IMAGES OF CLASS-C SPACES

BY

THOMAS W. RISHEL(¹)

ABSTRACT. In this paper the author characterizes images of class-(spaces (as defined by Ishii, Tsuda and Kunugi, Proc. Japan Acad. 44, (1968), 897–903) under almost-open maps, bi-quotient maps, pseudo-open maps and quotient maps.

1. Introduction. In this paper all spaces are T_2 , all maps are continuous and onto. Ishii, Tsuda and Kunugi [3] have recently defined a new class of spaces, called \mathfrak{C} -spaces, somewhat smaller than the class of *M*-spaces introduced in [6] by Morita. \mathfrak{C} -spaces are countably productive, and the product of a class- \mathfrak{C} space with an *M*-space is an *M*-space.

DEFINITION 1.1. Y is of class- \mathfrak{C} iff Y has a sequence of open covers $\mathscr{U}_1, \mathscr{U}_2, \ldots$ such that

(i) $\mathscr{U}_1 > \mathscr{U}_2^* > \mathscr{U}_2 > \mathscr{U}_3^* > \cdots$;

(ii) any point-sequence $\{y_i\}$, where $y_i \in St(y, \mathcal{U}_i)$ for all i=1, 2, ... and for some fixed $y \in Y$, has a subsequence whose closure is compact.

The next result is from [1] and [12].

THEOREM 1.2. The following are equivalent:

(a) X is of class- \mathfrak{C} ;

(b) X is M and weakly-k (given $F \subseteq X$, F is closed if $F \cap C$ is finite for every C compact in X);

(c) X is M and k_0 (every sequence which clusters has a subsequence whose closure is compact).

(d) X is M and weakly-para-k (F is closed in X if $F \cap P$ is finite for every closed paracompact P in X).

Characterizations of continuous images of various spaces have already been carried out. Some of these results have been summarized in [5] and [11]. For such results on M-spaces, see [1], [7], [9] and [10]. In this paper images of class- \mathfrak{C} spaces under some continuous maps will be characterized.

Received by the editors May 17, 1971 and, in revised form, October 13, 1971.

⁽¹⁾ Partially funded by National Research Council Grant A-3999. Part of this work appears in the author's Doctoral Dissertation, written under Professor J. Nagata at the University of Pittsburgh.

2. Characterizations.

DEFINITION 2.1. A map $f: X \to Y$ is said to be almost-open iff for any $y \in Y$ there exists an $x \in f^{-1}(y)$ having a basis of open sets such that the image of each member of the basis is open.

DEFINITION 2.2. A sequence $\{U_1, U_2, \ldots\}$ of sets in a topological space is said to form an r_0 -sequence iff any point-sequence of the form $\{y_i: y_i \in U_i\}$ has a subsequence $\{y_{i(n)}\}$ whose closure is compact.

DEFINITION 2.3. A topological space Y is said to be an r_0 -space iff for every $y \in Y$ there exists an r_0 -sequence $\{U_1, U_2, \ldots\}$ of neighbourhoods of y.

THEOREM 2.4. A regular space Y is an r_0 -space iff it is the almost-open image of a space $X \in \mathfrak{C}$.

Proof. Let Y be a regular r_0 -space, and let y be any point of Y. Then there exists a decreasing r_0 -sequence $\{U_1, U_2, \ldots\}$ about y. Put $K = \bigcap \{C | U_i : i = 1, 2, \ldots\}$. Then each point sequence in K has a subsequence whose closure is compact, so $K \in \mathbb{C}$. Also, $\{U_i\}$ forms a countable base for K. To show this, let $V \supseteq K$ be an open set in Y and assume that $V \not\equiv U_i$ for $i=1, 2, \ldots$. Then choose a sequence of points $\{y_i\}$ such that $y_i \in U_i - V$ for all $i=1, 2, \ldots$. Because $\{U_i\}$ is an r_0 -sequence, $\{y_i\}$ has a subsequence $\{y_{i(n)}\}$ which has a cluster point p. Then obviously $p \in K$. Since $p \notin V$, $K \not\equiv V$. Contradiction. Then $\{U_i\}$ is a countable base for K. Consequently there exists a cover $\{K_\alpha : \alpha \in \Omega\}$ of Y by sets having the property that every point sequence in K_α has a subsequence which forms an r_0 -sequence.

Now for each $\alpha \in \Omega$, let Y_{α} be the set Y with the topology in which the open sets are the sets of the form $U \cup V$ where U is open in Y and V is any subset of $Y-K_{\alpha}$. Y is regular so Y_{α} is clearly regular. So let $\{V_{\alpha}^{i}: i=1, 2, ...\}$ be a countable base for K_{α} in Y_{α} such that $ClV_{\alpha}^{i+1} \subseteq V_{\alpha}^{i}$ for each i, and $\{V_{\alpha}^{i}: i=1, 2, ...\}$ is an r_{0} -sequence. For all i=1, 2, ..., put $\mathcal{W}_{\alpha}^{i} = [\{V_{\alpha}^{i}\}, \{y: y \in Y_{\alpha} - V_{\alpha}^{i}\}]$. Then $\{\mathcal{W}_{\alpha}^{i}:$ $i=1, 2, ...\}$ is a normal sequence of open covers in Y_{α} satisfying the point sequence condition of class- \mathfrak{C} spaces. So Y_{α} is regular and belongs to class \mathfrak{C} . Thus the discrete sum X of the Y_{α} 's also has these properties.

Define $f: X \to Y$ by taking $f \mid Y_{\alpha}: Y_{\alpha} \to Y$ as the identity map; then f is clearly onto and continuous. Now let $y \in Y$. Then it is necessary to show that there is an $x \in f^{-1}(y)$ having an open neighbourhood basis \mathscr{U} such that f(U) is open in Y for each $U \in \mathscr{U}$. Let $y \in K_{\alpha}$ and let \mathscr{U} be an open neighbourhood basis of y; then $\mathscr{B} = \{f^{-1}(U) \cap Y_{\alpha}: U \in \mathscr{U}\}$ is an open neighbourhood basis of $x = f^{-1}(y) \cap Y_{\alpha}$ in X and f(V) is open for each $V \in \mathscr{B}$. To prove necessity, let X be an r_0 -space and f an almost-open map of X onto Y. It suffices to show that the almost-open image of an r_0 -space is an r_0 -space. Let $y \in Y$; then there is an $x \in f^{-1}(y)$ having a neighbourhood base \mathscr{U} of open sets such that f(U) is open in Y for each $U \in \mathscr{U}$. Since X is r_0 , \mathscr{U} contains an r_0 -sequence $\{U_i\}$. We claim the neighbourhoods $f(U_i)$ of y form an r_0 -sequence about y. To see this, let $y_i \in f(U_i)$ and choose $x_i \in U_i$ such that $f(x_i) = y_i$ for $i=1, 2, \ldots$. Then $\{x_i\}$ has a subsequence $\{x_{i(n)}\}$ whose closure is compact, since $\{U_i\}$ is an r_0 -sequence. But then $\{y_{i(n)}\} \subset f[Cl\{x_{i(n)}\}] \subset Cl\{y_{i(n)}\}$ and $f[Cl\{x_{i(n)}\}]$ is closed, so $Cl\{y_{i(n)}\}=f[Cl\{x_{i(n)}\}]$ is compact. Hence $\{f(U_i)\}$ is an r_0 -sequence about y as asserted.

DEFINITION 2.5. Call a set C proto-compact iff every point sequence in C which accumulates has a subsequence whose closure is compact.

DEFINITION 2.6. Y is said to be a proto-k space iff the following condition holds: $V \subseteq Y$ is open iff $V \cap C$ is relatively open in C for every proto-compact $C \subseteq Y$.

THEOREM 2.7. Y is proto-k iff there exists a regular class- \mathfrak{C} space X and a quotient map $f: X \rightarrow Y$.

Proof. Let $f: X \to Y$ be a quotient map from a regular class- \mathfrak{C} space X. Let V be nonopen in Y. Thus there exists $x \in f^{-1}(V) - \operatorname{Int} f^{-1}(V)$. Since X is \mathfrak{C} , there is an r_0 -sequence $\{U_1, U_2, \ldots\}$ of neighbourhoods of x. By regularity, we may assume that $U_{n+1} \subset U_n$ for all $n=1, 2, \ldots$. Now $U_n \cap (X-f^{-1}(V)) \neq \emptyset$ for all $n=1, 2, \ldots$. If we put $C(x) = \bigcap \{U_n: n=1, 2, \ldots\} = \bigcap \{C \mid U_n: n=1, 2, \ldots\}$, then C(x) is clearly proto-compact.

Consider two cases.

(i) Assume that $x \in Cl[C(x) \cap (X-f^{-1}(V))]$. Then f(C(x)) is a proto-compact set such that $f(C(x)) \cap V$ is nonopen in f(C(x)). To show this last, let W be a given neighbourhood of $f(x) \in Y$. Then $f^{-1}(W)$ is a neighbourhood of x in X, and

$$f^{-1}(W) \cap C(x) \cap (X - f^{-1}(V)) \neq \emptyset.$$

So $W \cap f(C(x)) \cap (Y-V) \neq \emptyset$ in Y, and

$$f(x) \in f(C(x)) \cap V \cap Cl[f(C(x)) \cap (Y-V)].$$

This last says that $f(C(x)) \cap V$ is nonopen in f(C(x)), and Y is then proto-k.

(ii) Now assume that $x \notin Cl[C(x) \cap (X-f^{-1}(V))]$. (Thus $C(x) \cap [X-f^{-1}(V)]$ may be empty). Since X is regular, there exists an open neighbourhood U of x such that

$$C|U \cap C(x) \cap (X - f^{-1}(V)) \neq \emptyset.$$

THOMAS W. RISHEL

[September

Since $x \in Cl[X-f^{-1}(V)]$, we can choose $x_n \in (U_n \cap U) \cap (X-f^{-1}(V))$, for each $n=1, 2, \ldots$. The point sequence $\{x_n:n=1, 2, \ldots\}$ then has a subsequence $\{x_{n(j)}: j=1, 2, \ldots\}$ whose closure K is compact. If x_0 is any accumulation point of $\{x_{n(j)}\}$, then $x_0 \in ClU \cap C(x)$, so that $x_0 \in f^{-1}(V)$. Since $x_0 \in K$, this implies $f(x_0) \in f(K) \cap V$. Now take any neighbourhood W of $f(x_0); f^{-1}(W)$ is a neighbourhood of x_0 in X. Thus, for any $n=1, 2, \ldots$, there exists an $n(j) \ge n$ such that $x_{n(j)} \in f^{-1}(W)$. This last says that $W \cap f(K) \cap (Y-V) \ne \emptyset$ since

$$f^{-1}(W) \cap K \cap (X - f^{-1}(V)) \neq \emptyset$$
.

Then $f(x_0) \in Cl[f(K) \cap (Y-V)]$, and $f(K) \cap V$ is nonopen in f(K). This last says that Y is proto-k.

Conversely, let Y be a given regular proto-k space. Then let $\{K_{\alpha} : \alpha \in A\}$ be the family of all proto-compact sets of Y. Take X the discrete sum of the K_{α} 's. X is clearly of class- \mathfrak{C} , and the map formed from the direct sum of natural injections $f_{\alpha}: K_{\alpha} \to Y$ is a quotient map.

COROLLARY 2.8. For a regular space Y, the following are equivalent:

- (a) Y is proto-k;
- (b) Y is the quotient of a regular r_0 -space;
- (c) Y is the quotient of a regular class- \mathfrak{C} space;

(d) Y is the quotient of a regular locally proto-compact space (i.e., a space in which every point has a proto-compact neighbourhood).

The next map, originally defined by O. Hajek, has been studied in some detail by Michael [4].

DEFINITION 2.9. A map $f: X \to Y$ is said to be bi-quotient iff: given \mathscr{B} a filterbase in Y, if $y \in ClB$ for all $B \in \mathscr{B}$, then there exists an $x \in f^{-1}(y)$ such that $x \in Clf^{-1}(B)$ for all $B \in \mathscr{B}$.

DEFINITION 2.10. Y is bi-proto-k iff any maximal filter \mathscr{F} which converges to $y \in Y$ contains an r_0 -sequence $\{F_1, F_2, F_3, \ldots\}$ of members of \mathscr{F} such that $y \in \bigcap \{F_i : i=1, 2, \ldots\}$.

THEOREM 2.11. Among regular spaces, Y is bi-proto-k iff there exists a class- \mathfrak{C} space X and a bi-quotient map $f: X \rightarrow Y$.

Proof. Let $X \in \mathfrak{C}$ and let \mathscr{G} be a maximal filter converging to $y \in Y$. Then there exists an $x \in f^{-1}(y)$ which is a cluster point of $f^{-1}(\mathscr{G})$. Now $X \in \mathfrak{C}$, so an r_0 -sequence of neighbourhoods $\{U_1, U_2, \ldots\}$ of x exists such that $U_1 \supseteq ClU_2 \supseteq U_2 \supseteq ClU_3 \supseteq U_3 \supseteq \cdots$. Since $f(U_i) \cap G \neq \emptyset$ for all $i=1, 2, \ldots$ and all $G \in \mathscr{G}$, this says that $f(U_i) \in \mathscr{G}$.

326

Now let Y be a given bi-proto-k space. Let $\alpha = \{A_1, A_2, \ldots\}$ be an arbitrary r_0 -sequence of neighbourhoods in Y with $\bigcap \{A_i: i=1, 2, \ldots\} \neq \emptyset$. Then define $C(\alpha) = \bigcap \{A_i: i=1, 2, \ldots\}$, and define a new topological space Y_{α} by the following:

- $N(x) \in \mathcal{N}(x)$, a neighbourhood basis of $x \in X$ if
- (a) N(x)=A_i ∩ U(x) for i=1, 2, ... and U(x) a Y-neighbourhood of x ∈ C(α);
 (b) N(x)={x} if x ∈ Y_α-C(α).

Let X be the discrete sum of all Y_{α} , $\alpha \in A$, where A is the collection of all r_0 -sequences of Y with nonempty intersection. Define an open cover \mathcal{U}_i of X by

where

$$\mathscr{U}_i = \mathsf{U}\{\mathscr{U}_{i,\alpha}: \alpha \in \Omega\}$$

. . .

$$\mathscr{U}_{i,\alpha} = [\{A_i\}, \{z : z \in Y_{\alpha} - A_i\}].$$

If $\{x_i\}$ is a point-sequence in X such that $x_i \in St(x_0, \mathcal{U}_i)$, then an α exists such that $x_0 \in Y_{\alpha}$. If $x_0 \notin C(\alpha)$, x_0 is a cluster point of $\{x_i\}$, so the subsequence consisting of the singleton $\{x_0\}$ obviously has compact closure. On the other hand, if $x_0 \in C(\alpha)$, then $x_i \in A_i$ for all $i=1, 2, \ldots$. Thus $\{x_i\}$ has a subsequence which has compact closure in Y_{α} , and hence in X. Now let f be a map from X to Y defined by taking $f \mid Y_{\alpha} = f_{\alpha}$ as the identity map. Then f is clearly continuous and onto since the topology of each Y_{α} is stronger than that of Y.

So let \mathscr{G} be a filterbase in Y and let y be a cluster point of \mathscr{G} . Then a maximal filter \mathscr{G}' exists containing \mathscr{G} and converging to y. Now an r_0 -sequence of neighbourhoods exists, call it $A_1 \supseteq A_2 \supseteq \cdots$, such that $A_i \in \mathscr{G}'$, $y \in \bigcap \{A_i : i=1, 2, \ldots\}$. Call $\alpha = \{A_1, A_2, \ldots\}$; then $f^{-1}(y) \cap Y_{\alpha}$ is a single point x_{α} . Let $A_i \cap U(x_{\alpha})$ be a basic neighbourhood of $x_{\alpha} \in Y_{\alpha}$. Now A_i and $U(x_{\alpha}) \in \mathscr{G}'$, so $A_i \cap U(x_{\alpha}) \in \mathscr{G}'$. Then $A_i \cap U(x_{\alpha}) \cap G \neq \emptyset$ for every $G \in \mathscr{G}$. This last says that $A_i \cap U(x) \cap f^{-1}(G) \neq \emptyset$ in X, in which case x is a cluster point of $f^{-1}(\mathscr{G})$ in X. Thus f is biquotient, which finishes the proof.

DEFINITION 2.12. A map $f: X \to Y$ is pseudo-open iff for every $y \in Y$ and for every neighbourhood U of $f^{-1}(y)$, $y \in \text{Int } f(U)$.

DEFINITION 2.13. Y is said to be singly bi-proto-k iff the following condition holds: $y \in ClB$ for some $B \subseteq Y$ iff there exists an r_0 -sequence $\{U_1, U_2, \ldots\}$ of subsets of Y such that

(1) $y \in U_i$ for every i=1, 2, ...;(2) $y \in Cl(U_iB)$ for every i=1, 2,

The next theorem has a proof essentially the same as that of the theorem in [10]. The proof will be omitted.

1973]

THOMAS W. RISHEL

THEOREM 2.14. Y is singly bi-proto-k iff Y is the image of a class- \mathfrak{C} space X by means of a pseudo-open map.

We have an analog to Corollary 2.1.

COROLLARY 2.15. A regular space Y is singly bi-proto-k iff Y is the pseudo-open image of a regular r_0 -space X.

References

1. T. Chiba, On q-spaces, Proc. Japan. Acad. 45 (1969), 453-455.

2. J. Dugundji, Topology.

3. T. Ishii, M. Tsuda, and S. Kunugi, On the products of M-spaces I, II, Proc. Japan. Acad. 44 (1968), 897-903.

4. E. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (1968), 287-302.

5. —, Images of certain quotient maps, (to appear).

6. K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.

7. J. Nagata, Mappings and M-spaces, Proc. Japan. Acad. 45 (1969), 140-144.

8. —, Modern General Topology.

9. —, Quotient and Bi-quotient spaces of M-spaces, Proc. Japan. Acad. 45 (1969), 25–29.

10. T. Rishel, A characterization of pseudo-open images of M-spaces, Proc. Japan. Acad. 45 (1969), 910-912.

11. —, Nice spaces, nice maps, Proceedings of the Third Prague Symposium, (1971), 375–383. 12. —, On a subclass of M-spaces, Proc. Japan. Acad. 45 (1969), 544–546.

DALHOUSIE UNIVERSITY,

HALIFAX, NOVA SCOTIA

328