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Abstract

Let G be a finitely generated group and let R be a commutative ring, regarded as a G-module
with G acting trivially. We shall determine when the cup product of two elements of H ! (G, R)

is zero. Our method will use the interpretation of HZ(G , R) as extensions of G by R. This
will give an alternative demonstration of results of Hillman and Wiirfel.
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1. Introduction

Throughout this paper G is a finitely generated group, p is 0 or a prime,
and k = Z/pZ regarded as a ZG-module with G acting trivially. The kernel
of the cup product U: HI(G, k)®H1(G, k) — Hz(G, k) was studied in [3],
[4] and [7], these papers depending in part on cochain calculations. We shall
offer a different approach, using the interpretation of H 2(G , k) as extensions
of G by k. With the exception of Theorem 2(ii), our results are essentially
those of [4] and [7].

For any group H we set H* = H'H” when p # 0. As usual, we shall
identify H'(H, k) with Hom(H, k). If H is nilpotent, then 7(H) will
indicate the torsion subgroup of H (in other words the elements of finite
order in H ), and when p =0, we define G* by G*/G = 1(G/G).
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2 Group extensions 109

Let H' (G, k)AH'(G, k) denote the alternating product, and H' G, k)o
H! (G, k) the symmetric product. Since the cup product is anticommutative,
it induces homomorphisms

y: H(G, k) NH' (G, k) - H* (G, k) ifp#2,

and
0: H'(G,k)o H'(G, k) — H* G, k) ifp=2,

as described in [3]. We shall prove

THEOREM 1. Suppose p # 0, and f, g € Hom(G, k) are linearly inde-
pendent over k with kernels H, K respectively.
(i) fug=0 ifandonly if H'K" # G*.
(ii) If p # 2, then kery = G*/[G", G]G".
(iii) If p =2, then ker6 = G"/[G", GI1G*".

THEOREM 2. Let p =0, let f, g € Hom(G, Z) be linearly independent
over Z, and let H =ker fNnker g.

() If K/[G", G1=1(G/[G", G), then ker y = G" /K .

(ii) Suppose r is the index of (f,%) in H'(G/H,Z), where T and
2: G/H — Z are the homomorphisms induced by f and g respec-
tively. If T/[H, G) = ©1(G/[H, G]), then fU g has finite additive
order in H* (G, Z) if and only if G'/[H, G] is infinite,and in this
case the order is 11.c.m.(r, |G*/G'T|).

We use the following method: as in [4] we consider the five term exact
sequence associated with the group extension 1 - G* - G — G/G* — 1:

0— H'(G/G", k)—» H'(G, k)= H'(G", K)® & H(G/G", k) —» H*(G, k).

It will be important to describe the map J accurately. This will be done
by using group extensions (Lemma 3) and the well known structure of
H*(G/G*, k) (Lemmas 4 and 5). The motivation for this paper was to
show that the approach of [4] could be modified so as to avoid complicated
cochain calculations.

2. Notation

Mappings will mostly be written on the left, and modules will be left
modules. Let A, B < H be groups, let X C H, and let M be a ZH-
module. Then we use the notation H' for the commutator subgroup of
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H, (X} for the subgroup generated by X, |X| for the order X, [4, B]
for (a 'b'abla € A,b € B), and M? for {m € M|hm = m for all
h € H}. The restriction map from H2(H, M) to HZ(A, M) will be de-
noted by res H. 4> and the lowest common multiple of two positive integers
by L.c.m. If @ is a map, then im @ will indicate the image of 6, and ker#
the kernel of 8. Suppose 4, B<aH, A is abelian and B acts trivially on
M . Then we can also view M as a Z[H/B]-module, and we can make A
into a ZH-module by letting H act via conjugation so that 4 -ag = hah™!
for a € A and h € H; we shall use these well known observations without
further comment in the future.

3. Preliminary results

Most of the lemmas in this section are well known. For the purposes of this
paper, the theory on page 294 of [2] instead of Lemma 3 would be sufficient.

LEMMA 3. Let A be an abelian normal subgroup of the group H, let K =
H/A, let M be a ZK-module, and view A as a ZK-module with K acting
on A by conjugation. Let f € Hom,, (A4, M) and let

6: H'(4, M) = Hom,, (4, M) —» H*(K, M)
be the transgression map associated with the group extension 1 - A — H —
K — 1. Suppose y: K x K — A is a factor set representing the element

in H? (K, A) corresponding to the above extension. Then (after choosing the

notation correctly) —o(f) is an element of H 2(K , M) which is represented
by the factor set fy: K x K — M . In particular if f is surjective, then 6(f)
is represented by a group extension of the form

1— A/ker f > H/ker f = K — 1.

ProoF. To ensure that —J(f) and fx represent the same element in
H? (K, A), we need to choose the notation correctly, and the notation of [6,
IV.4 and XI1.9] will suffice. Let T be a set of coset representatives for 4 in
H,let ~: H— K denote the natural epimorphism, and let B(ZH) denote
the (normalized) bar resolution [6, page 114]. Thus B, (ZH) is the free ZH-
module with free generators {[x,]...|x, ]|x, € H\1}, and f is represented
byany f € Hom,, (B,(ZH), M) such that f(lal) = f(a) forall a € A\l;
we shall define f by f([af]) = f(a) forall a€ 4 and te T (at+#1),and
assume 1€ T. Let 9: B,(ZH) — B,(ZH) be the boundary map defined by

a([xly]) = x[y] - [xy] + [x]
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for x,y € H\1. Then &(f) is represented by the factor set y: K xK — M
satisfying (X, ¥) = fa([xly]) for x,y € H (cf. the “connection” of [6,
page 349]). In fact if we write x = ar, y = bs, xy =ct {(a,b,c €
A, r,s,teT), then y(X,7) = f(ts'lr'l). But the factor set y can be
defined by x(X,7) = rst”! (see [6, page 111]), and we deduce that —d(f)
and fy represent the same element of H>(K, M).

Now suppose f is surjective. If fy is represented by an extension of the
form 1 - M — E — K — 1, then there exists a commutative diagram

D

for some group homomorphism 6: H — E, necessarily surjective, and the
result follows.

K—1

LEMMA 4. Let p be a prime, let G be a finite elementary abelian p-group,
andlet (f,, ..., f,) bea k-basis for H' (G, k).

() If p=2, thenthe set {f,Uf|1 <i,j<n} isa k-basis for H* (G, k).

(i) If p isodd, then theset {f,Uf,, Bfill <i<j<n, 1<1<n}isa k-
basis for H*(G, k), where B: H'(G, k) — H*(G, k) is the Bockstein map.
In particular if x € H? (G, k), then resg X =0 Sor all cyclic subgroups A
of G ifand only if x = Dicjhii iV for some A, € k.

LEMMA 5. Let G be a free abelian group, and let (f,, ..., f,) be a Z-
basis for H'(G, Z). Then the set {fiufjll i< j<n} isa Z-basis for
HXG, 7).

Proor. Lemmas 4 and 5 follows from the Kiinneth theorem (see [1, page
101] and {5, VI.15]). For information of the Bockstein map, see [1, 2.23].

4. Cup products and group extensions

LEMMA 6. Let p be a prime, let G be an elementary abelian p-group,
andlet (f,, f,, ..., f,) bea k-basis for HI(G, k). Write K, =ker f, and
K, =ker f,. Suppose y € H 2 (G, k) is represented by the group extension

0-k—oES%Go1.
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) If G_I(Kl) and 6_1(K2) are elementary abelian, then x = Af, U f, for
some A€k.

(ii) If p is odd, then E has exponent p if and only if x = ZKI ”f Uf
for some A,; € k.

PrROOF. Suppose G_I(Kl) and O_I(Kz) are elementary abelian. By Lem-
ma 4 we may write

=Y 4,fUf ifp=2,

i<j
and
x=Y A f;uf +E/1 Bf; if p is odd,
i<j
where 4,;, A;€k. Since 6~ ( 1) is elementary abelian, res; KX= 0 and

we see that 4, = 4,;, =0 if i # 1. Also O_I(KZ) is elementary abelian,
hence res; KX = 0 and we deduce that 4, = 4, ;= 0 if j # 2. This proves
i).

It is easy to show (and is well known) that E has exponent p if and only
if res; ,x=0 for all cyclic subgroups 4 of G. Thus we obtain (ii) from
Lemma 4(ii).

LEMMA 7. Let G be a free abelian group, let (f,, ..., f,) be a Z-basis for
H' (G, Z), andlet K = ker finker f,. Suppose x € HZ(G, Z) is represented
by the group extension

0-Z—-E5%G-1.

() If [E, O_I(K)] =1, then x = rf, U f, where either r =0 or r =
+|ker §/E’|.

() If x =rf,Uf, where r€Z, then [E, 0" (K)]=1.

Proor. By Lemma 5, write y = EKI Uf Uf. where lij € Z, and set
L=ker6 and K, =ker f; (1<i<n).

(i) Since B_l(Kl) is abelian, resg x X = 0 and we see that 4;; = 0 if
i # 1, and then O_I(Kz) abelian imples that res; KX = 0, and hence
A;=0 if j#2. Thus y =rf,u f, for some r € Z. Suppose r = 1. If

E' # L, then there exists a prime p such that E' C Lf . Let n: Z — Z/pZ
denote the natural surjection. Since (nf,...,nf) is a Z/pZ-basis for

HI(G, Z/pZ), it follows from Lemma 4 that nf, Uxnf, # 0, and hence
0—-Z/pZ - E/L” -G —1
is nonsplit. This contradicts E' C L? . Therefore E' = L.
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In general if 0 # r € Z, let u,: Z — Z denote multiplication by r. Then
we have a commutative diagram

0 — Z ‘El\
u’l [/ /G->l
0 — Z + E

for some map ¢, where the top sequence represents f, U f, and the bottom
sequence rf; U f,. This shows that IL/E'| = |r|, and (i) follows.

(ii) Since resy fAuf, = res, fiuf, = 0, we see that O_I(Kl) and G_I(Kz)
are abelian, and hence [67'(K,)67'(K,), 67 '(K)] = 1. But [a,b) =
[a°,b] for a,be E, s€Z,and 67'(K,)07"(K,) has finite index in E,
and the proof of (ii) is easily completed.

ProoF oF THEOREM 1. Consider the five term exact sequence associated
with the group extension 1 - G* — G — G/G* — 1:

0- H'(G/G", k)L H' (G, k) - H'(G", k® % HG/G", k) 2 H*G, k)

where @ and ¢ are the inflation maps, and J is the transgression map.
Choose f,F € HI(G/G*, k) such that 8(f)=f, 8(8)=g.If fug=0,
then fUgZ = d(u) for some u € HY(G", k)G; note that u # 0, so u is
onto and G*/L =k where L = ker u. Using Lemma 3, we see that J() is
represented by a group extension of the form

0—k—G/LEG/G —1

for some homomorphism z. Since res; 1G* H/G" fuz =0, it follows that

2~ (H/G") is elementary abelian, and hence H* C L. Similarly K* C L
and we deduce that H*K" # G".

Conversely suppose H'K* # G* . Choose a subgroup M such that H* K"
C M < G" and M is maximal under these conditions. Then M « G and
G*/M = k because [G, G']=[HK,G"|=[H, G'l[K,G'1C H'K". Since
H/M and K/M are elementary abelian, application of Lemma 6(i) shows
that

0—-k—G/M—-G/G -1

is represented by Af UZ for some A € k. Now G/M is not elementary
abelian, hence A # 0 and it follows from Lemma 3 that fUZ € imd.
Therefore fU g =0 which proves (i).

Now suppose p is odd and let

¥: H'(G/G", k) N\H (G/G", k) — H*(G/G", k)
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be the map induced by the cup product. Then ¥ is a monomorphism by
Lemma 4(ii) and ¢7 = y(6 A 0), and hence

ker y = ker (0 A ) = ker ¢y =ker pNimy =imdNim7

because 8 is an isomorphism and kergp = imd. Since J is a monomor-
phism, we deduce that
kery=veH' (G, k)°| 6(v) =Y 4,f;U f, for some A, €k ¢ .
i<j
If v #0 and N = kerv, then §(v) is represented by an extension of the
form
0-k—G/N-G/G —1
by Lemma 3. It now follows from Lemma 6(ii) that G/N has exponent p
if and only if d(v) = ij).ijfi Ufj for some 4;; € k. Therefore ker y =
Hom(G*/[G", G]G”, k). But G is finitely generated, hence G is finitely
generated and we conclude that kery = G*/[G", G]G” as required.

The case p = 2 is similar but easier; one uses Lemma 4(i) instead of
Lemmas 4(ii) and 6(ii). Since this argument is identical to that of [4, Section
3], we omit it.

Proor oF THEOREM 2. Consider the five term exact sequence associated
with the group extension 1 - G* - G- G/G* = 1:

0-H'(G/G",2) % H' (G, 2) - H'(G", 2)°
5 HY(G/G",2) % H G, Z),

where 6 and ¢ are the inflation maps, and J is the transgression map.
If 7: HI(G/G*, Z) A H‘(G/G*, Z) — Hz(G/G', Z) is the homomorphism
induced by the cup product, then 7 is an isomorphism by Lemma 5, and
97 = (@ A B). Since 0 is an isomorphism, ¢ is a monomorphism and we
deduce that

kery = kery(6 A 0) =ker p7 = kerp = imd
= Hom(G"/[G", G}, Z) = G /K

(because G is finitely generated implies G*/[G", G] is finitely generated)
which proves (i). The argument of this section is identical to that of [4,
Section 2].

Now let (e, #) be a Z-basis for H 1(G/H , Z) . By anticommutativity of
the cup product eUe = hUuh =0, hence fUg = treUh, so we may assume
that r = 1 and that (f, g) isa Z-basis for H l(G/H , Z). Choose a Z-basis
(f;s.--» f,) of H(G/G", Z) such that 8(f,) = f and 6(f,) = g. Suppose
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fUg has finite additive order s. Then there exists ¥ € Hom(G"/[G", G], Z)
such that &(u) = sf,U f, . Note that u # 0 so if L =ker u, then G*/L = Z.
Let v: G* — Z be an epimorphism with kernel L,so u = tv forsome t € Z.
Then td(v) = sf, U f,, thus f|s by Lemma 5 and we deduce that ¢ = 1.
Also application of Lemma 3 shows that d(v) is represented by an extension

of the form
0-2Z—G/L—G/G —1.

Therefore [H, G) C L and |G*/G'L| = s by Lemma 7. But it is easy to show
that G'/[H, G] is cyclic, hence L = T and we conclude that |G*/G'T| =s.

Conversely suppose G'/[H, G] is infinite. Since G'/[H, G] is cyclic, it
follows that G*/T = Z. If w: G* — Z is an epimorphism with kernel T,
then d(w) is represented by an extension of the form

0-2Z—-G/T—G/G —1

by Lemma 3. From Lemma 7(i), this extension also represents +/f, U f,
where / = |G*/G'T|. It follows that /fU g =0 and hence f U g has finite
order. This complete the proof of Theorem 2. \
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