about 3500 shots run between 2013 and 2018). Before the experiment, one can
use this offline database to train a plasma evolution model and Keras2C to convert it
into realtime-capable form. A pipeline written in C within the DIII-D PCS interface
is used to generate similar samples ‘online’ for use in control. Table 1 summarises
the signal sources used for online deployment versus offline training. As described in
more detail in Abbate et al. (2021), Zipfit is a standard DIII-D workflow that tries a
variety of fitting mechanisms and chooses the option with the lowest χ 2 values; and
EFITRT2 is the realtime, kinetically-and-MSE (motional Stark effect) constrained version
of the Grad–Shafranov solver EFIT (Lao et al. 2005). As is standard for many transport
applications on DIII-D, Thomson scattering is used to infer the electron temperature and
density; charge exchange recombination (CER) infers the ion temperature and rotation;
Ḃ probes, MSE, and pressure fits via Thomson scattering are primarily used for the
equilibrium reconstruction; and an interferometer is used for the line average density.
Note that while the safety factor q is more common in tokamak physics for describing
the ratio of poloidal to toroidal magnetic field, due to the singularity at the separatrix,
the rotational transform ι = 1/q was used in order to avoid numerical difficulties. The
following subsection describes the profile-fitting mechanisms in more detail.

Note that iptipp (the plasma current setpoint) and dstdenp (the interferometer
average density target setpoint) are the exact commands used within a simple PI controller
on the tokamak to set a desired current/density by adjusting the solenoid current ramp
rate/gas valve flow (voltage). The offline database uses the true values of pinj and tinj
sent into the device; the online controller instead takes in the values requested by the
variable energy and perveance (VEP) algorithm. For control, energy and perveance are
kept fixed, and VEP merely varies the duty cycle of the beams. VEP coordinates with
each of the eight beams to hit the specified total injected power and torque, given other
constraints on the beams (Boyer et al. 2019). For example, in the control experiment
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described later in this paper one of the beams is configured to remain ‘on’ in order to
acquire MSE data; and two other beams to stay on to acquire CER data.

For more details on the data excluded, time-averaging, and smoothing used for the
offline model, see Abbate et al. (2021).

2.1.1. Realtime profile fitting
The profiles provided by rtEFIT are already fit as smooth functions of the normalised

poloidal flux ψ . The CER (measuring rotation) and Thomson (measuring electron
temperature and density) data are given as point measurements at fixed locations in the
lab frame. This requires fitting the data to obtain the values at fixed locations in magnetic
coordinates. To accomplish this, a realtime fitting algorithm is used. The mapping between
the lab frame and flux coordinates is provided by rtEFIT, which calculates the poloidal
flux on a grid in (R,Z) coordinates. These mapped points are then fit. A modified
hyperbolic tangent with a linear core, described in Groebner et al. (2001), is used for
temperature and density profiles. Smoothing splines (Wand 2000) are used for the rotation
profile.

The modified hyperbolic tangent basis was chosen to accurately capture the pedestal
region at the expense of slightly less accuracy in the core, where the profile is constrained
to be linear. A future upgrade will extend this to higher-order polynomials in the core.
Smoothing splines

f̂ ∗ = arg min
f̂

N∑
i=1

( yi − f̂ (xi))
2 + λ

∫
f̂ ′′(x)2 dx (2.1)

were chosen for the rotation profile as they are a flexible basis capable of fitting a wide
range of shapes. In contrast to standard interpolating splines, smoothing splines include
a term to penalise the curvature of the resulting function, so in general they do not
pass directly through the function values, which is desired when working with realtime
measurements that may be noisy.

These fitting techniques are placed in a separate algorithm, and are part of an ongoing
effort to develop a realtime version of the Consistent and Automatic Kinetic EFIT (CAKE)
code (Xing et al. 2021).

2.1.2. Buffering of fitted points
Each signal is obtained on its own sampling time, generally 1–10 ms between

measurements. Values are averaged in time in a boxcar fashion over 50 ms windows, a
window long enough to ensure multiple datapoints lie in the window but short enough
that the plasma does not change too significantly (the energy confinement time at DIII-D
is 100 s of ms).

2.2. Plasma control system user interface
Between shots during an experiment, the user can input a (potentially time-varying) set of
desired profiles within the PCS: electron temperature, electron density, plasma rotation,
ι = 1/q and total pressure. The input at present is 33 evenly spaced points between
ψn = 0 and ψn = 1, for ψn the normalised poloidal flux coordinate. The user also can
input time-varying weights corresponding to each of the points within each of the profiles.
Control algorithms within the framework are built to minimise the weighted least-squares
error between the user-specified targets and the actual profiles:
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Error(y1, . . . , yNum profiles) =
Num profiles∑

i=1

|wi · (yi − ytarget
i )|2 (2.2)

for wi the vectors of user-specified weights for each profile, ytarget
i the values of the

individual profiles and ytarget
i the user-specified target profiles.

2.3. Actuator commands
The controllers used in this framework can be thought of as high-level controllers in a
cascaded control scheme. After the high-level controller determines the correct actuator
values at the current timestep, they are sent to the respective lower-level controllers which
interface directly with the hardware. Neutral beam power and torque requests are sent
to VEP as described previously, which calculates the required duty cycle then interfaces
directly with the master beam algorithm. Requests for plasma current and average density
are sent to their respective PI controllers to set the solenoid current ramp rate/gas valve
flow (voltage).

3. Initial experimental control test
3.1. Control algorithm design

The previous sections discuss a new control system infrastructure for training a data-driven
model offline and using it for multiple-profile control online. The PCS infrastructure
allows users to specify desired target profiles and weights, and the control algorithm
chooses actuator values at each cycle time to minimise the error.

In this section, a simple initial test deployed at DIII-D using this infrastructure is
described. The system dynamics are identified via a smaller version of the neural network
described in Abbate et al. (2021). Figure 2 shows the structure of the model inputs and
outputs. The model takes as input the present state defined by the plasma profiles. The
model also takes as input the recent history of how a set of scalar parameters has been
responding to the actuator commands. This empirically increases the model accuracy, and
can be seen as a way of adapting the model to brand-new regimes (e.g. if the model sees
the plasma β has stayed constant despite an increasing injecting power, the model can
guess that a further increase in injected power may not be effective even if the model has
not been trained on data from this specific scenario). Finally, the model takes as input
proposals for actuators at each of four timesteps into the future (i.e. to the right of the
dashed line). These are the values the control algorithm will be allowed to set. Given
all of these inputs (the green and blue rectangles), the neural network predicts the future
state (defined by plasma profiles) 200 ms into the future (the black rectangle). The specific
signals are listed in table 1.

The model is used to choose actuator values via finite set MPC. As described in Cortes
et al. (2008), finite set control is one of the simplest options for control given a dynamics
model of any form. In this control, at every timestep, the model predicts the future state of
the plasma conditioned on each of a finite set of control options (i.e. ‘proposals’). In the
implementation of this algorithm, a set of (potentially time-varying) proposals is specified
in the user interface in the form listed in table 2. At each cycle within the shot, the neural
net is evaluated to predict the resulting profiles from each proposal. The algorithm then
selects the proposal that led to the smallest error between the profiles predicted and the
target profiles specified by the user. This optimal proposal’s first column (i.e. the actuator
value for the first timestep in the proposal’s trajectory) is used as the actuator setpoint for
the upcoming timestep.
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FIGURE 2. Inputs (blue proposals and green information from present and previous timesteps)
and output (black profiles 200 ms in the future) of the model. Note that each timestep of data is a
boxcar average over all values between the timestep it represents and 50 ms beforehand. Dashed
line represents the timestep at which the prediction is made.

Figure 3 demonstrates the mechanism of finite set control for a timeslice in the
experiment described in the following section. At this time, the proposals were those in
table 2. The targets were the temperature and pressure values at ψN = 0, 0.03 and 0.06
with weights of 1 (and all other weights 0). In this case, every target point for both pressure
and temperature is lower than the corresponding present value by a significant margin. The
algorithm predicts that the proposal with increasing pinj would maintain or increase the
pressure and temperature, whereas a decreasing pinj would bring the values down very
close to the targets over the coming 200 ms. Thus, the control algorithm in this case would
choose to use the proposal with decreasing pinj. Note that a full time trace of pinj is
used as input to the model, 300 ms into the past and 200 ms (proposed) into the future. This
time-dependent input is shown, along with the input profiles of temperature and pressure.
For simplicity, the other inputs (table 1) are not shown in this figure.

3.2. Experimental checkout
As part of the initial test, core-profile control is attempted by varying injected power.
Throughout the test, three proposals as listed in table 2 are given: a proposal with linearly
decreasing injected power (pinj), constant pinj and linearly increasing pinj. Injected
torque (tinj) is given a similar ramp to pinj within each of the three proposals, which
should make it easier for the VEP beam controller to properly fulfill the pinj and tinj
requests (especially because the machine’s beams were all pointing in the same direction
on the day of the experiment). We control in flattop only, loading in the rampup, shape
parameters and other settings from a plasma startup shot in 2020 (182 500). We chose this
shot because it had been an experimental test case for the realtime kinetic equilibrium
reconstruction. Note that the model was trained on shots from campaign years 2010
through 2018, so that this shot was not seen during training. During the flattop control,
all profile targets, when active, have the same shape from a timeslice just after rampup
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↑ pinj
Actuator 50 ms 100 ms 150 ms 200 ms

Δ target pinj (MW) 0.31 0.63 0.94 1.26
Δ target tinj (N m) 0.27 0.54 0.81 1.08
Δ target density (1019 m−3) 0 0 0 0
Δ target current (MA) 0 0 0 0

constant
Actuator 50 ms 100 ms 150 ms 200 ms
Δ target pinj (MW) 0 0 0 0
Δ target tinj (N m) 0 0 0 0
Δ target density (1019 m−3) 0 0 0 0
Δ target current (MA) 0 0 0 0

↓ pinj

Actuator 50 ms 100 ms 150 ms 200 ms
Δ target pinj (MW) −0.31 −0.63 −0.94 −1.26
Δ target tinj (N m) −0.27 −0.54 −0.81 −1.08
Δ target density (1019 m−3) 0 0 0 0
Δ target current (MA) 0 0 0 0

TABLE 2. Set of three ‘proposals’ used to generate the inputs for the model in finite set MPC:
desired (signed) changes in pinj, tinj, density and current for each 50 ms window in the
200 ms time horizon over which profiles are predicted. In this case, pinj and tinj are proposed
to linearly ramp whereas density and current are proposed to stay constant. For each proposal in
the set, a model would predict the single-timestep evolution of the plasma state 200 ms into
the future. The first column of the proposal with the lowest predicted error 200 ms from now
(between the user-specified target and the prediction) is chosen as the control setpoint for the
next timestep. These are the actual proposals used for DIII-D shot 187 076.

in the reference shot (182 500 at 1.50 s). All points on the profile are scaled by the same
scalar value so that choosing a target is effectively just choosing the core value for each
profile.

All experimental results in this section correspond to DIII-D shot 187 076. The following
subsections are best read while referencing the annotated experimental trajectory shown
in figure 4 which plots timetraces of pressure and temperature at ψN = 0.03.

3.2.1. Phase I
The algorithm takes full control of the beams at 1.35 s. In this first phase, the core values

(from ψN = 0 to 0.06) of pressure and temperature are controlled simultaneously. The
same pressure profile from the baseline slice is used, but the temperature profile is scaled
from a 3.3 keV core down to a 2.0 keV core (so that effectively the algorithm will attempt
to achieve a combination of pressure and temperature outside the range of its training
data). Both pressure and temperature (the thick grey timetraces) are initially above the
targets (the black dashed lines). However, from the beginning of control at 1.35 s until
1.73 s, an error in the beam set-up meant that MSE data were not available, which in turn
meant that the realtime (MSE-constrained) equilibrium fitting code was not returning a
pressure and safety factor (q) profile. The controller properly floated previous values of
pressure and q in light of the error, but this meant that the controller thought the pressure

https://doi.org/10.1017/S0022377822001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001040


10 J. Abbate, R. Conlin, R. Shousha, K. Erickson and E. Kolemen

FIGURE 3. Demonstration of the mechanism of finite set control during DIII-D shot 187 076. At
this timestep, three points in the core were targeted for both temperature and pressure (weight =
1 for ψN = 0, 0.03 and 0.06, and 0 for all other points). pinj was proposed to linearly decrease,
remain constant or linearly increase. The top two panels show the input to the model (greyed
out) and the predictions given the three proposals. The black Xs mark the targets, demonstrating
that the chosen proposal (that with the lowest mean-squared distance between the target and the
prediction) will be the decreasing pinj proposal. The bottom panel shows the pinj input to
the model: the grey portion is the historical input, and each of the three proposals is included as
input to the model for the corresponding predictions on the top plots.

was above the target when really it was below by about 1.6 s. The algorithm therefore
continued decreasing beam power for much of this red-shaded region despite the true
pressure profile being below the target.

At 1.73 s, rtEFIT recovers, and immediately the controller begins to increase pinj.
At 1.97 s, the controller begins to decrease the injected power to settle down on the
pressure and temperature targets. At this point, the profiles are still below the targets, so
the controller (like a derivative controller) is effectively looking ahead to slow down the
upward trajectory as the inputs come in to the final value. At 2 s the phase switches to a
new set of targets.
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FIGURE 4. DIII-D shot 187 076. In the top two panels, true values of pressure and electron
temperature at ψN = 0.03 are plotted over time in grey. In blue, green and orange the model’s
prediction 200 ms into the future is tracked proposing a decreasing, constant and increasing
injected power, respectively. The bottommost plot shows the change in injected power (pinj)
requested based on the winning proposal, and the plot above shows the pinj actually
implemented.

3.2.2. Phase II
During this next phase, pressure control is turned off and the temperature target

is scaled up to have a core value of 3 keV. Once again (likely due to pinj having
been increasing through the previous timesteps), all proposals are predicted to yield
an increasing temperature. The controller sensibly chooses to uniformly increase pinj
between 2.0 and 2.42 s, and the temperature increases. A slight overshoot occurs, but (like
a proportional controller) the algorithm begins decreasing the injected power right as the
temperature passes the target. The value flattens out quite close to the targeted value. For
convenience, an enlarged view of the relevant information is shown in figure 5. Note the
mechanistic reason for the behaviour: the algorithm correctly predicts that even if beam
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FIGURE 5. Enlarged view of phase II in figure 4, showing the derivative-like action attempting
to mitigate overshooting the temperature target by decreasing the injected power right as the
target is achieved (at the vertical dashed line).

power is kept constant, the temperature will continue increasing, so that the optimal action
to maintain the target is to decrease the beam power right away rather than holding it
steady.

3.2.3. Phase III
At 2.5 s the final phase of the shot begins: scaling the temperature target profile up to a

core value of 6 keV. Towards the end of the previous phase, an n = 2 MHD mode began to
grow, and at the beginning of the 6 keV phase, the beams are already firing at maximum
power, so the proposals to increase cannot be fulfilled. The temperature therefore hovers
around the 3 keV where it had started.

3.2.4. Analysis
In summary, the finite set controller is able to perform with some of the beneficial

characteristics of a stable proportional–derivative controller without any hand-tuning
(though more work would be needed to compare the controllers quantitatively). Although
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the phases of the experiment were not long enough to see the full dynamics, we
suspect that the controller would have properly settled down close to the target values
in the first and second phases. Although the finite set controller is the simplest possible
‘model-predictive’ control algorithm and just a starting point, the benefit of the lookahead
to more efficiently achieving a desired state is demonstrated.

Each neural net evaluation takes about a millisecond, and these calculations are
performed in serial. The DIII-D control system, like most realtime systems, requires that
the algorithm run on a fixed cycle time throughout the shot. To ensure it completes at each
cycle with room for error, a cycle time of 10 ms was used.

4. Conclusion and future work

We have built the infrastructure and performed a successful initial test for a new
paradigm of fully data-driven, model-based tokamak state control. Moving forward, we
plan to use more intelligent control schemes. One idea is to locally linearise the machine
learning model that predicts future states so that we have a form x(t + 1) = Ax(t)+ Bu(t)
amenable to traditional control techniques. One way to do this is to get a local Jacobian
from the machine learning predictor we already have, in which case the state x would be
the true state of the system. Another mechanism is to attempt to encode the true plasma
state into a latent state where the dynamics are globally linear. In this case, we would
be able to overcome the (generally poor) assumption that the real-state dynamics must
be linear in a large enough region around the current state to be useful for model-based
control. We have also been developing an offline testbed for simulating controllers via
the ASTRA transport modelling suite (Pereverzev & Yushmanov 2002). This will give us
the means to evaluate many controllers offline and decide the best few to try during real
experiments.

We also at present are using a limited set of actuators (total injected power and
torque from beams, target density setpoint and plasma current setpoint). More actuators
should be added to the base infrastructure over time (e.g. individual beam power and
possibly voltages/perveances, electron cyclotron gyrotron angles and powers, shape coils
and 3D coils). More state information may also improve predictive models and, hence,
controllability, e.g. high-resolution turbulence information from CO2 interferometers and
beam emission spectroscopy.
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