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Quasisymmetric stellarators are an attractive class of optimised magnetic confinement
configurations. The property of quasisymmetry (QS) is in practice limited to be
approximate, and thus the construction requires measures that quantify the deviation
from the exact property. In this paper we study three measure candidates used in the
literature, placing the focus on their origin and a comparison of their forms. The analysis
shows clearly the lack of universality in these measures. As these metrics do not directly
correspond to any physical property (except when exactly quasisymmetric), optimisation
should employ additional physical metrics for guidance. It is suggested that close to QS
minima, one should treat QS metrics through inequality constraints so that additional
physics metrics dominate optimisation. The impact of different quasisymmetric measures
on optimisation is presented through an example, for which the standard metric that
weights the asymmetric Fourier modes of the field magnitude appears to perform best.

Key words: fusion plasma, plasma devices

1. Introduction

The stellarator concept (Spitzer 1958) has seen a revival in the last few decades as
an option to achieve controlled thermonuclear fusion. Stellarators are three-dimensional
magnetic field configurations which confine hot plasmas within. The three-dimensionality
of these devices provides the necessary freedom to avoid some of the limiting features from
which axisymmetric tokamaks suffer: most notably, current-driven instabilities. However,
this freedom can come at a price: the three-dimensionality of the magnetic field might
lead to a loss of confinement that continuous symmetry confers upon a tokamak.

Quasisymmetry (QS) (Boozer 1983; Niithrenberg & Zille 1988; Tessarotto et al. 1996;
Helander 2014; Burby, Kallinikos & MacKay 2020; Rodriguez, Helander & Bhattacharjee
2020) is a property of the field that attempts to preserve in three-dimensional stellarators
the good neoclassical properties (Mynick 2006) of the tokamak. The promise of this
property has led to a search of designs that bear it. Although theoretical work suggests
that in an ideal, static equilibrium with isotropic pressure one may not construct exact
QS solutions (Garren & Boozer 1991; Landreman & Sengupta 2018; Rodriguez &
Bhattacharjee 2021b), one may design such configurations approximately. In practice there
have been two main approaches to finding approximately quasisymmetric equilibria. One
is to directly construct approximate solutions by employing an asymptotic expansion near
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the magnetic axis (Garren & Boozer 1991; Landreman & Sengupta 2018, 2019; Rodriguez
& Bhattacharjee 2021¢) or near axisymmetry (Plunk & Helander 2018). The other, and
most commonly employed, approach is to treat the construction of QS configurations as
part of an optimisation problem (Bader ef al. 2019; Henneberg et al. 2019).

To proceed with optimisation it is necessary to construct cost functions that penalise
deviations from QS. This has been done in a number of contexts and forms (Bader et al.
2019; Henneberg et al. 2019; Paul et al. 2020). However, at the present time there appears
to be a lack of comparative studies of the different forms of cost functions used. The
purpose of this paper is to re-evaluate carefully the origin of some of these commonly
used forms and to investigate their differences, significance and content.

The paper is organised as follows. In § 2 three different measures of QS are considered.
From these basics, the most apparent formal aspects of the metrics are discussed. In § 3 the
measures are formally compared on the same footing. The connection between physical
properties associated with QS and the form of the metrics is then explored. Section 4
presents a more practical perspective on the measures by looking at the universality of
QS measures (how they compare across different near-QS designs) and the importance of
the cost functions for optimisation in practice. We close the paper with some concluding
remarks and suggestions for future optimisation.

2. Measures of QS

Let us start by defining the concept of QS from the fundamental perspective of
single-particle dynamics. The class of magnetic fields that grants an approximate
conserved momentum to the gyrocentre dynamics of charged particles is called quasi-
symmetric. In particular, we focus our attention on weakly quasisymmetric magnetic
fields as recently defined (Rodriguez et al. 2020; Constantin, Drivas & Ginsberg 2021).
Formally, a magnetic field B is weakly quasisymmetric if and only if there exists a
symmetry vector field u such that (Rodriguez et al. 2020)

u-VB=0, 2.1)
Bxu=Vo, (2.2)
V.u=0, 2.3)

where @ labels magnetic flux surfaces that we take to be nested (Rodriguez &
Bhattacharjee 2021a). We are assuming the electrostatic potential in the problem to be
symmetric, in the sense that u - VA = 0 for A the electrostatic potential. This symmetry
requirement preserves the approximate conservation of the momentum characterising a
QS configuration.

Although this definition has the benefit of directly emerging from single-particle
considerations, it is difficult to use it practically to assess whether a field is quasisymmetric
or not. Doing so would require solving for the field u. Instead, we would like to have
a condition that only involves magnetic field quantities directly. This can be achieved
in a straightforward way by constructing # such that it satisfies (2.1) and (2.2): u =
V& x VB/(B - VB). At the singular points where B - VB = 0 this construction breaks
down unless V@ x VB . B = 0. (Note that this follows from the conditions (2.1) and
(2.2).) The vanishing of V@ x VB - Bwhen B - VB = Qisreferred to as pseudosymmetry
(Mikhailov et al. 2002; Skovoroda 2005), and it guarantees that all of the contours of
constant |B| on a flux surface are linked to the torus in the same way, avoiding local
extrema on the surfaces (and thus providing well-behaved streamlines of u). Breaking
pseudosymmetry leads to a diverging orbit width (Rodriguez et al. 2020) (i.e. loss of
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deeply trapped and barely trapped particles) at these |B| extrema. In a QS solution, the
construction of u is then well defined because QS implies pseudosymmetry.
With the given construction of u, we may substitute it into (2.3) to obtain

V® x VB-V(B-VB)
= 0. (2.4)
(B-VB)?

This yields the triple vector formulation of QS. Namely, if we define the scalar quantity
fr=V¢¥ xVB-V(B-VB), (2.5)

the magnetic field is quasisymmetric if and only if fr = 0. (By continuity, this includes
pseudosymmetry.)

For the purpose of this paper, all magnetic configurations have well-behaved nested flux
surfaces and are non-isodynamic. By isodynamic we mean a field whose magnitude |B|
is a flux function (Bernardin, Moses & Tataronis 1986). With these provisions, fr can be
evaluated for non-quasisymmetric configurations and serves as a measure of QS. We have
here used 1, the toroidal magnetic flux, as a label of flux surfaces rather than the arbitrary
flux function @ (). This is one of many possible choices, and one could, for instance,
replace Vi with n (the normal unit vector to the flux surface) in evaluating (2.5) on a
magnetic surface within a region of continuously nested surfaces.

The measure fr is a coordinate-independent, scalar measure of the departure from QS.
It is a local quantity, although it also has some global properties. For instance, (f7) = 0,
where (- - - ) is the flux-surface average.

We have seen how (2.5) results from the fundamental definition of QS in (2.1)-(2.3).
This grants fr the special feature that its application is not tied to a particular form of
equilibrium. This could be relevant for constructing cost functions in so-called one-shot
optimisation schemes (Akgelik et al. 2006; Dekeyser, Reiter & Baelmans 2014), i.e. a
formulation in which finding equilibria is part of the optimisation problem. Although QS
may be explored in the presence of forces more general than isotropic plasma pressure, p,
it is standard to adopt the magnetohydrostatic assumption j x B = Vp, wherej =V x B
is the current density. Following standard practice, we shall do so for the remainder of this
work.

A key consequence of this form of equilibrium is that j - Vi = 0. Thus, there exist
Boozer coordinates (Boozer 1981; Helander 2014) {v, 6, ¢}. In these straight-field line
coordinates the covariant form of the magnetic fieldis B = I(y)VO0 + G(y)V¢ + B, Vs
and the coordinate Jacobian J = (G + ([)/B?, where ¢ is the rotational transform.
Equation (2.5) may then be written explicitly in the form

fr = [0sB0y — 0,B0y] (04 + 135)B. (2.6)

The QS condition can be rewritten in the form (3yB) (94 4 t9p)(d4B/dyB) = 0, from which
it follows that d4B/0y B must be a flux function. This implies |B| has an explicit symmetry
and the conventional definition of QS then follows (Boozer 1983; Rodriguez, Sengupta &
Bhattacharjee 2021). We refer to it as the Boozer formulation of QS: a magnetic field is
quasisymmetric if and only if the magnetic field magnitude can be written as a function
B = B(yy, M6 — N¢), where N, M € Z. It is convenient to define the symmetry helicity
a = N/M and a helical angle x = 0 — a¢. (We will not consider quasipoloidal symmetry,
corresponding to M = 0, although the extension should be straightforward.) There is no
unique way to construct a scalar measure that quantifies how close a given magnetic field
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is to QS in the presented formulation. It is, however, customary to define the minimal
measure

fs=Y_|1Buml" 2.7)

n;o{:’m

Here B,, stands for the Fourier components of the magnetic field magnitude B in
Boozer coordinates, and the sum is over the non-symmetric components. All the mode
components are weighted equally in this form (although this could be modified). In
practice, only the lower-order modes significantly contribute to f, a result that follows
from the smoothness of |B|: an s times differentiable function in L' on a torus will have
Fourier coefficients that generally scale like f (m) ~ 1/|m|* (Grafakos 2008).

Unlike fr, the helicity of the symmetry « is required for the evaluation of f. Such
knowledge is needed to avoid the symmetric modes of |B| in the summation of (2.7). In
a sense, therefore, fz measures deviations from a particular form of QS. The possibility
of enforcing a particular helicity can be of practical importance when optimising for QS
configurations.

This measure is also different from f; in two other important respects. First, f is a single
flux-surface scalar instead of a local measure. Second, as the Fourier mode resolution
of |B| needed for (2.7) is in Boozer coordinates, an evaluation of fz requires explicit
knowledge of these coordinates. This prevents application of f3 to scenarios requiring
j+ V¢ #0, unlike fr. The need to compute Boozer coordinates and Fourier-resolve
B also imposes an additional numerical burden (e.g. using existing codes such as
BOOZXFORM) (Sanchez et al. 2000; Paul et al. 2020). While computing the Boozer
coordinate transformation is typically not a major numerical bottleneck, avoiding the
transformation may be convenient for some applications.

While fr does not require any particular coordinate system (in this case Boozer
coordinates), it also does not allow specification of the desired helicity, «. It is thus of
interest to explore alternative measures of QS that incorporate both aspects. We now obtain
what we call the two-term formulation of QS (Helander 2014; Paul et al. 2020).

We begin from (2.1)—(2.3) again. Defining the inner product C = B - u/®’ and using
(2.1) and (2.2), we can write CB - VB = B - Vi x VB. This expression holds even when
B.VB=0. To involve C directly in the remaining (2.3), we rewrite it in the form
(Rodriguez et al. 2021)

B:-VB-u)=j-Vo. (2.8)

Under the assumption of j - Vi = 0, it follows that C = C(y) must be a flux function.
We can then write

fce=B-Vy x VB—C({)B- VB, (2.9)

which must vanish for some flux function C for a QS field. This is the two-term formulation
of QS. To avoid having to perform a search for C every time (2.9) is evaluated, we need
some form for the flux function C in terms of more recognisable quantities. To do so, we
consider the limit of a QS configuration and adopt Boozer coordinates. In that case, and
for 9, B # 0 (otherwise f = 0 for any value of C),

_B-VyxVB _G+al

C = —.
B-VB L—a

(2.10)

(This flux function C is often given the symbol F' in the literature; Helander 2014; Paul
et al. 2020). Now C is expressed in terms of physical quantities: the Boozer currents
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Helicity Boozer j-Vy =0 Info

/B I Y Y G
fe I N Y L
Sfr o) N N L

TaBLE 1. Basic properties of QS measures. Summary of the basic formal features of the QS
measures introduced in § 2. These include: whether the helicity needs to be specified as an input
(D or not (O), whether Boozer coordinates are required to evaluate it, whether j - Vi =0 is a
necessary assumption and whether the measure is local (L) or global (G).

I and G and the rotational transform ¢. The currents may be calculated without resorting
to Boozer coordinates directly (see equation (16) in Helander (2014)). Any flux coordinate
system will do, under the assumption of well-defined, nested flux surfaces.

It is clear that the helicity of the symmetry & needs to be specified, just as one
must do to evaluate fz. The function C for which it is needed has important physical
meaning (Rodriguez et al. 2020), as it is a direct measure of the banana width of trapped
particles, A, in the QS limit. In more detail, A|V | ~ p,C, where p; is the Larmor radius
associated with the parallel velocity. The resonance at the surface ¢ = & leads to C — oo,
unless B - Vi x VB = 0 on the surface. This latter condition forces the surface to be
isodynamic, which also prevents the appearance of a current singularity and the potential
opening of a magnetic island (Rodriguez & Bhattacharjee 2021a). In the present work, we
avoid such surfaces altogether.

In summary, we have a measure f¢ that is local like f7, for which the helicity of the
symmetry must be prescribed as in fp, but for which no Boozer coordinates are needed.
This makes this formulation amenable to gradient-based optimisation techniques such as
adjoint methods (Paul er al. 2020).

This constitutes the derivation of the three measures of QS—3, fr and fr—that will
occupy us in this paper. In table 1 we summarise the main formal and construction
differences of the three forms.

3. Comparison of cost functions

All three forms introduced in the previous section can be interpreted as measures of
QS: they all share the basic feature that they vanish only for a configuration that is exactly
quasisymmetric. However, each form treats deviations from QS differently. The focus of
this section is to evaluate how these measures compare with each other formally, and to
connect them to some of the physical properties usually associated with QS.

3.1. Formal relation

It is convenient to measure deviations from QS in terms of the asymmetric components of
the magnetic field magnitude. Thus, to understand the forms of f; and f¢, it is informative
to learn how the different Fourier modes of |B| are weighted in each of these metrics. Then
a comparison with fz may be done on an equal footing.

Let us start with the definition of f- and write the magnitude of the magnetic field as a
Fourier series:

B= B, 3.1)

n,m
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where the angular Boozer coordinates 6 and ¢ are used for the Fourier resolution of the
field. Using the construction of C in (2.10) we may write, after some algebra,

2

fC = = (8¢ + 5[89)3
o —1
B i(mf—n¢)
— o Bnm 1(m6 —n, . 32
1L 2 H%&(n ma)B,,,e 3.2)

The first line shows that f,-/B?, although a local measure, has some global properties like
fr does. In particular, the integral along closed streamlines of Q@ = JV¢ x Vx must
vanish, thatis, § (fc/B*) dl/|Q| = 0. The function f/B? is also clearly linear in the Fourier
content of B, but interestingly, not all modes are weighted equally. The modes ‘furthest’
from the symmetry direction are weighted more heavily than those close to it.

Although we have successfully written f¢ in terms of the Fourier content of B, its form
is still far from that of f3. To make a closer comparison with fz we need to construct a
single flux-surface scalar from f-. We take (3.2) and write it as

B — ‘"% (&) , 3.3)

n—ma \ B?

where (- - -),, represents the (n, m) Fourier component of the function in parentheses in
Boozer coordinates. Using Parseval’s theorem, we write

—&)? 2
> 1 — m&) Bl = % / do do (%) , (3.4)

which can be rewritten as

fe ’ n—ma\’ )
<§> =) <ﬁ> Bl (3.5)

n,m

where (---) denotes the (0,0) Fourier component of the expression in parentheses.
Equation (3.5) is now in a form close to fz. The scalarised version of fc, in this case
normalised to B and averaged over the surface, has a form similar to f3 in that it involves
a sum over the non-symmetric Fourier modes of B. The main difference comes through
the different weighting of the modes. The measure f- can be thought of as a modification
of f3 in which asymmetric components of the magnetic field magnitude furthest from QS
are more heavily penalised.

The difference in weights implies that fz and f¢ are actually not monotonic with respect
to one another. Changing the energy content of the Fourier modes may lead to f5 increasing
but fr decreasing (and vice versa). Having said that, there also is a class of changes for
which both metrics respond in the same way. Given that all terms in the summation of (2.7)
and (3.5) are positive, reducing any individual mode |B,,,| will, for instance, lead to the
reduction of both metrics. This observation has important implications for the universality
of QS measures and optimisation, to be explored in the next sections.

Let us now see how fr fares in comparison. When expressed in terms of the Fourier
content of the magnetic field strength, the nonlinear character of the triple product
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formulation is clear. We explicitly write

(T *frdum =1 = k) (km — n)By_g 1B, (3.6)
k,l

where 7 is the Jacobian of Boozer coordinates and k, [ are integers. The nonlinearity
appears in the form of a convolution that mixes modes in a non-trivial way. We also have
one higher derivative of the field strength compared to f or fc. Scalarising this expression
by computing an average like in the case of f- does not help in bringing this form any
closer to fz. The convolution couples modes together, making it unclear whether reducing
a single asymmetric mode will reduce f7 as it did for f¢ and fp.

We may try to gain some additional understanding of how f; is affected by changes in
the mode content by considering a system that lies close to QS. Consider a small deviation
B in the field magnitude from a dominantly QS field. Then a linearisation of f; takes the
form

(T *fr)am = @m —n)(wm —n) > Bay Bu-zimr- (3.7)
[

It is clear from this expression that decreasing B decreases the magnitude of f;. However,
even upon linearisation, it is not obvious that reducing a particular Fourier harmonic will
guarantee a lower value of fr.

The measure fr is, in this form, distinct from the previous metrics. However, there is
actually a natural relation between the triple vector form and f through a simple magnetic
differential equation (see appendix A). This is reasonable given the common origin of the
metrics.

3.2. Physical relations

We have explored three forms for QS in this work. These constructions describe deviations
from QS differently. To understand the potential physical meaning of these differences,
we now explore physical phenomena often associated with QS configurations and their
relation to the cost functions.

3.2.1. Single-particle dynamics

The concept of QS as presented in this work is built on single-particle dynamics.
In §2, beginning with the most fundamental definition, we constructed three measures
of QS. Thus, it is natural to expect that all these metrics should have some relation to
single-particle dynamics.

Let us start from the definition of the momentum: p = —& + v;b - u, where v is the
parallel velocity of the particle under consideration (Rodriguez et al. 2020). For a QS
configuration where u satisfies (2.1)—(2.3), this momentum is approximately conserved to
O(p/L), where p is the particle Larmor radius and L a characteristic length of the system.
When the symmetry is broken, we may ask how this momentum evolves in time. To
describe that evolution we need to define the vector field u. We can always choose this field
in a way that (2.1) and (2.2) are satisfied by construction. To do so we assume the existence
of flux surfaces as well as pseudosymmetry (Mikhailov et al. 2002; Skovoroda 2005).
The latter guarantees that the contours of constant |B| are linked to the torus avoiding
local extrema on the surfaces. These well-behaved contours are vital to the notion of a
continuous symmetry, and necessary to prevent b - u — o0o. Once u has been constructed,
one evaluates the dynamics of p using the leading-order form of the equations of motion
from the Littlejohn Lagrangian (Littlejohn 1983; Rodriguez et al. 2020). We may thus
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write, to O(p/L),

4 Yp. v v vy 3.8
W= p B VBw VY] = <B.VB)fT' (3-8)
This shows that f; constitutes a measure of the conservation of p. Of course, even if
fr # 0 the above could result in conservation of p in the bounce-averaged sense. This
averaged conservation could be seen as the difference between QS and omnigeneity
(Landreman & Catto 2012; Helander 2014). It is also important to note from (3.8) that
the cost function f; appears with a factor of 1/(B - VB)?2. This factor penalises deviations
from QS close to the extrema of |B| along field lines. The special importance of the
regions close to the extrema is reminiscent of the requirements for the confinement
of barely and deeply trapped particles in omnigeneity. The presence of this resonance
makes the combination f;/(B - VB)? numerically ill-behaved as a modified cost function.
A practical implementation could perhaps be achieved by regularising the combination, as
has been employed in optimisation for pseudosymmetry (Mikhailov et al. 2002). Although
attractive from the single-particle perspective, and even if the resonance is amended, the
measure would still exhibit sharp gradients due to the heavy weight near extrema of |B|
along field lines.

The argument related to the dynamics of p might appear to some extent artificial, as p
really only gains special dynamical meaning in the limit of QS. We may alternatively
look at a more physically relevant property: the net drift of magnetised particles off flux
surfaces. It is convenient to express the off-surface bounce-averaged drift of particles,
AV, as 3,7, where J; = § vy dl is the second adiabatic invariant (calculated taking the
integral along the field line and between bouncing points) and « is the usual magnetic
field-line label (Helander 2014). To evaluate this derivative of 7, consider two nearby
lying magnetic field lines on the same magnetic surface at « and « + o (see figure 1).
Take the turning points that define the integral for 7} to be at a field magnitude |B| = B,.
We assume that these bounce points exist on both of these field lines (as we are looking at
the J associated with a class of particles defined by its bounce points). Then taking the
line integral along the contour in figure 1, we compute

(/ s+ 4 )vb.dzzaa/w-w(v.md—’. (3.9)
" Csa Cp+ Cp- B

To obtain the equality, we apply the Stokes theorem and take the limit of small d«, taking
the latter integral with respect to length along a field line, /. Assuming thatj- Vi =0
and noting that the integrals along Cg, and Cp_ vanish as vy = 0 wherever |B| = B, we

may rewrite
Vl[f x VB-B 1 E vy
0oJ=— | ——————= | —+ =) dB, 3.10
J / B-VB Bz<v+2) 10)

where B is being used to parameterise the integral along the field line. To be precise, we
should split the integral along the field line into concatenated pieces joint at |B| extrema.
The vanishing of B+ VB at the stitching points (and the consequent divergence of the
integrand) is generally not problematic as one can consider switching back to integrating
with respect to [ arbitrarily close to them, with that small piece of the integral constituting
a vanishingly small contribution. We drop this distinction for simplicity.

One may write the kinematic expression (E/v + v;/2)/B*> = B -V (v;/B)/(B - VB).
As aresult, any flux function multiplying this kinematic expression will lead to a vanishing
integral. Thus, the first fraction in the integrand can be written as f-/(B - VB). This
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Cp-

B B

FIGURE 1. Schematic of the loop integral for d,.7). Schematic of the path integral followed to
compute the field line dependence of the second adiabatic invariant 7. The contours match field
lines and contours of constant |B| = B;.

shows that f- has a direct relation to the field-line dependence of the second adiabatic
invariant. The complicated nature of the kinematic factor, however, obscures this relation.
Proceeding with integration by parts and using (A2):

fr
W0 + / WUH dl. (311)

Thus, we have constructed a simple relation between the bounce-averaged, off-surface
drift Ay and the QS measure fr. The measure comes once again normalised by a factor
(B - VB)*. However, this f; term is not the only term in (3.11). For the expression in (3.11)
to be finite (or vanish as we want for QS), the boundary term in (3.11) should not diverge,
which requires Vi x VB« B = 0 wherever B - VB = 0. This condition is precisely the
condition of pseudosymmetry introduced earlier (Mikhailov et al. 2002; Skovoroda 2005).
Note that this pseudosymmetry condition appears separate from the fr integral in (3.11).
Thus, generally, even when f7 # 0 as in ominigeneous configurations, the condition should
be satisfied if d,. 7 vanishes (and deeply trapped and barely trapped particles are confined).
As discussed in § 2, requiring fr = 0 everywhere includes this condition. Guaranteeing
that the boundary term vanishes also ensures the existence of bouncing points B, on nearby
field lines, in agreement with the assumptions made in evaluating 9,.7.

The discussion above shows that both fr and fr can be regarded as natural measures
of QS in the single-particle perspective. However, when the configuration fails to be
pseudosymmetric, the interpretation of fr is obscured.

The measure f- offers some additional particle dynamics insight. As we mentioned
when constructing fc in § 2, the function C in f¢ is a measure of the banana width of
bouncing particles in the QS limit. The expression in (3.2) inherits the scaling o 1/,
where ¢t = ¢ — & from C. Hence, f¢ also has scaling related to the orbit width and the
bootstrap current, which is proportional to the banana width (Helander 2014).

Although the metrics bear some important physical content in their relation to the
behaviour of single-particle dynamics, the mapping is not one-to-one. More sophisticated
measures are required for an accurate description of the dynamics of single particles.
Especially important are alpha particles, for which complicated metrics (see Bader et al.
2019) or expensive simulations are needed.

V'W X VB'BU“

W= "B vE B

3.2.2. Neoclassical transport
Let us now consider the important physics of neoclassical transport (also related to
enhanced neoclassical viscosity). One of the distinguishing features of QS is to grant a low
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level of neoclassical transport to the magnetic configuration (Boozer 1983). In particular, it
prevents the detrimental neoclassical 1/v transport (we do not consider turbulent transport
here, which, however, has been seen to be a dominant form of transport in many optimised
stellarators once neoclassical transport has been sufficiently reduced) that tends to spoil
confinement in stellarators. Of course, as we deviate from QS, this property will degrade.
We would like to understand how this degradation is captured (if at all) by the different
metrics of QS presented in the paper.

To study this, we introduce first the classical stellarator concept of helical ripple. We
define helical ripple as €, ~ B,,,/B, a measure of the symmetry-breaking magnetic field
magnitude. This quantity is clearly linked to fz in (2.7). When a single, small asymmetric
mode on top of a QS field is considered, in the 1/v and /v regimes, this ripple leads to an

enhancement of neoclassical losses that scales roughly as D ~ e,‘j/ * (Ho & Kulsrud 1987;
Nemov et al. 1999; Helander & Simakov 2008). Therefore, there is a direct relationship
between ¢, and transport. In this single-mode classical stellarator scenario fp is the ripple
(unlike in the more general case). It is then clear that fz does incorporate some direct
information about transport.

This classical view on transport has the drawback of treating all ‘ripples’ on the
same footing. However, a more detailed approach shows that different modes contribute
distinctly (Calvo et al. 2014). Transport in the 1/v regime is driven by bouncing particles
near minima of |B| along field lines. The enhancement of transport can then come from
the introduction of significant additional wells in which new bouncing particles will live.
However, this is not the only mechanism that can enhance transport. As particles precess
following constant 7 surfaces, a significant difference in the |B| profile between field
lines on the same flux surface will lead to an enhancement in the drifting of bouncing
particles off the surface. (Additional effects such as collisional detrapping may also
occur.) These phenomena are quantified in Calvo et al. (2014). Small deviations from QS
with helical ripple ¢, that do not affect the |B| profile significantly lead to a transport
enhancement (I' - Vi) ~ €7. (The same scaling is anticipated for flow damping and
generally deviations from intrinsic ambipolarity.) Now, if the deviation is due to a mode
with a large gradient along B, then the changes lead to an enhancement by a factor
O(€,). When the deviations lead to significant differences between field lines, then the
transport changes significantly, not amenable to a perturbative treatment. (Aspects of this
scenario can be understood from an analysis of the second adiabatic invariant, studied in
the previous section.)

In this more detailed picture it is clear that different modes of |B| contribute differently
to transport. The enhancement is significant when the gradients along the field line are
large in the sense |by + VB| ~ |by - VBy|, with B the asymmetric field strength. In a
more illuminating form, |by « VB,|/|by « VBy| ~ [(n — um)/(M(cx — t))](€1/€qs), Where
we have taken €qs to represent the helical ripple associated with the symmetric part of
B with symmetric poloidal mode number M. The weight in the numerator indicates the
predominance of modes with large gradients along the field line, while the denominator
serves as a comparative measure for the the gradient along the field line due to the
symmetric field.

This difference between modes is clearly missed by the construction of fz. However,
we have shown that the angle-averaged (fc/B?)*> provides a weighted version of
fs in which higher-order modes are increasingly penalised o (n — ma)?. Although
this unequal weight provides a distinction between modes, the weight is not of the
form (n —um) as in the transport criterion. It instead weights higher-order modes
according to their similarity with respect to the symmetry direction. Thus, f- only
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qualitatively matches the high-order mode weighting of the transport scaling. The
weight that appears in the definition of f- can be interpreted as a consequence of
the smoothness of the function. The quasisymmetric modes are excluded from the
sum through a weight that can be written as a differential operator: the weight must
be zero at n/m = @ and smoothly increasing away from it. It thus appears natural
that the weight in fc is centred about the symmetry direction. This requirement is
avoided in f3, where the symmetric discrete modes are avoided. To more accurately
treat the impact on transport, one could imagine a modified version of fz in which
the mode weights are given by (n — um) and the symmetric components are excluded
from the summation. It would, however, still require Boozer coordinates (unlike f¢).
Interestingly, the weight (m: — n) appears in the linearised version of f in § 3.1.

So far we have focused on small, isolated deviations from QS. In general, however,
transport calculations are significantly more complex. The presence of multiple ripples
will lead to intricate changes in the trapping and passing particle behaviour. There
exist more sophisticated metrics that attempt to describe these changes in more detail.
A commonly used example is the 1/v transport regime effective ripple, egf/fz (Nemov
et al. 1999; Nemov, Kasilov & Kernbichler 2014). The complexity of this measure is not
reflected in either f3 or fc (see the following sections). Thus, although f3 and f do contain
relevant information regarding transport, they cannot be taken as accurate measures of it.

3.2.3. Current singularities and islands

Although flux surfaces are assumed throughout our analysis, we may also relate
the QS metrics to the potential presence of current singularities and magnetic islands
(Tessarotto, Johnson & Zheng 1995; Rodriguez & Bhattacharjee 2021a). Fourier modes
of |B| that resonate with the finite rotational transform can lead to Pfirsch—Schliiter (PS)
current singularities. These finite-8 currents are associated with the potential opening of
magnetic islands at the location of the singularities (Reiman & Boozer 1984; Rodriguez &
Bhattacharjee 2021a). The PS current singularity arises due to the periodicity constraint
on the magnetic differential equation,

JH p/C /fC
B-V|—+4+—)=-2p—, 3.12
<B T ) P g (3.12)
for the parallel current j;. The periodicity condition required for solvability is
T
p B—i dl =0, (3.13)

where [/ measures length along a field line. We note that f- appears explicitly. This
condition will be satisfied in QS, thus precluding the existence of PS singularities (except
possibly at the conflictive t = @ surface; see § 2). Note that solvability may still be obtained
away from QS if p" = 0 or the line integral vanishes.

One may generally show that in magnetohydrostatics, the resonant radial magnetic
field due to the singularities is B,,, & (1/B?),, (in simplified geometry), and thus

W; o /(1/B?),,, (Reiman & Boozer 1984; Bhattacharjee et al. 1995; Rodriguez &
Bhattacharjee 2021a). A non-QS field will potentially have contributions at many rational
surfaces, as driven by the asymmetric modes. In that sense, any sum over the asymmetric
modes of B, such as fp or fr, will include some of this information. Resonances only
occur when the rotational transform matching the asymmetric mode helicity exists
within the plasma, and thus a more faithful metric would only account for the resonant
asymmetric modes. Due to the generally asymmetric geometry of configurations, resonant
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fields arising from PS currents may appear at other rational surfaces through toroidal
coupling (Rodriguez & Bhattacharjee 2021a). This is of course only a partial account
of the relevant island physics, focusing on the potentially deleterious seeding of islands.
The appearance of islands will in practice depend on a plethora of additional effects
beyond the simple magnetohydrostatic equilibria considerations, including, for instance,
the healing effects of flows or additional kinetic effects (Fitzpatrick 1993; Hegna 2011,
2012).

4. Quasisymmetry in practice: universality and cost functions

The discussion so far has explored the origin of the three different measures of QS—j,
fc and fr—and discussed their formal properties and related physical content. In this
section we explore some more practical aspects of these measures. First, we address the
question ‘Which configuration is more quasisymmetric?’ and discuss the universality of
QS. At a second stage, we explore the implications of these different formulations for the
optimisation of stellarators through numerical examples.

4.1. Universality of QS

The goal of the metrics f3, fc and fr is to quantify the deviation from QS. In this sense,
all these forms would appear to be equally valid candidates. Given the variety of choice,
we would like to understand to what extent it is meaningful to state that a certain field
configuration is more quasisymmetric than another as measured by these metrics.

As demonstrated in the comparison of the previous section, QS metrics are not
generally monotonic with respect to each other. For example, decreasing fz does not imply
decreasing f¢. One could, for instance, exchange the energies of a larger low-order mode
to a high-order one without changing fp but modifying fc-. The nonlinearity of fr makes
the lack of monotonicity somewhat more marked. This lack of monotonicity makes it
difficult to determine magnetic configurations which are ‘closer’ to QS, or for that matter,
if the question is meaningful. As different measures of QS yield different answers, any
comparison must be defined with respect to a particular standard. The notion thus lacks
universality: the quantification of closeness to QS is in some sense arbitrary, and does not
necessarily have a clear physical meaning attached to it.

Let us consider some practical examples. In order to use the metrics of QS quantitatively,
we first need to normalise and scalarise them. Only then will we be able to make
fair comparisons across different devices. Perhaps unsurprisingly, we will see that this
procedure is not unique, emphasising the lack of universality.

Let us start with the metric fz, which measures the Fourier content of B in Boozer
coordinates. It is customary to normalise it to the total magnetic field energy. So we define

N 1
fs= ﬁfg- 4.1

Doing so ensures f‘B € [0, 1). This finite range of values makes fz convenient, although
the requirement B > O excludes the value of 1. Although this normalisation seems the
most natural, it is not unique. For instance, we could decide to normalise f3 to (only) the
symmetric part of the field excluding the flux-averaged part, or we could normalise by the
flux-surface average of B2, (B?). For the purpose of this discussion, we take the natural
and more conventional form (4.1).

The choice of a ‘natural’ normalisation is unclear for fr and fr. Fundamentally, our
normalisation should give a dimensionless measure. This principle is, of course, not
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specific enough. To constrain the construction of the measure further, we try making their
Fourier forms look closest to fz. This is a convenient choice. Let us start with f-, which
dimensionally scales as fc ~ B*. In addition to this dimensional factor, motivated by the
form of (3.2), we also choose to normalise by 1/(@ — ¢) to bring the measure closer to
the form of fz. One could argue for adding additional dimensionless factors such as the
inverse aspect ratio, €, which characterises the magnitude of CB - VB for y = 6, but for
simplicity we do not do so here. In view of the normalisation of f3z, we normalise and
scalarise f¢ as follows:

A (12
o=

G — ]2 4.2)

This leads to a form that is close to but not identical to (3.2).

The normalisation of fr is inherently more complex. The triple vector product introduces
explicit length scales which must be non-dimensionalised. Once again, we look at the form
of fr in (3.5). It is then natural to normalise and scalarise fr using

(4.3)

In obtaining this normalisation we have used the scaling 7 ~ R/B, where R is the major
radius. Once again, one could argue that the choice is, to some extent, arbitrary. It is
interesting to note that the combination fr/(B - VB)?, recurrent in the description of
single-particle dynamics in the previous section, is by construction dimensionless. Thus,
it appears to be a natural choice. However, we do not consider it here due to the added
complication of the resonant denominators and the associated steep gradients.

Now that we have chosen specific normalisations for the QS metrics, we may compare
their values in stellarator equilibria. We consider two scenarios. First, we focus on the
comparison of the metrics in configurations that have been designed to be approximately
quasisymmetric. Then we study how these measures differ when the system has not
necessarily been optimised to be quasisymmetric.

We present in figure 2 a comparison of the metrics in six quasisymmetric
configurations:' GAR (Garabedian 2008; Garabedian & McFadden 2009), HSX
(Anderson et al. 1995), NCSX (Zarnstorff et al. 2001), ESTELL (Drevlak et al.
2013), QHS48 (Ku & Boozer 2010) and ARIESCS (Najmabadi et al. 2008). Within
a given device, the overall correlation between cost functions is good. All measures
qualitatively show a similar behaviour: QS improves as we move from the boundary
inwards. However, in regions closest to the axis, this correspondence is not as strong
(especially in configurations such as GAR and QHS48). However, the same cost function
correspondence does not seem to hold if we make comparisons between different
configurations.

To quantify this lack of ordering across devices, we compute the Spearman correlation
coefficient, which considers correlation only taking order into account. We show this in
figure 3. The high correlation between cost functions within a particular device (which in
all cases was ~0.9-1) clearly does not hold across devices. Although fC and fT retain a
high degree of correlation (~0.9), the conventional ng measure seems largely uncorrelated
to the others. (Of course, in this inter-configuration comparison the normalisation factors
chosen are particularly important.)

Uhttps://github.com/landreman/vmec_equilibria.git.
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FIGURE 2. Comparison of defined cost functions in quasisymmetric designs. Plots in
logarithmic scale including a comparison of the cost functions fB, fc and fT for a number
of quasisymmetric devices. The scatter points for each device indicate values at a number of
equally spaced magnetic flux surfaces joined by lines in order from the centre to the edge of the
configurations (the rightmost points represent the edge).

The loss of correlation across machines emphasises the main point on universality from
a practical perspective. Depending on the form of cost function taken, one could say either
A or B is more quasisymmetric. The statement has only a relative meaning at best for
these optimised configurations. Without a physical basis to the measures it is difficult to
argue in favour of one definition over the other. For a more meaningful statement, one
should instead compare these functions through some physical property. Ultimately we
are interested in finding configurations that are close to QS because we seek some of the
physical properties that QS confers upon magnetic configurations. In figure 3 we compare
€.¢r (Which also contains some arbitrary normalisation factors in its definition; Nemov et al.
1999) with the three cost functions for the devices of figure 2. Other physics measures such
as alpha particle confinement could also be suited for such comparison (Bader et al. 2019).
There exists some correlation between the transport and the normalised values of f and f7.
Especially remarkable is the seemingly little correlation between 5, which is widely used
for optimisation, and e.¢. Overall, for these ‘quasisymmetric’ configurations, the QS cost
functions appear not to be good indicators of their transport levels. Similar behaviour has
been observed in previous studies of quasisymmetric configurations (Martin & Landreman
2020).

In summary, when comparing quasisymmetric configurations, there is no universal
measure of QS. The comparison depends on the metric used, and these differ from
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FIGURE 3. Correlation between edge values of cost functions and eef of different
quasisymmetric configurations. Diagram showing the Spearman correlation between the edge
values of the different cost functions and ecgr of the configurations in figure 2. The colour
represents the coefficient (as does the diameter of the coloured circles).

each another. To make a comparison physically meaningful, especially close to optimised
configurations, we are in need of resorting to direct physical measures of the configuration
(e.g. neoclassical transport or alpha particle confinement).

4.2. Optimising for QS

The differences in the formal structure of the cost functions in conjunction with the
difference in behaviour close to QS suggest that the different measures of QS will behave
quite differently as optimisation cost functions.

From a formal perspective, we would expect to find f5 and f to perform similarly, while
the nonlinear f7 to differ significantly. We now present some examples to illustrate the
differences in the optimisation. We consider an example optimisation problem in which
QS is targeted throughout the plasma volume. The optimisation parameters correspond to
the Fourier modes describing the outermost surface:

R= Z Ry cos(m® — nN,¢,),

nm

Z=>"Zysin(m9 —nN,¢.),

nm

4.4)

where N, is the number of field periods, ¢. is the cylindrical angle and ¢ is a
general poloidal angle. The configuration optimised is based on a quasihelicallysymmetric
configuration® with N, = 4 field periods. We investigate two aspects of the problem. First,
we consider slices of parameter space with the purpose of observing the differences in
QS measures in practice beyond the region close to the minima. This should give a partial
idea of how the problem changes as a result of changing the form of the optimisation
cost function. Then, we perform various optimisations using STELLOPT (Lazerson et al.

2The basis of the optimisation is the 34DOF_varyBoundary_targetQuasisymmetry scenario in https://github.com/
landreman/stellopt_scenarios.
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FIGURE 4. Parameter space spanned by n =2, m = 1 surface mode for fB, fc, fT and €cff.
The plots show, clockwise, the cost functions fp, fc, €cfr and fr as a function of the (2, 1)
surface modes. The parameter scan is performed using the map option of STELLOPT around the

stellarator design in the footnote of p. 28. The minima for each of these are found (clockwise) at:
(—0.031, 0.031), (—=0.031, 0.031), (—0.037, 0.045) and (—0.037, 0.037).

2020) with implementations of the three different forms of the cost functions. Let us start
with the exploration of parameter space. Figure 4 presents the evaluation of the QS metrics
and €. as a function of two parameters characterising the surface (the n =2, m=1
modes of the boundary (4.4)), and Figure 5 the magnitude of the associated gradient. The
metrics are evaluated at six equally spaced magnetic flux surfaces, and their contributions
are added together.

The objective landscape varies depending on the metrics used. Qualitatively, though, all
the measures show a similar behaviour. The metrics share a region of reduced cost, which
seem to roughly coincide. In a global sense, the metrics seem not to disagree with each
other. This might appear as a surprise given the observations of the QS configurations
and some of the formal discussion above. We should, however, remember that there exist
certain changes that affect all metrics favourably. Away from a QS configuration it thus
seems that there are directions in which one may reduce many of these modes such that
all metrics decrease. This is supported by the parameter space representations in figure 4.
However, note that the similarity in global trends does not preclude differences in local
trends.

First, the relative variation of the cost functions in space is significantly different.
Gradients seem to be relatively strong for the highly nonlinear measures fT and €., while
the other two metrics behave more smoothly. This distinction in the gradients also seems
to leave a region close to the minima much shallower for fT and €.¢, comparatively, which
may lead to difficulties in accessing the exact minima. Second, beyond these differences
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FIGURE 5. Gradients in parameter space spanned by n = 2, m = 1 surface mode for fB, fc, fT
and ecfr. The plots show, clockwise, the parameter space gradients of fp, fc, €efr and fr as a
function of the (2, 1) surface modes. Scales of the gradients are significantly different between
measures.

in magnitude, there are also differences in the shape and location of the minima. The
region near a minimum can be more or less elongated depending on the measure, and,
importantly, the minimiser is located at different values. In this particular case, minimisers
vary by up to ~20% — 50 % in the boundary coefficients between different measures
(although ng and fc have, in this case, roughly the same minimiser). In brief, although far
from a minimum the various metrics may exhibit a qualitatively similar behaviour, close
to the minimum there are significant differences. These latter differences are consistent
with the discussion on the lack of universality in § 4.1.

Of course, this illustration of the optimisation space is only one slice of a
multidimensional manifold. The large number of degrees of freedom means that the
parameter space slices will change as other parameters do. In general, this makes
optimisation a highly complex process in which the interaction between different
dimensions may amplify the differences between metrics. In addition, the algorithm
employed to move around in optimisation space will also affect the result of a given
optimisation. A discussion on how the optimisation is likely to perform is therefore
extremely difficult, and we instead present an illustrative example. With that being said,
from our discussion we expect the optimisation of f‘B and f‘c to be similar, while the
nonlinearity of f‘T to change the optimisation significantly. We hypothesise here that there
is a rough relation between changes in boundary shape and the Fourier content of B.

We present the resulting cross-sections and values associated with the various metrics
from optimisations in which QS is targeted in a volume using the different forms of
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FIGURE 6. Comparison of cross-sections of optimisation results for different cost functions.
Plot showing the cross-section of the stellarators as obtained from the optimisation using
different forms of the cost function. The optimisation stops when the optimiser is unable to
make further improvement (the characteristic change in the parameters during an iteration is
10_4—10_3). The broken line represents the starting point, while the black, blue and red lines
represent the fp, fr and fc optimisation results, respectively. The cross-sections are only presented
in one half of the plane but the missing plane can be reconstructed symmetrically.

Opt. /B fe fr €eff Asp.
Start 0.54 5.3 24 66 6.3
fz 33x1073 24x1072 3.0x10% 51x107° 71
fc 23x107%  7.6x 1072 0.50 39x 1073 6.8

fr 62x1072 19x107' 48x1072 3.6x1072 6.0

TABLE 2. Averaged metric values for optimised stellarators. Summary of the average value
of the metric over the volume of the optimised stellarators with respect to the different cost
functions.

QS metrics as cost functions in figure 6 and table 2. We start from a configuration
that is deliberately chosen to be some distance away in parameter space from the QS
configuration found in the footnote of p. 28. The optimisation uses a BFGS gradient-based
method (as part of the suitt MANGO?) in which there is a single scalarised cost function
with 32 degrees of freedom in the form of Fourier components (from 0 through 3, keeping
the major radius Ry fixed) defining the surface as in (4.4). The process does not penalise
any additional property such as the commonly targeted rotational transform or aspect
ratio. By studying a simplified problem, we hope to gain more insight into the differences
between the various QS metrics. The optimisation is performed for several values of the
finite-difference step size to ensure convergence.

Comparing cross-sections in figure 6 and the values in table 2 we observe that
the resulting optima are quite different from one another. This emphasises the points
discussed in this paper: that the precise form of the cost function has important qualitative

implications. The optimisation using the standard form of fB seems, in this case, to perform

3https://github.com/hiddenSymmetries/mango.
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best in allowing the configuration to reach a state of minimal transport and QS measures.
The optimisation by fc is not far away, and a comparison of the cross sections shows similar
shaping features. Interestingly, optimising for fC does not seem to yield the smallest value
for fc (which fB optimisation does). This suggests that the optimisation for fc gets stuck in
some effective local minimum.

In light of the comparison made in §3, and with the hypothesis that the surface
variations are roughly related to variations in B, we can think of optimisation as a
process that rearranges energy in the space of Fourier modes of |B|. The relation is
generally complex and nonlinear, but thinking in these terms may still shed some light
on the differences in optimisation. In this rearrangement of energy in Fourier space,
fB contains a large space of degenerate interchanges. Energy can be freely exchanged
between asymmetric modes of B, regardless of their mode numbers. In that sense, reducing
f‘B means, necessarily, reducing some asymmetric mode. On the other hand, the cost
function f¢ distinguishes between modes. Different weights at different mode numbers lift
part of the degeneracy in the exchange of mode energy that occurs for fB. This distinction
effectively excludes certain regions of the mode space from being used for the restacking
of the mode energy. In addition to decreasing the magnitude of an asymmetric mode,
moving energy to modes closer to the symmetry direction will decrease fc. This could be
a mixed blessing. Having this additional mechanism could be a way to avoid certain local
minima by adding a new direction of descent. However, it could also present additional
local minima if the optimisation prematurely reduces modes very close to the symmetry
direction.

Relating changes in the mode content to changes in the boundary, we expect these two
metrics to facilitate different ways of modifying the boundary. It is not clear which metric
will lead to improved optimisation. We have here presented a single numerical exercise
in which fB appeared to perform better, but the performance of these metrics will likely
depend on the particulars of the optimisation problem as well as other aspects such as the
optimisation algorithm used.

The optimisation of fr in the presented example exhibits the worst performance of
all. The cross-sections show large differences with respect to the other conﬁgurations
suggesting that optlmlsatlon has stopped at a distinct local minimum. That the measure fT
is lower in the f3- optlmlsed case serves as evidence that the optimisation of fr terminated
at a different local minimum. The presence of nonlinearities in fr is perhaps responsible
for this additional minimum. In the light of the Fourier space energy picture, fr not only
depends on the magnitude and the location of the mode energy, but also on the relative
location of modes. This nonlinear coupling complicates the problem, potentially leading
to additional local minima. Furthermore, the nonlinearity of f”T results in an objective
landscape which appears flatter near the minimum (see figure 4), which may make difficult
reaching an accurate optimum. Although this qualitative picture fits with observations
made for this optimisation example, we remark that the behaviour is likely to vary between
problems. An important additional point of distinction of the f”T optimisation with respect
to the others is, as emphasised in § 2, that the form of symmetry of the configuration is
not specified. Hence, the optimisation must locally decide upon the type of QS towards
which to evolve. If close to a configuration with good QS, optimisation will naturally
bring the system towards the corresponding helicity. However, generally it is difficult
to predict given an initial configuration the form of QS towards which optimisation
will tend.
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In the example presented, the aspect ratio of the configuration does not seem to change
significantly between and along optimisations (values lie within ~15 % of the initial
point). This seems counterintuitive, as from a near-axis perspective one would expect a
larger aspect ratio to allow for a more quasisymmetric solution. This follows from the
possibility of satisfying QS conditions sufficiently close to the magnetic axis, as the
relevant expansion parameter for near axis scales as 4/{/B/R (Landreman & Sengupta
2019). Since we are fixing the total flux, decreasing the minor radius of the toroidal
configuration can increase the differential flux over which the QS error is small. In
practice, however, the optimiser has difficulty in finding these large-aspect-ratio minima.
The difficulty in changing the aspect ratio without sacrificing QS along the way and the
choice of parameterisation (Henneberg, Helander & Drevlak 2021) (4.4) might provide an
explanation for this behaviour.

What conclusions can we thus draw from this illustrative example? First, the form of
the cost function must be carefully considered. Here we only examined QS and observed
that the optimisation result varies significantly depending on the form of the cost function.
Similar behaviour will likely affect the optimisation of other physical measures. Second,
we see in this example that the ‘simplest’ forms (in this case, f3 and f¢) seemed to provide
a better global performance. (By simpler we mean a lower number of field derivatives
and a simpler dependence on the Fourier modes.) Increased complexity seems to make
optimisation harder. However, it is difficult to make general statements based only on this
example, and there might be exceptions not treated in this paper.

As discussed in the previous section, close to local QS minima, improvements in QS
metrics do not always lead to improvements in physical properties. Thus insisting on
making marginal improvements on f» (and for that matter, any of the other QS measures)
does not seem to be a useful exercise. Close to a QS minimum it does seem appropriate to
prioritise optimisation with respect to more physical measures. Optimising stellarators
based solely on physical properties has been shown to be successful in the literature
(Hirshman et al. 1998, 1999; Spong et al. 2000). Here we propose a hybrid approach
between optimising for QS alone and optimising for physical metrics (without QS). The
QS optimisation should bring the search close to a region of configurations with QS-like
properties following a simpler form of cost function. Then for refinement, it will follow
the more detailed physical cost function optimisation. Perhaps insisting on QS at all times
may stand its ground if an absolute QS zero could be reached (a point with clear physical
meaning), such as in the optimisation for QS on a single magnetic surface. But even then,
stellarator design usually requires additional physical considerations.

We seem then to need to alternate between an optimisation dominated by the QS metrics
and an optimisation guided by other physics metrics. A way forward is to impose QS as
an inequality constraint, so that physical metrics can dominate optimisation when QS is
‘small enough’. Of course there is the unavoidable difficulty of choosing the value of
a QS metric to indicate ‘sufficient QS.” Picking a fixed value will modify the shape of
optimisation space in a non-trivial way. Instead of choosing a fixed value, a more dynamic
alternative would be to turn QS optimisation on and off guided by the relative changes or
gradient norms of the QS metrics. One might choose to not optimise for QS at all, instead
initialising the search from an already fairly quasisymmetric configuration. This would
place the optimisation in the right basin, but lead to refinements in it based on physically
relevant features. Possible initial seeds could be constructed from near-axis solutions.

As explored, the non-universality of the QS metrics close to minima seems to require
amendment by introducing additional physics metrics. At the same time, detailed physical
calculations are likely to lead to complicated parameter spaces including multiple local
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minima compared with those of the simpler QS metrics. Using QS metrics in conjunction
with a more complex physical metric may provide the best of both worlds. This could
shed some light on recent results in Bader er al. (2019). In this work, optimisation of
QS through f together with a more complex physical proxy for « particle losses seems
to perform better than each of the pieces separately. We hypothesise that fp allows for
a smoother global navigation (avoiding some potential local minima), while the physics
metric helps in finding a more physically meaningful final minimum. Using both metrics
in an appropriately balanced way seems to lead to a convenient compromise in which
benefits of both aspects are brought together.

Stellarator design often requires multi-objective optimisation. Given the nonlinearity
of the objectives of interest, adding additional terms to the cost function can change the
problem dramatically. Thus, the differences observed above for the QS metrics will only
be more complex in the presence of other physics objectives. Those differences may be
amplified or reduced depending on their relation to the behaviour of the other metrics.
Such an analysis will be necessary to reason how to best compose QS with these other
metrics. In these complex scenarios, the idea of initially seeding optimisation with an
approximately QS configuration gains strength, as it would make the problem simplest.
Further study is required to verify these proposed optimisation strategies.

5. Conclusion

In this paper we have explored three main measures of QS: the standard Fourier
form, the two-term formulation and the triple product form. We performed an analytical
comparison of their origin and mathematical structure. Particularly important are their
differences in weighting the asymmetric modes of B in Boozer coordinates. While the
standard Fourier form treats all modes equally, the two-term form weights them differently,
and the triple vector formulation involves a mode convolution.

The differences in these valid QS metrics show that there is no universal measure of QS.
While the measures are all rigorously equivalent when QS is satisfied exactly (assuming
J+ V¢ = 0), there is no unique measure that quantifies deviations from QS. This lack
of universality makes the comparison between configurations particularly difficult near
approximately QS solutions, and some physically relevant property (such as neoclassical
transport through €. or alpha particle confinement) would be needed for a more
meaningful comparison. Near those local minima that are not exactly QS, optimising QS
cost functions for marginal improvements generally lacks physical meaning. Away from
the minima, the global structures of the QS metrics are qualitatively similar, providing
more physical meaning to the metrics.

We also show that the mathematical form of the measure affects the optimisation
significantly via an example. In the particular example presented, the complexity of a cost
function seems to lead to ending in alternative local minima.

In light of the above, we suggest enforcing approximate QS either through an inequality
constraint (so that optimisation close to minima is dominated by some direct physics
measure) or through an appropriate initial configuration. Additional attention should also
be paid to the form of physics or engineering cost functions.
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Appendix A. Magnetic differential relation between fc and fr

Although the triple vector product form of QS seems distinct from the other forms
given its nonlinear character, we can establish a simple relation between fr and f-. To
obtain this relation it is most convenient to use the same tools that we used in the
derivations of the different forms of QS in § 2. Away from QS, one may still construct the
symmetry field as u = V@ x VB/(B - VB), where we assume B - VB # (. At extremal
points of the magnetic field magnitude along B, this construction fails. We have seen
the role of the extrema, for example, in the discussion of single-particle dynamics (§ 3).
Requiring pseudosymmetry takes care of these, as it guarantees B - u to be well-behaved.
Constructing this vector field # in this way is equivalent to enforcing (2.1) and (2.2). With
these as wellas V - B = O:

B-V(B-u) =BV -u, (A1)
using j - Vi = 0 and appropriate vector identities to rewrite the left-hand side. Now,

from B-u/® = C + fc/(B - VB), it then follows that f and f; are related to each other
through a magnetic differential equation:

B-V( Je ):—f—T. (A2)
B-VB (B- VB)?

This magnetic differential equation shows that fr does, in fact, contain a higher-order
derivative in comparison with fc.
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