
JFP 15 (2): 249–291, 2005. c© 2005 Cambridge University Press

DOI: 10.1017/S0956796804005441 Printed in the United Kingdom

249

A monadic analysis of information flow security
with mutable state

KARL CRARY, ALEKSEY KLIGER and FRANK PFENNING

Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA 15213 USA

(e-mail: {crary,aleksey,fp}@cs.cmu.edu)

Abstract

We explore the logical underpinnings of higher-order, security-typed languages with mutable

state. Our analysis is based on a logic of information flow derived from lax logic and the

monadic metalanguage. Thus, our logic deals with mutation explicitly, with impurity reflected

in the types, in contrast to most higher-order security-typed languages, which deal with

mutation implicitly via side-effects. More importantly, we also take a store-oriented view

of security, wherein security levels are associated with elements of the mutable store. This

view matches closely with the operational semantics of low-level imperative languages where

information flow is expressed by operations on the store. An interesting feature of our analysis

lies in its treatment of upcalls (low-security computations that include high-security ones),

employing an “informativeness” judgment indicating under what circumstances a type carries

useful information.

Capsule Review

Type-based information flow analyses enrich the traditional structure of types with security

levels, so that a type tells not only how a value may be used, but also how much information

its use may reveal. In Heintze and Riecke’s SLam Calculus, every node in a type, be it an

arrow, a product, or a sum, carries a security level. This makes things simple: to “taint” a

type at level �, one simply joins � to the annotation found at its root. This convention is,

however, verbose and redundant. In Abadi et al.’s Dependency Core Calculus, on the other

hand, the standard type constructors carry no annotation: instead, a new type constructor, the

“monad,” is added for this purpose. This design is more orthogonal, but makes things more

subtle: to taint a type at level �, one must traverse it until places where an annotation can be

attached are found. This process is defined by a “protectedness” predicate. The present paper

proposes yet another way of attaching security annotations to types. Again, the standard

type constructors carry no annotation: instead, only reference types carry an annotation.

An “informativeness” predicate defines how types are tainted. This leads to a store-oriented

view of information flow, which seems to make the most sense in the context of low-level

languages, such as typed assembly language, where the store is everything. This original

paper also provides a nice occasion to think about the many ways to design a type-based

information flow analysis.

1 Introduction

Security-typed languages use type systems to track the flow of information within

a program to provide properties such as secrecy and integrity. Secrecy states that

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

250 K. Crary et al.

high-security information does not flow to low-security agents, and integrity dually

states that low-security agents cannot corrupt high-security information. In this

paper, we will restrict our attention to secrecy properties. A variety of security-

typed languages have been proposed, and several of them are both higher-order (i.e.

support first-class functions) and provide mutable state (Heintze & Riecke, 1998;

Myers, 1999; Pottier & Simonet, 2003; Zdancewic & Myers, 2002).

However, when adopting one of these languages to the Typed Assembly Language

(Morrisett et al., 1999) setting, one faces a tension between the high-level view of

information flowing from the values of sub-terms to the result value of a complete

term and the assembly-language imperative view of instructions operating on a

mutable store. What is needed is a typed calculus in which values have structure

(i.e. like in high level languages) but information flows through the store (i.e. like in

a low-level language).

In this paper, we explore this store-oriented view of information flow: one of the

steps towards a TAL with information flow, we look at a language with a clean

separation between values and computations. A suitable starting point is Moggi’s

monadic metalanguage (Moggi, 1989; Moggi, 1991) and its corresponding logic (via

a Curry-Howard isomorphism).

Our presentation of lax logic is based on that of Pfenning and Davies (2001).

The principal distinctive feature of Pfenning and Davies’s account is a syntactic

distinction between terms and expressions, where terms are pure and expressions

are (possibly) effectful. They show that this distinction allows the logic to possess

some desirable properties (local soundness and local completeness) that state in

essence that the logic’s presentation is canonical. Although our work inherits these

properties, they are not particularly important here. However the term/expression

distinction also provides a clean separation between the pure and effectful parts of

our analysis, which greatly simplifies our system.

Our system bears some resemblance to the work of Abadi et al. (1999), who also

use a monadic structure to reason about information flow. However whereas we use

monads in a conventional manner to separate values from computations, they use

a monad to endow values with a security level. It is not clear how to adopt their

work to a low-level setting where the values and operations ought to correspond to

those of a real machine.

A natural question is whether this store-oriented security discipline limits the

expressive power of our account relative to ones based on a value-oriented discipline,

but we show (in Section 6) that it does not.

Overview The static semantics of our analysis is based on two typing judgments,

one for terms (M) and one for expressions (E). Recall that terms are pure and

that security is associated with effects, so the typing judgment for terms makes no

mention of security levels. Thus, the typing judgment takes the form Σ; Γ � M : A

(where A is a type, Γ is the usual context and Σ assigns a type to the store).

Expressions, on the other hand, may have effects and therefore may interact with

the security discipline. Each location in the store has a security level associated with

it indicating the least security level that is authorized to read that location. Thus,

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 251

the typing judgment for expressions tracks the security levels of all locations an

expression reads or writes. Only the reads are of direct importance to the security

discipline (recall that we do not address integrity), but writes must also be tracked

since they provide a means of information flow. The judgment takes the form:

Σ; Γ � E ÷(r,w) A indicating that r is an upper bound to the levels of E’s reads, and

w is a lower bound to the levels of its writes, and also that E has type A. Naturally

we require that r � w, or else E could manifestly be leaking information.

Our language can be seen as a conservative extension to purely functional lan-

guages such as Haskell. Existing terms continue to be type-safe. On the other hand

new effectful code that makes use of the security discipline can be cleanly separated.

In lax logic, expressions are internalized as terms using the monadic type ©A.

Terms of type ©A are suspended expressions of type A. Thus, the introduction form

for the monadic type is a term construct, and the elimination form (which releases

the suspended expression) is an expression construct. Similarly, our expressions are

internalized as terms using a monadic type written ©(r,w)A. Since the effects of the

suspended expression will be released when the monad is eliminated, the levels of

those effects must be recorded in the monad type.

Most of the rules in our account follow from the intuitions above. One remaining

novelty deals with the information content of types. Ordinarily, an expression would

be deemed to be leaking information if it were to read from a high-security location,

use the result of the read to form a value, and pass that value to a low-security

computation. However, that expression would not be leaking information if one

could show that the type of that value contained no information, or contained

information usable only by a high-security computation (who could have performed

the read anyway). Thus the type system contains a judgment � A ↗ a stating that

the type A contains information only for computations at the level a at least. This

notion of informativeness is essential to accounting for the key issue of upcalls

(low-security computations that include high-security computations).

The rest of this paper is organized as follows. In section 2 we present our basic

logical account, including static and dynamic semantics, but omitting the key issue

of upcalls. In section 3 we extend our account to deal with upcalls. In section 5 we

state and prove a non-interference theorem. In section 6 we show that our store-

oriented account provides at least the expressive power of value-oriented accounts

by embedding one value-oriented language into our language. Section 7 discusses

some related work, section 8 offers some concluding remarks.

2 Secure monadic calculus

We now describe the syntax, typing rules and operational semantics of our language.

As in other work on information flow, we have in mind an arbitrary lattice

(L,�,�,�,⊥,�) of security levels.

Operation levels To track the flow of information, we classify expressions not only

by the value that they return, but also by the security levels of their effects. In

particular, we keep track of an operation level o = (r, w), for each expression. The

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

252 K. Crary et al.

A,B, C ∈ types ::= 1 | bool | A → B

| refa A | refra A | refwa A

| ©o A

M,N ∈ terms ::= x variables

| ∗ unit

| true | false boolean values

| if M then N1 else N2 conditional

| λx : A.M abstraction

| MN application

| � store location

| val E suspended expression

E, F ∈ expressions ::= [M] return

| let val x = M in E sequencing

| refa (M : A) store allocation

| !M store read

| M := N store write

Γ ∈ contexts ::= · | Γ, x : A

Σ ∈ store types ::= {} | Σ{� : A}

V ∈ values ::= ∗ | true | false

| λx : A.M | � | val E

H ∈ stores ::= {} | H{� �→ V }
S ∈ comp. states ::= (H,Σ, E)

let x = E in F ≡ let val x = val E in F

run M ≡ let val x = M in [x]

Fig. 1. Syntax.

security level r is an upper bound on the security levels of the store locations that

the expression reads, while w is a lower bound on the security level of the store

locations to which it writes.

Since expressions that write at a security level below their read level may obviously

be insecure, henceforth we restrict our attention only to operation levels (r, w) with

r � w.

The operation levels have a natural ordering (r, w) � (r′, w′). Given some expres-

sion E, if it reads from level at most r, then it surely reads from level at most r′,

provided that r � r′. Similarly, if it writes at level at least w, then it writes at level

at least w′, provided that w′ � w. That is, operation levels are covariant in the reads

and contravariant in the writes: (r, w) � (r′, w′) iff
(
r � r′ and w′ � w

)
.

2.1 Syntax

The full syntax of our language is given in Figure 1. The language is split into two

syntactic categories: pure terms M that are evaluated to values V and expressions

E that are executed for effect as part of compuation states S .

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 253

Terms At the term level, we have variables, unit, booleans and conditional terms,

function abstractions and applications. For simplicity, we did not include a mecha-

nism for defining recursive terms, although the inclusion of such a facility would not

pose a problem. Store locations are also terms, with each location � having a fixed

security level Level(�). The store associates locations with the values they contain.

A subtyping relation, allows us to treat store cells as either read-write, read-only, or

write-only. The term val E allows expressions to be included at the term level as an

element of the monadic type ©oA. Since terms are pure, a val E does not execute

the expression E, but rather represents a suspended computation.

Expressions The expressions include a trivial return expression [M]. The return

expression has no effect, and simply returns the value to which M evaluates. In

general, when an expression has no read effects, we say its read level is ⊥, and if an

expression has no write effects, we say its write level is �. Accordingly, the operation

level of [M] is (⊥,�). Note that (⊥,�) is the least element in the � ordering, so our

subsumption principle will let us weaken the operation level of [M] to any operation

level.

The sequencing expression let val x = M in F evaluates M down to some val E,

and executes E followed by F . The return value of expression E is bound to the

variable x in F . If E and F both have operation level o, then so does the sequencing

expression.

We will often write let x = E in F as syntactic sugar for let val x = val E in F ,

and run M for let val y = M in [y].

In addition, there are expressions that allocate, read from, and write to the

store. A read expression !M has operation level (a,�), where a is the security level

of the store location being read, and returns the contents of the store location.

Dually, a write expression M := N has operation level (⊥, a) and updates the store

location with the value of N; it does not return an interesting value (i.e. it returns

unit).

Store allocation refa (M : A) specifies the security level a and type A of the new

store location.

Allocation cannot leak information in our setting. Evidently, it is not a read

operation. Less obviously, it is not a write operation either. With a write, another

expression may learn something about the current computation by observing a

change in the value stored at a particular store location. However, the key to this

scenario is that the same location is mentioned by more than one expression. On the

other hand, allocation creates a new location that is not aliased. Thus, there can be

no implicit flow of information via an allocation expression. As a result, allocation

has operation level (⊥,�). Of course if there were a primitive mechanism in place to

distinguish locations (for example by comparing locations for equality), allocation

would once again be observable.

Although there is not a primitive mechanism for recursion at the level of

expressions, recursion can be encoded at the level of expressions using back-patching,

see an example in section 3.3.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

254 K. Crary et al.

Table 1. Typing judgments

Judgment Meaning

Σ; Γ � M : A Term M has type A

Σ; Γ � E ÷o A Expression E has type A

and operation level o

� A � B Type A is a subtype of B

� H : Σ Store H has type Σ

� S ÷o A Computation state S is well-typed

States A computation state is a partially executed program, and consists of a triple

(H,Σ, E) of a store H , a store type Σ and a closed expression E. The store maps

locations to values, and the store type maps locations to the types of those values.

We assume that in a state (H,Σ, E), the store binds occurrences of store locations

� in H and E, and we identify computation states up to level-preserving renaming

of store locations. In addition, as usual, we identify all constructs up to renaming of

bound variables.

2.2 Static semantics

The type system of our language consists of two main mutually recursive judgments

for typing terms and expressions, and some judgments for typechecking stores, and

computation statesthat are summarized in Table 1. The first judgment Σ; Γ � M : A

says that the term M has type A in the context Γ, where the store has type Σ. The

jugment for expressions Σ; Γ � E ÷o A says that E returns a value of type A and

performs only operations within level o. Each rule is given with its rule number, and

the full set of rules appears in Appendix A.2.

We assume that contexts Γ are well-formed, that is, they contain at most one

occurrence of each variable x. We tacitly rename bound variables prior to adding

them to a context to maintain well-formedness. Similarly, we assume that store

types are well-formed, that is, they contain at most one occurrence of each store

location �.

Terms The typing rules for terms are unsurprising for a simply-typed lambda

calculus with unit, bool and function types. A store location � (provided that it

is in dom(Σ)) has type refLevel(�)Σ(�). A computation term val E has the type ©oA,

provided the expression E has type A and operation level o. The rules are given in

Appendix A.2.

Expressions The typing rules for expressions (given in Figure 2) follow our informal

description. Trivial computations have the type of their return value, and operation

level (⊥,�) (rule 29). By rule (30), the sequencing expression let val x = M in E

is well-typed provided both of the sub-computations have the same operation level

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 255

Σ; Γ � E ÷o A

Σ; Γ � M : A

Σ; Γ � [M] ÷(⊥,�) A
(29)

Σ; Γ � M : ©oA Σ; Γ, x : A � E ÷o A

Σ; Γ � let val x = M in E ÷o A
(30)

Σ; Γ � M : A

Σ; Γ � refa (M : A) ÷(⊥,�) refa A
(31)

Σ; Γ � M : refra A

Σ; Γ � !M ÷(a,�) A
(32)

Σ; Γ � M : refwa A Σ; Γ � N : A

Σ; Γ � M := N ÷(⊥,a) 1
(33)

Σ; Γ � E ÷o A o � o′

Σ; Γ � E ÷o′ A
(34)

Σ; Γ � E ÷o A � A � B

Σ; Γ � E ÷o B
(36)

Fig. 2. Typing rules (expressions).

� A � B

� A � B a � b

� refra A � refrb B
(17)

� B � A b � a

� refwa A � refwb B
(18)

� A � B a � b

� refa A � refrb B
(15)

� B � A b � a

� refa A � refwb B
(16)

� A � B o � o′

� ©oA � ©o′B
(14)

Fig. 3. Selected subtyping rules.

(which may require using rule (34) to weaken the operation level of the sub-

computations). Allocation (rule 31) returns a new read/write store location. For

read and write expressions (rules 32 and 33) we only require that the corresponding

store location is readable or writable, respectively.

Subtyping Subsumption (rules 28, 36) allows us to weaken the type A of a term M

or an expression E, provided A is a subtype of B. Selected subtyping rules are given

in Figure 3.

Stores and states A store H is well-typed with store type Σ, provided that each value

Vi in the store is well typed under Σ and the empty context, where Σ has the same

domain as H . A computation state (H,Σ, E) is well-typed provided that the store

and the expression are each well-typed with the same store type:

dom(Σ) = {�1, . . . , �n} Σ; · � Vi : Σ(�i) for 1 � i � n

� {�1 �→ V1, . . . �n �→ Vn} : Σ
(37)

� H : Σ Σ; · � E ÷o A

� (H,Σ, E) ÷o A
(38)

2.3 Operational semantics

A computation state is called terminal if it is of the form (H,Σ, [V]). An evaluation

relation S → S ′ gives the small-step operational semantics for computation states.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

256 K. Crary et al.

We write S ↓ if for some terminal state S ′, S →∗ S ′. Since terms are pure and do

not have an effect on the store, their evaluation rules may be given simply by the

relation M → M ′ (no store is required). The entire set of evaluation rules is given in

Appendix B.

We write M[N/x] and E[N/x] for the capture-avoiding substitution of N for x

in the term M or expression E. We write H{� �→ V } for finite map that extends H

with V at �.

It is instructive to consider how a computation in state

S0 = (H,Σ, let val x = M in F) would evaluate. There are three stages:

1. Letval1 is repeatedly applied until M is evaluated down to a value val E,

S1 = (H,Σ, let val x = val E in F)

2. Letvalval is then applied until the subcomputation (H,Σ, E) is evaluated to

a terminal state (H ′,Σ′, [V]),

S2 = (H ′,Σ′, let val x = val [V] in F)

3. Letval substitutes the value V for x in F and computation continues in state

S2 = (H ′,Σ′, F[V/x]).

For the proof of non-interference (specifically for the proof of the Hexagon

Lemma), it will be useful to have the following lemma. It says that if a term

evaluates to a value (or if a computation state evaluates to a terminal state) then the

syntactic subterms (or subexpressions) of the given term (or computation state) will

likewise evaluate to values (or terminal states). That is, our account is call-by-value.

Lemma 2.1 (Subterm/Subexpression Termination)

• If (H,Σ, E) ↓ in n steps, then

1. if E = [M] then M →n V

2. if E = let val x = M in F then M →k val E ′, (H,Σ, E ′) ↓ in m steps and

k + m < n

3. if E = refa (M : A) then M →k V and k < n

4. if E =!M then M →k V and k < n

5. if E = M := N then M →k V1, N →m V2 and k + m < n

• If M →n V then

1. If M = N1N2, then N1 →k V1 and V1N2 →m V1V2 and k + m < n

2. If M = if N1 then N2 else N3 then N1 →k V1 and k < n

Proof

by induction on the number of steps in the evaluation relation, by cases on the last

rule. �

Our operational semantics are deterministic up to renaming of store locations:

recall that we consider store locations to be bound by the store in a computation

state. We allow a bound store location � to be renamed �′, as long as Level(�) =

Level(�′). (Alternately, think of each security level as determining a collection of

store locations; each bound store location may be renamed only to a location within

the same collection.) Determinacy is used in the proof of non-interference.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 257

Lemma 2.2 (Determinacy)

If M → M1 and M → M2 then M1 = M2. If S → S1 and S → S2 then S1 = S2 (upto

renaming of store locations).

Proof

by induction on the evaluation relations. By cases on M → M1 (or S → S1).

In each case, by the structure of M (resp., S), there is a single evaluation rule for

M → M2 (resp., S → S2), then by IH. �

Since allocation extends the store, the following lemma shows that in any sequence

of evaluation steps (of a not necessarily well-typed state), the store type only grows.

We use this fact in the HSS Lemma.

Lemma 2.3 (Store Size)

If (H,Σ, E) →∗ (H ′,Σ′, E ′) then Σ′ ⊇ Σ.

Proof

Suffices to show for one step: if (H,Σ, E) → (H ′,Σ′, E ′) then Σ′ ⊇ Σ. The multi-step

result follows because ⊇ is reflexive and transitive. We proceed by induction on

the evaluation derivation (H,Σ, E) → (H ′,Σ′, E ′), by cases on the last rule in the

derivation. �

3 Upcalls

Although the approach discussed so far is secure, it falls short of a practical language.

There is no way to include a computation that reads from the high-security store

in a larger low security computation. In any program with a high security read, the

read level of the entire program is pushed up. However, many programs that contain

upcalls to high security computations followed by low security code are secure.

Consider the program let z = P in E where P ÷(�,�) 1 and E has operation level

(⊥,⊥). P does not leak information because 1 carries no useful information, and P ’s

writes are above E’s reading level. Thus we would like to give the entire program

the operation level (⊥,⊥). However the type system we have presented so far would

instead promote the operation level of E and the entire program to (�,�).

In order to have a logic of information flow, we must offer an account of

upcalls. Indeed, the power to perform high security computations interspersed in a

larger low-security computation is the sine qua non of useful secure programming

languages. We offer a detailed analysis of two cases where upcalls do not violate our

intuitive notion of security. From these examples, we develop a general principle for

treating upcalls – our notion of informativeness – discussed in section 3.3. We take

up the question of non-interference in section 5.

3.1 An example with unit

Let E be some expression with type A and operation level (r, w) (recall that this

implies that r � w). In general, E may read values from store locations with security

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

258 K. Crary et al.

level below r, write values to store locations with security level at least w, and return

some value of type A.

Suppose that A = 1. In that case, no matter what E does, if it terminates, it must

return ∗. The return value is not informative.1 Any other computation F that may

gain information through the execution of E must be able to read store locations

at security level at least w. But since r � w, F could just directly read any store

locations that E reads. On the other hand, any computation with operation level

(r′, w′) where w �� r′ can neither observe E’s effects nor gain any information from

its (uninformative) return value.

As a result, in either case, we can say that E has an effective read level of ⊥ just

as if it had no reads:
Σ; Γ � E ÷(r,w) 1

Σ; Γ � E ÷(⊥,w) 1
(∗)

Note that the read level now refers only to informative reads, not all reads.

The new rule allows us to have some high-security computations prior to low

security ones. Suppose Σ; · � E÷(�,�) 1, and Σ; x : 1 � F ÷(⊥,⊥)A for some A. That is,

E is a high-security computation, and F is a low-security one. With the new rule, the

upcall to E, followed by the low-security computation F , can be type checked using

the new rule (∗), E has operation level (⊥,�), which can be weakened to (⊥,⊥) by

rule (34), and thus:

....
Σ; · � E ÷(⊥,⊥) 1

Σ; · � val E : ©(⊥,⊥)1
(27)

Σ; x : 1 � F ÷(⊥,⊥) A

Σ; · � let val x = val E in F ÷(⊥,⊥) A
(30)

Note that the rule (∗) does not alter the write level of the expression (that is, the

operation level in the conclusion is not (⊥,�)). Such a rule would allow programs

to leak information.

3.2 A more general example

Now consider an expression E with operation level (r, w), but this time, suppose that

E has type refa B for some type B. Are there any situations where E may be given

a different operation level?

Suppose that r � a. In that case, any computation that may read the refa B is

also able to read any store locations that E may read. Again, any computation can

either do what E does itself, or it cannot gain information from E’s return value.

On the other hand, consider the case where r �� a. The particular value of type

refa B that E returns may carry information from store locations at security level r.

For example, E may return one of two such store locations �1 or �2 from level a

based on some boolean value V from a store location at security level r. In that

1 We are dealing here with weak non-interference: the knowledge that E terminated at all is deemed not
to carry any information.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 259

� A ↗ a

� A ↗ ⊥ (1)
� A ↗ a b � a

� A ↗ b
(10)

� A ↗ a � A ↗ b

� A ↗ a � b
(11)

� 1 ↗ a
(2)

� B ↗ a

� A → B ↗ a
(3)

� A ↗ a

� ©(r,w)A ↗ w � a
(4)

� refa A ↗ a
(5)

� A ↗ a

� refb A ↗ a
(6)

� A ↗ a

� refrb A ↗ a
(7) � refrb A ↗ b

(8) � refwa A ↗ a
(9)

Fig. 4. Informativeness judgment.

case, a computation that reads at security level a may learn something about E’s

reads (at level r) by reading from E’s return value. Since r �� a, this represents a

violation of secure information flow.

So if E returns a refa B, we can demote its reading level whenever r � a, because

any computation that wishes to make use of that return value would need a read

level of at least r. In other words, a refa B is informative only to computations that

may read at least at some security level (namely a) above r.

This observation suggests a new subsumption rule for expressions that alters the

operation level:

Σ; Γ � E ÷(r,w) A � A ↗ r

Σ; Γ � E ÷(⊥,w) A
(35)

where the new informativeness judgment � A ↗ r formalizes the idea that values of

type A, if they are informative at all, are informative only at level r or above.2

In terms of this new judgment, our earlier observations are that � 1 ↗ r for any

r, and � refa A ↗ r whenever r � a.

3.3 Informativeness

We now consider some properties of the new judgment � A ↗ a (see Figure 4).

Several structural rules (1,10,11) for the judgment are immediate. If A is informative

at all, then it’s informative only at ⊥ or above. Also, if A is informative only at

or above a and if b � a, then A is informative only at or above b. That is, we

may choose to discard some knowledge about when a type is informative. Finally,

suppose A is informative only above a, and A is informative only above b. Then for

any r if values of type A are informative to computations that read at r, we know

that both a � r and b � r. Therefore, for any such r, a � b � r. So, A is informative

only above a � b.

With the structural rules in place, we may consider each of the types in our

language. We should keep in mind, that by adding rules to the judgment � A ↗ a

we increase the expressive power of the language by allowing more programs to be

well-typed. It is always safe to add more restrictive rules in place of more liberal

2 Informativeness is closely related to protectedness in DCC (Abadi et al., 1999) and to the tampering
levels of Honda & Yoshida (2002). We discuss the relationship in section 7.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

260 K. Crary et al.

ones. Below we take the most permissive rules that still maintain non-interference,

although it is not clear in all cases that such flexibility is needed in practice.

A value of type bool is informative for any computation at all, since it may be

trivially analyzed with a conditional. So aside from the structural axiom � A ↗ ⊥,

there should be no other rules for bool. We would give a similar account of other

types that may be analyzed by branching (e.g. sum types A + B or integers int).

Since functions are used by application, a value of type A → B is useful exactly

when B is.

One straightforward rule (5) for references says that a store location is only

informative if we can get at the value within it. There is an additional rule for

references. Even if a computation can read from a store location of type refb A (i.e.

its read level is above b), only if A is informative at its operation level, can refb A

be informative.

Read-only store locations are useful only to computations that may read from

them. Consequently, by an argument similar to the one for read-write store cells,

they have analogous rules.

For write-only store cells refwa A, we have to consider aliasing. One way that a

computation may learn whether two store locations are aliases is by writing a known

value to one of them, and then reading out the value from the other. Because of

subtyping, if a lower-security computation has a store location � of type refra A, a

value of type refwa A may be informative if the computation can read from (the

seemingly unrelated) �.

It is instructive to consider in detail the problem with write-only store locations

refwa A. Suppose that instead of the rule (9), we had the following rule

� refwa A ↗ b
(incorrect)

That is, the same as the rule for unit: a value of type refwa A is only informative

above some security level b, for any b, i.e. not informative.

The following computation shows that with the incorrect rule, it is possible to

leak high security information (whether the value of secret , a �-security bool, is

true) to a low security computation3:

let x = ref⊥ (false : bool) in

let y = ref⊥ (false : bool) in

let z = (let q = !secret in

[if q then x else y]) in

let = z := true in

run !x

The program lets z alias either x or y depending on the value of secret. The

computation whose value is assigned to z may be subsumed to type refw⊥ bool, and

by the incorrect rule, � refw⊥ bool ↗ �, so the operation level of that computation

can be dropped to (⊥,�) (and subsumed to (⊥,⊥)). Then by writing a known value

3 Recall that let x = E in F is syntactic sugar for let val x = val E in F.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 261

λc : ©(�,�)bool.

val let wref = ref� (val [∗] : ©(⊥,�)1) in

let w = [val (let b = run c in run (if b then val (let w′ = !wref in run w′) else val [∗]))] in

let = wref := w in

run w

Fig. 5. Using rule (35), untilFalse has type ©(�,�)bool → ©(⊥,�)1.

to z, whether we can observe a change in another alias of the same location is

sufficient to learn about secret. We can give the entire computation the operation

level (⊥,�) while it demonstrably returns the high-security value.

Finally, consider the type ©(r,w)A. A value of this type is informative both to

computations that may read at least security level w (that is, the level the suspended

expression writes to), and to computations for which the type A is informative.

With informativeness in hand, many more useful terms become well-typed.

Consider, for example, the term in Figure 5. The function untilFalse takes as

argument a computation that reads and writes high before returning a boolean, and

runs that computation repeatedly until it returns false. Recursion is accomplished

using backpatching: a store location with a dummy value is allocated and is bound

to wref, recursive calls in the body of the loop dereference wref and run the contents.

The recursive knot is tied by overwriting the contents of wref with the real loop

body w.

Interestingly, although untilFalse takes a high-security computation as an argu-

ment, our type system is able to give it the type ©(�,�)bool → ©(⊥,�)1, that is its

return type is a low-security computation. Intuitively, even if c is a high-security

computation, untilFalse c does not leak any information to low-security since any

information gained from c’s return value is used only within the loop. To show that

untilFalse is well-typed, observe that Γ � let b = run c in run (. . .) ÷(�,�) 1, and since

� 1 ↗ �, it can be given operation level (⊥,�). The rest of the typing derivation is

straightforward.

4 Type safety

Our language enjoys the usual type safety property: well-typed computations do not

become stuck. We may show type safety in the usual manner using Preservation and

Progress lemmas.

Lemma 4.1 (Preservation)

If � S ÷o A and S → S ′ then � S ′ ÷o A

Proof by induction on the evaluation relation. Proof is given in Appendix C.1.4.

Lemma 4.2 (Progress)

If � S ÷o A then either S is terminal, or there exists an S ′ such that S → S ′

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

262 K. Crary et al.

Table 2. Equivalence judgments

Judgment Meaning

Σ1; Σ2; Γ � M1 ≈ζ M2 : A Term Equivalence

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o A Expression Equivalence

� (H1 : Σ1) ≈U
ζ (H2 : Σ2) Store Equivalence

� S1 ≈ζ S2 ÷o A State Equivalence

Proof by induction on the typing derivation. Proof is given in Appendix C.1.4.

Theorem 4.3 (Type Safety)

If � S and S →∗ S ′ then S ′ is not stuck.

Proof

By induction on the number of evaluation steps. If S takes zero steps, then by

Progress, it is not stuck. If S takes n + 1 steps, then by Preservation it takes a step

to some well-typed state, and so by the induction hypothesis, S ′ is not stuck. �

5 Non-interference

Fix a security level ζ. We say that a security level is low if it is below ζ, and high

otherwise. Informally, non-interference says that computations that have a low read

level do not depend on values in high security store locations.

The proof is structured similarly to that of others (Zdancewic & Myers, 2002;

Zdancewic & Myers, 2001b), and other proofs of non-intereference based on relating

the operational behavior of pairs of computations, such as Pottier & Simonet (2003).

However, by taking advantage of our informativeness judgment (see below), we can

give a concise definition of the relation between computation states.

Operationally, the low security sub-computations of a program should behave

identically irrespective of the values in the high security store locations. On the

other hand, high security sub-computations may behave differently based on values

in high security store locations. However once a high security sub-computation

completes, the low security behavior should again be identical modulo the parts of

the computation state that are “out of view” of the low security part of the program.

Formally, we define an equivalence property of computation states such that two

states are equivalent whenever they agree on the “in view” parts of the computation

state. Then, in the style of a confluence proof modulo an equivalence relation (Huet,

1980), we show that this property is preserved under evaluation.

5.1 Equivalence relation

We axiomatize the desired property as a collection of equivalence judgments (on

states, stores, terms and expressions) that are summarized in Table 2.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 263

Stores and States Certainly values in high security store locations are out of view.

Less obviously, some values in the low security locations are out of view as well:

if a low security store location appears only out of view, its value is also out of

view. We parametrize the store equivalence judgment by a set U of in-view store

locations. Two (well-typed) stores are equivalent only if their in view values are

equivalent:

� H1 : Σ1 � H2 : Σ2

Σ1 � U = Σ2 � U
Σ1; Σ2; · � H1(�) ≈ζ H2(�) : Σ1(�) for � ∈ U

� (H1 : Σ1) ≈U
ζ (H2 : Σ2)

(58)

Where the notation Σ � X is the restriction of Σ to just the locations in the set X.

For a pair of computation states, only low security locations that are common

to both computations are in-view. Since allocation does not leak information, it is

possible for two programs to allocate different low security locations while executing

high security sub-computations. However such locations are out of view for the low

security sub-computation.

Pairs of computation states are equivalent if their stores are equivalent on the

in-view locations, and if they have equivalent expressions:

� (H1 : Σ1) ≈dom(H1)∩dom(H2)∩↓(ζ)
ζ (H2 : Σ2) Σ1; Σ2; · � E1 ≈ζ E2 ÷o A

� (H1,Σ1, E1) ≈ζ (H2,Σ2, E2) ÷o A
(59)

Where ↓(ζ) = {� | Level(�) � ζ} is the set of all low security locations.

Terms and Expressions High security sub-computations of a program may return

different values to the low security sub-computations. However, by the upcall rule

(35), the type of those values must be informative only at high security.

Values of a type that is informative only at high security are out of view. As a

result, any two values of such a type are equivalent since two such values vacuously

agree on their in view parts:

Σ1; Γ � V1 : A Σ2; Γ � V2 : A � A ↗ a a �� ζ

Σ1; Σ2; Γ � V1 ≈ζ V2 : A
(39)

The remaining rules for term and expression equivalence are congruence rules that

merely require corresponding sub-terms or sub-expressions to be equivalent. They

are listed in Appendix A.3. Some useful structural properties (transitivity, inversion,

functionality, etc) of the equivalence judgment are proved in Appendix C.2.

5.2 Hexagon lemmas

Non-interference will follow as a consequence of a pair of Hexagon Lemmas: one

for terms and one for expressions. We show that by starting with some two related

terms (or expressions) that both take a step, we can find zero or more steps that each

of them could take so that we get back to related states (respectively, expression).

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

264 K. Crary et al.

� M1 ≈ζ M2 : A

��
�

�
� �

�
�

��
M ′

1 M ′
2

..

∗

� �. .
. .
. .
. .
. .
. .
.

∗

� M ′′
1 ≈ζ M ′′

2 : A

Fig. 6. Informal statement of the Term Hexagon Lemma.

The lemma for terms is summarized in Figure 6, the name “Hexagon Lemma” is

motivated by the shape of this diagram.

Lemma 5.1 (Term Hexagon Lemma)

For all ζ, if Σ1; Σ2; · � M1 ≈ζ M2 : A and M1 → M ′
1 and M2 → M ′

2 and

M ′
1 ↓ and M ′

2 ↓, then there exist M ′′
1 ,M

′′
2 such that M ′

1 →∗ M ′′
1 , M ′

2 →∗ M ′′
2 ,

Σ1; Σ2; · � M ′′
1 ≈ζ M

′′
2 : A

The proof is by induction on the given derivation. Most cases are vacuous. In the

cases of function application and if-then-else, proceed by subcases on M1 → M ′
1.

The full proof is given in Appendix C.3.

Roughly speaking, the proof of the Hexagon Lemma for expressions is divided

into two cases depending on whether the sub-expressions of the current pair of

states depend on in-view (� ζ) or out-of-view (�� ζ) locations. In the former case,

the two states execute in lock-step and after each computation step we can show

the resulting states are equivalent. In the latter case, each computation state may

execture arbitrarily many high security steps before continuing on with low-security

computation that is in view of the observer. The following High Security Step lemma

shows that starting with two equivalent stores and executing arbitrary high-security

expressions, the resulting stores are still equivalent for the low-security observer.

One complication in this lemma is that evaluation of two distinct computation

states S1, S2 may inadvertently allocate the same store location � for distinct purposes.

However we will show that for each such �, we may choose an element of the

α-equivalence class of S1 or S2 such that all such accidental sharing is eliminated.

Lemma 5.2 (High Security Step (HSS))

Given (H1,Σ1, E1) and (H2,Σ2, E2) such that

• � (H1 : Σ1) ≈U
ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ),

• Σi; · � Ei ÷oi Ci for some oi = (ri, wi), Ci with wi �� ζ for i = 1, 2,

and if (H1,Σ1, E1) →∗ (H ′
1,Σ

′
1, E

′
1) and (H2,Σ2, E2) →∗ (H ′

2,Σ
′
2, E

′
2) then

• � (H ′
1 : Σ′

1) ≈U
ζ (H ′

2 : Σ′
2)

• and moreover U = dom(Σ′
1) ∩ dom(Σ′

2) ∩ ↓(ζ)

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 265

Proof

1. By Regularity of Equivalence, � (Hi : Σi) for i = 1, 2

2. By Lemma C.21, for i = 1, 2:

• � (Hi : Σi) ≈Ui

ζ (H ′
i : Σ′

i) where Ui = dom(Σi) ∩ ↓(ζ)

3. By Regularity, � H ′
i : Σ′

i for i = 1, 2

4. Note also that U ⊆ Ui for i = 1, 2

5. Consider an arbitrary � ∈ U

(a) Since � (H1 : Σ1) ≈U
ζ (H2 : Σ2), Σ1; Σ2; · � H1(�) ≈ζ H2(�) : A,

(b) Evidently, also � ∈ Ui

(c) And since, for i = 1, 2, � (Hi : Σi) ≈Ui

ζ (H ′
i : Σ′

i), we have Σi; Σ′
i; · � Hi(�) ≈ζ

H ′
i (�) : A.

(d) Therefore, by symmetry and transitivity, Σ′
1; Σ′

2; · � H ′
1(�) ≈ζ H

′
2(�) : A

6. So, by rule (58), � (H ′
1 : Σ′

1) ≈U
ζ (H ′

2 : Σ′
2)

7. Now consider a new set U ′ = dom(Σ′
1) ∩ dom(Σ′

2) ∩ ↓(ζ)

8. Since Σ′
i ⊇ Σi, so U ′ ⊇ U

9. Suppose � ∈ U ′ \ U

(a) Since � ∈ U ′, � ∈ dom(Σ′
i) for i = 1, 2

(b) Since � �∈ U, then � �∈ dom(Σi) for at least one of i = 1 or i = 2

(c) Suppose � �∈ dom(Σ1) (the other case is similar)

(d) Choose a fresh store location �′ �∈ dom(Σ′
1) ∪ dom(Σ′

2) with Level(�′) =

Level(�), and systematically rename � with �′ in (H ′
1,Σ

′
1, E

′
1).

(e) Evidently we have an element of the α-equivalence class of (H ′
1,Σ

′
1, E

′
1)

where � �∈ dom(H ′
1)

10. So U ′ = U, and the conclusion of the lemma follows.
�

We may now show a hexagon lemma for expressions.

Lemma 5.3 (Hexagon Lemma)

For all ζ, if o = (r, w) with r � ζ, and if

• � S1 ≈ζ S2 ÷o C

• S1 → S ′
1, S2 → S ′

2

• S ′
1 ↓, S ′

2 ↓
then there exist S ′′

1 , S
′′
2 such that

• S ′
1 →∗ S ′′

1 , S ′
2 →∗ S ′′

2

• · � S ′′
1 ≈ζ S

′′
2 ÷o C

Proof

By Inversion on � S1 ≈ζ S2 ÷o C , we have

• S1 = (H1,Σ1, E1), S2 = (H2,Σ2, E2)

• � (H1 : Σ1) ≈U
ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)

• Σ1; Σ2; · � E1 ≈ζ E2 ÷o C

Now we proceeed, by induction on the derivation of Σ1; Σ2; · � E1 ≈ζ E2 ÷o C ,

by cases on the last rule in the derivation. In each case we exhibit the appropriate

S ′′
i = (H ′′

1 ,Σ
′′
1 , E

′′
1), S ′′

2 = (H ′′
2 ,Σ

′′
2 , E

′′
2). We show several representative cases below.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

266 K. Crary et al.

• Case
Σ1; Σ2; Γ � E1 ≈ζ E2 ÷(r′ ,w) C � C ↗ r′

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷(⊥,w) C
(51)

By pattern matching, r = ⊥
Consider two subcases: either r′ � ζ or r′ �� ζ. The former case follows by the

induction hypothesis. In the latter case, we appeal to the HSS lemma:

1. Since r′ � w, then w �� ζ

2. Since S ′
i ↓, (Hi,Σi, Ei) →+ (H ′′

i ,Σ
′′
i , [Vi]) for some S ′′

i = (H ′′
i ,Σ

′′
i , [Vi]) for

i = 1, 2

3. Therefore we can apply HSS to get

— � (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

— U = dom(H ′′
1) ∩ dom(H ′′

2) ∩ ↓(ζ)

4. By repeatedly applying Preservation, Σ′′
i ; · � [Vi] ÷(r′ ,w) C for i = 1, 2

5. And by various typing rules, Σ′′
1; Σ′′

2; · � [V1] ≈ζ [V2] ÷o C

• Case
Σ1; Σ2; · � M1 ≈ζ M2 : A

Σ1; Σ2; · � refa (M1 : A) ≈ζ refa (M2 : A) ÷(⊥,�) refa A
(55)

By pattern matching, Ei = refa (Mi : A), o = (⊥,�), C = refa A

There are two possible evaluation rules for (H1,Σ1, E1) → (H ′
1,Σ

′
1, E

′
1)

— Subcase Ref1 follows eventually from the Term Hexagon Lemma.

— Subcase Ref: M1 value, H ′
1 = H1{�1 �→ M1}, Σ′

1 = Σ1{�1 : A}, E ′
1 = [�1],

where �1 �∈ dom(H1), Level(�1) = a

1. By Equivalent Values (Lemma C.19), M2 is a value since M1 is

2. Only Ref rule is applicable to (H2,Σ2, E2) → (H ′
2,Σ

′
2, E

′
2): H ′

2 =

H2{�2 �→ M2}, Σ′
2 = Σ2{�2 : A}, E ′

2 = [�2], where �2 �∈ dom(H2),

Level(�2) = a

3. Consider two subcases now, either a � ζ or a �� ζ. In the former case

we want both states to allocate the same fresh location (that will be

in-view to the observer), in the latter case we want the locations to be

distinct (and thus out of view):

– Subcase a � ζ

(a) Since in both S ′
1 and S ′

2, �1 and �2 are freshly allocated, we may

α-vary S ′
1, S

′
2 such that �1 = �2 = � for an appropriate �

(b) Then Level(�) = a, � �∈ dom(H1) ∪ dom(H2)

(c) Let S ′′
i = (Hi{� �→ Mi},Σi{� : A}, [�]) for i = 1, 2

(d) The result follows since the freshly allocated location is (by

construction) in the set U ′′ = U ∪ {�} of common locations

between S ′′
1 and S ′′

2 , and it contains equivalent values.

– Subcase a �� ζ

In this case the newly allocated locations �1, �2 are not in the

common set of S ′′
1 and S ′′

2 since they have high security levels.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 267

Furthermore Σ1{�1 : A}; Σ2{�2 : A}; · � �1 ≈ζ �2 : refa A, since

� refa A ↗ a and a �� ζ. The result follows.

• Case
Σ1; Σ2; · � M1 ≈ζ M2 : refra C

Σ1; Σ2; · �!M1 ≈ζ!M2 ÷(a,�) C
(56)

By pattern matching, Ei =!Mi, o = (r, w) = (a,�). Recall that a = r � ζ

There are two applicable rules for (H1,Σ1, E1) → (H ′
1,Σ

′
1, E

′
1)

— Subcase Bang1 follows by the Term Hexagon Lemma

— Subcase Bang: M1 = �1, H
′
1 = H1, Σ′

1 = Σ1, E
′
1 = [H1(�1)]

1. By Equivalent Values (Lemma C.19), M2 is a value since M1 is.

2. The single applicable evaluation rule for (H2,Σ2, E2) → (H ′
2,Σ

′
2, E

′
2) is

Bang: M2 = �2, H
′
2 = H2, Σ′

2 = Σ2, E
′
2 = [H2(�2)]

3. Let S ′′
i = (Hi,Σi, [Hi(�i)]) for i = 1, 2

4. So it only remains to show that Σ1; Σ2; · � Hi(�1) ≈ζ H2(�2) : C

5. By Equivalent Term Inversion on Σ1; Σ2; · � �1 ≈ζ �2 : refra C , there

are two possibilities:

– Either Σi; · � �i : B and � B � refra C and � B ↗ b and b �� ζ

It follows by a series of inversions that B is either refrb′ B′ or

refb′ B′ and in either case � B′ ↗ c for some c �� ζ. That is, the

computations are dereferencing locations whose contents are not

informative to a ζ-observer. The result follows.

– Or �1 = �2 = � where Level(�) = b � ζ,

and � refb Σ1(�) � refra C and Σ1(�) = Σ2(�). This case follows

since � is in the common set of Σ1,Σ2 and since the stores are

equivalent.

• Case

Σ1; Σ2; · � M1 ≈ζ M2 : refwa A Σ1; Σ2; · � N1 ≈ζ N2 : A

Σ1; Σ2; · � M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

By pattern matching, Ei = Mi := Ni, o = (r, w) = (⊥, a), C = 1

There are three applicable rules for (H1,Σ1, E1) → (H ′
1,Σ

′
1, E

′
1). If the rule was

Assn1 or Assn2, the result follows from the Term Hexagon Lemma.

Otherwise, the rule was Assn, and we have: M1 = �1, N1 value, H ′
1 = H1{�1 �→

N1}, Σ′
1 = Σ1, E

′
1 = [∗]

1. By Equivalent Values (Lemma C.19), M2, N2 are values since M1, N1 are.

2. The only applicable evaluation rule for (H2,Σ2, E2) → (H ′
2,Σ

′
2, E

′
2) is Assn,

and we have: M2 = �2, H
′
2 = H2{�2 �→ N2}, Σ′

2 = Σ2, E
′
2 = [∗]

3. Let S ′′
i = (Hi{�i �→ Ni},Σi, [∗]). It suffices to show that the updated stores

are still equivalent.

4. By Equivalent Term Inversion on Σ1; Σ2; · � �1 ≈ζ �2 : refwa A, there are

two possibilities:

— Either Σi; · � �i : B and � B � refwa A, � B ↗ b and b �� ζ

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

268 K. Crary et al.

By Subtyping Inversion, either B = refwb′ B′ or B = refb′ B′ and in

either case � A � B′ and a � b′

– If B = refwb′ B′, then it eventually follows from inversions that

Level(�i) �� ζ, and so the �i are not in the common set U of

locations, and the result follows.

– If B = refb′ B′

(a) By Subtyping Inversion, B′ = Σi(�i) and b′ = Level(�i) for i = 1, 2

(b) By Informativeness Inversion, b � b′ � c and � B′ ↗ c for some c

(c) Since b �� ζ, either b′ �� ζ or c �� ζ

(d) If b′ �� ζ, we can use the same argument as the previous subcase:

B = refwb′ B′.

(e) So instead suppose b′ � ζ; it must be the case that c �� ζ.

(f) Consider �1 (the argument for �2 is symmetric)

(g) Evidently Level(�1) = b′ � ζ, so suppose �1 ∈ U (if not, same

argument as previous subcase)

(h) If �1 = �2 then the situation is the same as the next subcase

(�1 = �2 = �, . . .) below; so suppose �1 differs from �2

(i) So �1 ∈ dom(Σ2) = dom(H2)

(j) By heap typing inversion, Σ2; · � H2(�1) : Σ2(�1)

(k) Since �1 ∈ U, Σ2(�1) = Σ1(�1) = B′

(l) By rule (39), Σ1; Σ2; · � N1 ≈ζ H2(�1) : Σ1(�1)

(m) Therefore for all � ∈ U, Σ′′
1; Σ′′

2; · � H ′′
1 (�) ≈ζ H

′′
2 (�) : Σ′′

1(�)

(n) So by rule (58), � (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

— Or �1 = �2 = � and Level(�) � ζ and Σ1(�) = Σ2(�), and

� refLevel(�) Σ1(�) � refwa A

We can show that � is in the common set U of locations; the result

follows by a straightforward derivation.

�

5.3 Non-interference theorem

By repeatedly applying the Hexagon Lemma, we can prove a non-interference result.

We show that starting with some initial store H (well-typed with store type Σ) and

an expression to execute E with a free variable x, if we plug in different values

V1, V2 for x, then provided that the in-view parts of V1, V2 are equivalent, we expect

that if the resulting programs (H,Σ, E[V1/x]), (H,Σ, E[V2/x]) run to termination,

the resulting terminal states will be equivalent on their in view parts.

Theorem 5.4 (Non-interference)

If � H : Σ and Σ; x : A � E ÷(r,w) B and if Σ; Σ; · � V1 ≈r V2 : A then if

(H,Σ, E[V1/x]) →∗ S1 and (H,Σ, E[V2/x]) →∗ S2 and both S1, S2 are terminal, then

� S1 ≈r S2 ÷(r,w) B

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 269

Proof

By reflexivity and Functionality (see Appendix C.2), we can show that

Σ; Σ; · � E[V1/x] ≈r E[V2/x] ÷(r,w) B

By repeated application of the Hexagon Lemma, the two computations evaluate to

equivalent terminal states. Since the operational semantics are deterministic, those

terminal states are S1 and S2, respectively. �

6 Encoding value-oriented secure languages

Our account differs substantially from prior secure programming languages where

each value has a security level. In such languages, terms are classified by security

types: pairs of an ordinary type and a security level. The type system ensures that

each term is assigned a security level at least as high as the security level of the

terms contributing to it. In our account only the store provides security. A natural

question is whether we sacrifice expressive power in comparison to value-oriented

secure languages.

We will show that our language is at least as expressive by showing how to embed

several value-oriented secure languages in our account. The embeddings are not

only type correct, but also preserve security properties of the source languages.

When a computation analyzes a value of a datatype by cases, each arm – by virtue

of control flow – gains information about the subject of the case expression. In a

purely functional setting, that additional information may only be used to compute

the return value of the expression. Thus it suffices to require the return type of each

arm (and thus the entire case expression) to be at least as secure as the case subject.

On the other hand, in an imperative setting, information gained via control-flow

may leave an expression non-locally (e.g. via a write to the store). As a result, it

becomes necessary to track such implicit flows of information. Secure imperative

languages use a so-called program counter security level, pc, as a lower bound on the

information that a computation may gain via control flow. Consequently, the results

and effects of each expression must be at least as secure as any information gained

via control flow.

In contrast to value-oriented secure programming languages, in our account we

expect that case analysis is at the term level, and thus the arms of the case term

do not have side-effects. We show that our approach is at least as expressive as

imperative value-oriented secure languages.

We consider the language λREF
SEC (summarized in Figure 7) of Zdancewic (2002). In

addition to unit and boolean types, it has function types that are annotated with a

lower bound on the write effects of the function body, and store locations. The base

values of λREF
SEC are annotated with a security level inside expressions.

The typing rules for λREF
SEC are given by a pair of mutually recursive judgments for

base values and expressions, given in Figures 8 and 9.

The following key property is maintained by the λREF
SEC typing judgment. Intuitively,

it captures the idea that the value of an expression is at least as secure as the

information that the expression gains via implicit information flow.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

270 K. Crary et al.

t ∈ types ::= 1 | bool | s1
pc−→ s2 | ref s

s ∈ security types ::= (t, a)

bv ∈ base values ::= ∗ | true | false | � | λ[pc]x : s.e

e ∈ expressions ::= x | bva | if e1 then e2 else e3 | e1e2 | ref (e : s)) | !e | e := e′

Fig. 7. λREF
SEC syntax.

Σ; Γ � bv : t

Σ; Γ � ∗ : 1 Σ; Γ � true : bool Σ; Γ � false : bool Σ; Γ � � : Σ(�)

Σ; Γ, x : s[pc] � e : s′

Σ; Γ � λ[pc]x : s.e : s
pc
−→ s′

Σ; Γ � bv : t′ � t′ � t

Σ; Γ � bv : t

Fig. 8. λREF
SEC base value typing.

Σ; Γ[pc] � e : s

Σ; Γ, x : s[pc] � x : s � pc

Σ; Γ � bv : t

Σ; Γ[pc] � bva : (t, a � pc)

Σ; Γ[pc] � e : s′ � s′ � s

Σ; Γ[pc] � e : s

Σ; Γ[pc] � e1 : (bool, a)
Σ; Γ[pc � a] � e2 : s
Σ; Γ[pc � a] � e3 : s

Σ; Γ[pc] � if e1 then e2 else e3 : s

Σ; Γ[pc] � e1 : (s′ pc′
−−→ s, a)

Σ; Γ[pc] � e2 : s′

pc � a � pc′

Σ; Γ[pc] � e1e2 : s � a

Σ; Γ[pc] � e : s

Σ; Γ[pc] � (ref (e : s)) : (ref s, pc)

Σ; Γ[pc] � e : (ref s, a)

Σ; Γ[pc] �!e : s � a

Σ; Γ[pc] � e1 : (ref (t, b), a) Σ; Γ[pc] � e2 : (t, b) a � b

Σ; Γ[pc] � e1 := e2 : (1, pc)

Fig. 9. λREF
SEC expression typing.

Lemma 6.1

If Σ; Γ[pc] � e : (t, a) then pc � a.

The proof of this fact appears as Lemma 3.2.1 in Zdancewic (2002).

Encoding To emulate the sealing behavior of value-oriented languages in our store-

oriented discipline, we embed source-language values of security type s = (t, a) into

read-only refs in our language s = refra t.

A slight complication arises in the translation of ref types ref s since our language

associates a security level with ref cells, but λREF
SEC does not. In value-oriented security

languages, the contents of ref cells have a security level, however. So we use the

security level a of the contents t as the security level of the ref cell itself in our

translation: ref (t, a) = refa (t, a).

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 271

Σ; Γ � bv : t ⇒ M

Σ; Γ � ∗ : 1 ⇒ ∗ Σ; Γ � true : bool ⇒ true Σ; Γ � false : bool ⇒ false

Σ; Γ � � : Σ(�) ⇒ �

Σ; Γ, x : s1[pc] � e : s2 ⇒ E

Σ; Γ � λ[pc]x : s1.e : s1
pc
−→ s2 ⇒ λx : s1.val E

Σ; Γ � bv : t′ ⇒ E � t′ � t

Σ; Γ � bv : t ⇒ E

Fig. 10. λREF
SEC base value encoding.

Σ; Γ[pc] � e : s ⇒ E

Σ; Γ, x : s[pc] � x : s � pc ⇒ [x]

Σ; Γ � bv : t ⇒ M

Σ; Γ[pc] � bva : (t, a � pc) ⇒ refa�pc (M : t)

Σ; Γ[pc] � e1 : (bool, a) ⇒ E1 Σ; Γ[pc � a] � e2 : s ⇒ E2 Σ; Γ[pc � a] � e3 : s ⇒ E3

Σ; Γ[pc] � if e1 then e2 else e3 : s ⇒
let y = E1 in
let y′ = !y in
run(if y′ then val E2 else val E3)

Σ; Γ[pc] � e1 : (s′ pc′
−−→ s, a) ⇒ E1 Σ; Γ[pc] � e2 : s′ ⇒ E2 pc � a � pc′

Σ; Γ[pc] � e1e2 : s � a ⇒
let y1 = E1 in
let y2 = E2 in
let y′

1 = !y1 in
run (y′

1y2)

Σ; Γ[pc] � e : s ⇒ E

Σ; Γ[pc] � ref (e : (t, a)) : (ref (t, a), pc) ⇒ let y = E in

refa (y : (t, a))

Σ; Γ[pc] � e : (ref s, a) ⇒ E

Σ; Γ[pc] �!e : s � a ⇒ let y = E in let y′ = !y in !y′

Σ; Γ[pc] � e1 : (ref (t, b), a) ⇒ E1 Σ; Γ[pc] � e2 : (t, b) ⇒ E2 a � b

Σ; Γ[pc] � e1 := e2 : (1, pc) ⇒

let y1 = E1 in
let y2 = E2 in
let y′

1 = !y1 in
let = y′

1 := y2 in
refpc (∗ : 1)

Σ; Γ[pc] � e : s1 ⇒ E � s1 � s2

Σ; Γ[pc] � e : s2 ⇒ E

Fig. 11. λREF
SEC expression encoding.

In a λREF
SEC function of type s

pc
−→ s′ the program counter annotation pc is a

conservative approximation of the information gained by the body of the function.

Therefore, values written by the body must have security level at least pc. Thus,

the corresponding writes in the translation must have write level at least pc.

Consequently, the corresponding translated type for a function is s → ©(⊥,pc) s′.

The encoding for λREF
SEC expressions is given by a pair of judgments Σ; Γ � bv :

t ⇒ M and Σ; Γ[pc] � e : s ⇒ E, shown in Figures 10 and 11. We assume that

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

272 K. Crary et al.

the metavariable y stands for variables in our calculus that do not appear in λREF
SEC

programs.

Type-correctness To show that our proposed encoding preserves typing, we first

have to establish the following facts. The first shows that our encoding judgments

agree with λREF
SEC typing judgments; the second shows that the encoding preserves

subtyping.

Lemma 6.2

1. If Σ; Γ � bv : t ⇒ M then Σ; Γ � bv : t

2. If Σ; Γ � e : s ⇒ E then Σ; Γ � e : s

Proof

By induction on the given derivations. Observe that in each case, the rules of the

encoding judgment have the same premises as the corresponding typing rules. �

Lemma 6.3 (Subtyping Translation)

1. If � t′ � t then � t′ � t

2. If � s′ � s then � s′ � s

Proof

Both parts simultaneously, by induction on the given derivation. �

Finally, we need to extend our type-translation to store types

Σ, � : s = Σ, � : s

We are now ready to show type-correctness.

Theorem 6.4 (Well-typed Translation)

1. If Σ; Γ � bv : t ⇒ M then Σ; Γ � M : t

2. If Σ; Γ[pc] � e : s ⇒ E then Σ; Γ � E ÷(⊥,pc) s

The proof is by simultaneous induction on the given derivations. The full proof

is available in Appendix D.

Non-interference Of course a type correct (but insecure) embedding could be con-

structed by ignoring the security levels of the source and placing everything at level

⊥. We wish to show that the embedding is actually secure. To do so, we show that

an instance of non-interference for λREF
SEC is preserved by our translation.

Theorem 6.5 (λREF
SEC non-interference)

Suppose Σ0; x : (t, a)[b] � f : (bool, b) ⇒ F where a �� b, and suppose that H,Σ are

such that Σ ⊇ Σ0, and � H : Σ. If Σ; · � �i : refra t for i = 1, 2 and if there exist

H1, H2,Σ1,Σ2, V1, V2 such that

(H ′,Σ′, F[�i/x]) →∗ (Hi,Σi, [Vi])

for i = 1, 2, then Vi = �′
i and H1(�

′
1) = H2(�

′
2) as booleans.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 273

Proof

1. From the type-correctness of the translation, and since the argument loca-

tions �i are out of view, by the non-interference theorem we conclude that

� (H1,Σ1, [V1]) ≈b (H2,Σ2, [V2]) ÷(b,b) refrb bool

2. By inversion and by Regularity (Lemma C.14) and Canonical Forms (Lemma

C.5), each Vi must be some store location �′
i ∈ dom(Σi) and furthermore

Σ1; Σ2; · � V1 ≈b V2 : refrb bool

3. By inversion on the latter equivalence(Lemma C.15), each Σi(�
′
i) must either be

out of view, or �′
1 = �′

2 with Level(�′
i) � b. But since Σi(�

′
i) must be a subtype

of refrb bool, it cannot be out of view for a b-observer.

4. Therefore, �′
1 = �′

2 are in the set of in-view locations U = dom(Σ1)∩dom(Σ2)∩
↓(b), and by inversion on the store equivalence � (H1 : Σ1) ≈U

ζ (H2 : Σ2), the

values in the respective stores must, in turn, be equivalent Σ1; Σ2; · � H1(�
′
1) ≈b

H2(�
′
2) : bool

5. Since bool is informative at any security level, by inversion, it must be the case

that H1(�
′
1) = H2(�

′
2).

�

7 Related work

There is a large body of existing work on type systems for secure information flow.

Volpano et al. (1996) first showed how to formulate an information flow analysis

as a type system. An excellent survey by Sabelfeld & Myers (2003) outlines the key

ideas in the design of secure programming languages.

Our account is most related to the Dependency Core Calculus (Abadi et al., 1999).

Like our language, DCC uses a family of monads to reason about information flow.

However in DCC, terms of monadic type are used to seal up values at a security

level. In our account, monads are used in a more traditional role as a means of

threading state through a program. Central to DCC is the notion of protectedness

of a type at a security level. If T is protected at a then T is at least as secure as a.

This is closely related to our notion of informativeness.

When viewed through the lens of the encoding of (a pure subset of) λREF
SEC , the

two relations serve the same purpose, ensuring that a computation’s output is at

least as secure as its inputs. In DCC, this is done directly. In our account, this

occurs indirectly: to access a value carrying information only at a particular level,

a computation must adopt a read level at least as high. (However, our account

also offers the facility – not employed in the λREF
SEC embedding – not to seal all

computations’ return values in order to obtain a ⊥ effective read level).

The definitions of protectedness and informativeness are the same on the standard

type operators, but do not include the idiosyncratic cases: our language has no

analog of DCC’s monad, nor does DCC contain references or a traditional (i.e.

effects-oriented) monad. Moreover, if it did, we conjecture that DCC’s definition for

these would be somewhat different from ours. Nevertheless, the similarity between

the two suggests that our account might be profitably combined with DCC to

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

274 K. Crary et al.

produce a language capable of expressing security in both value-oriented and store-

oriented fashions.

A further similarity exists between the tampering levels of Honda and Yoshida

(2002) and informativeness. They work in a concurrent setting of a typed π-calculus,

and the tampering level of a process represents the least security level that may

observe the effects of a process of a given type. They present a calculus in the

style of Smith & Volpano (1998) extended with local variables, reference types and

higher-order procedures and a translation of it into their typed process calculus.

Much of the complexity of their language stems from tracking the action set

of a command, that is, the references (conflated with program variables) that a

command may read or write. Our language may be seen as a restatement of their

language in a more conventional monadic style. In the setting of Honda & Yoshida

(2002), our upcall rule (exploiting the informativeness judgment) would correspond

to leaving out the information that a command read from some variables from

its action set whenever the command does not tamper below a certain security

level.

Harrison et al. (2003) observed that monads and monad transformers may be used

to separate pieces of the state with different security levels, thus ensuring a kind

of non-interference via properties of the state monad transformer. However their

system does not statically rule out insecure flows when computations at different

security levels are combined. Instead, the system dynamically prevents security leaks

by channeling communication between computations at different security levels

through a trusted kernel.

8 Conclusion

We give an account of secure information flow in the context of a higher-order

language with mutable state. Moreover, motivated by a low-level store-oriented view

of computation, we arrive at a view of security based on lax logic. Rather than

sealing values at a security level, we instead associate security with the store. A

family of monadic types is used to keep track of the effects of computations. To

account for upcalls, we classify the informativeness of types at particular security

levels.

Since we treat terms apart from the effectful expressions, our approach can

straightforwardly encompass additional type constructors. The question of how to

account for additional effects requires further work. From the point of view of non-

interference, effects introduce the possibility of different behavior from seemingly

related expressions. We expect that by further refining the monadic type to restrict

the behavior of related terms, we may be able to account for effects such as I/O or

non-local control transfers.

Certain complications beyond those discussed in this paper remain in developing

a typed assembly language that tracks information flow. One problem to be dealt

with is the re-use of registers between low-security and high-security computations.

Any mutation of a register by a high security computation could potentially be

observed once it returns to a low-security caller. As a result it is necessary to exploit

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 275

informativeness to ensure that the contents of registers are not informative to the

caller. We conjecture that informativeness in conjunction with linear continuations

(2002) will prove invaluable to the design of a secure TAL.

Our formulation of the monadic language is in the style of Pfenning & Davies

(2001). One avenue of future work is to study whether there is a formulation of

information flow in a modal logic that decomposed our monad into the possibility

and necessity modalities.

Incorporating concurrency is another direction for future work. Smith et al. (1998)

show that in a language with parallel composition, allowing loops to depend on

high-security locations leads to security leaks. Their solution is to disallow such

loops outright. Since looping can be simulated in our account via back-patching in

combination with informativeness (see section 3.3), it is not clear how to adopt their

solution to (a concurrent extension of) our approach. Zdancewic (2002) observes

that insecure concurrent programs exhibit race conditions on low-security locations.

He shows that if alias information is used to disallow such data races, a non-

interference result can be established. We expect that his approach may be adopted

to our setting.

A general open problem in the area of secure programming languages is how to

devise a type system for a language with declassification operations. Declassification

occurs when a low-security computation makes use of a high-security value, but in

a way such that the information gained from the high-security value is deemed an

acceptable leak. Recently, Zdancewic & Myers (2001a) showed how to characterize

so-called robust declassification in programs such that an attacker may observe

the declassified values, but may not exploit them to gain additional high-security

information. Zdancewic (2003) then gives a type system for robust declassification.

Since declassification is fundamentally an operation, we conjecture that our store-

oriented viewpoint could be meshed with Zdancewic and Myers to provide a logic

of declassification.

A Judgments

� A ↗ a

A.1 Informativeness judgment rules

� A ↗ ⊥ (1)� 1 ↗ a
(2) � B ↗ a

� A → B ↗ a
(3)

� A ↗ a

� ©(r,w)A ↗ w � a
(4)

� refb A ↗ b
(5) � A ↗ a

� refb A ↗ a
(6)

� A ↗ a
� refrb A ↗ a

(7)� refrb A ↗ b
(8)� refwa A ↗ a

(9)

� A ↗ a b � a

� A ↗ b
(10)� A ↗ a � A ↗ b

� A ↗ a � b
(11)

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

276 K. Crary et al.

A.2 Typing judgment rules

� A � B

� A � A
(12)

� A � A′ � B′ � B

� A′ → B′ � A → B
(13)

� A � B o � o′

� ©oA � ©o′B
(14)

� A � B a � b

� refa A � refrb B
(15)

� B � A b � a

� refa A � refwb B
(16)

� A � B a � b

� refra A � refrb B
(17)

� B � A b � a

� refwa A � refwb B
(18)

Σ; Γ � M : A

Σ; Γ � x : Γ(x)
(19)

Σ; Γ � � : refLevel(�) Σ(�)
(20)

Σ; Γ � ∗ : 1
(21)

Σ; Γ � true : bool
(22)

Σ; Γ � false : bool
(23)

Σ; Γ � M : bool Σ; Γ � N1 : A Σ; Γ � N2 : A

Σ; Γ � if M then N1 else N2 : A
(24)

Σ; Γ, x : A � M : B

Σ; Γ � λx : A.M : A → B
(25)

Σ; Γ � M : A → B

Σ; Γ � N : A

Σ; Γ � M N : B
(26)

Σ; Γ � E ÷o A

Σ; Γ � val E : ©oA
(27)

Σ; Γ � M : A � A � B

Σ; Γ � M : B
(28)

Σ; Γ � E ÷o A

Σ; Γ � M : A

Σ; Γ � [M] ÷(⊥,�) A
(29)

Σ; Γ � M : ©oA Σ; Γ, x : A � E ÷o B

Σ; Γ � let val x = M in E ÷o B
(30)

Σ; Γ � M : A

Σ; Γ � refa (M : A) ÷(⊥,�) refa A
(31)

Σ; Γ � M : refra A

Σ; Γ �!M ÷(a,�) A
(32)

Σ; Γ � M : refwa A Σ; Γ � N : A

Σ; Γ � M := N ÷(⊥,a) 1
(33)

Σ; Γ � E ÷o′ A o′ � o

Σ; Γ � E ÷o A
(34)

Σ; Γ � E ÷(r,w) A � A ↗ r

Σ; Γ � E ÷(⊥,w) A
(35)

Σ; Γ � E ÷o B � B � C

Σ; Γ � E ÷o C
(36)

� H : Σ

dom(Σ) = {�1, . . . , �n} Σ; · � Vi : Σ(�i) for 1 � i � n

� {�1 �→ V1, . . . , �n �→ Vn} : Σ
(37)

� S ÷o A

� H : Σ Σ; · � E ÷o A

� (H,Σ, E) ÷o A
(38)

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 277

Derived typing rules for syntactic sugar

Σ;Γ � E ÷o A Σ; Γ, x : A � F ÷o C

Σ; Γ � let x = E in F ÷o C

Σ; Γ � M : ©oC

Σ; Γ � run M ÷o C

A.3 Equivalent view judgments rules

Σ1; Σ2; Γ � M1 ≈ζ M2 : A

� A ↗ a a �� ζ Σ1; Γ � V1 : A Σ2; Γ � V2 : A

Σ1; Σ2; Γ � V1 ≈ζ V2 : A
(39)

Σ1; Σ2; Γ � ∗ ≈ζ ∗ : 1
(40)

Σ1; Σ2; Γ � x ≈ζ x : Γ(x)
(41)

Σ1; Σ2; Γ � true ≈ζ true : bool
(42)

Σ1; Σ2; Γ � false ≈ζ false : bool
(43)

Σ1; Σ2; Γ � M1 ≈ζ M2 : bool

Σ1; Σ2; Γ � N1 ≈ζ N2 : A

Σ1; Σ2; Γ � P1 ≈ζ P2 : A

Σ1; Σ2; Γ � if M1 then N1 else P1 ≈ζ

if M2 then N2 else P2 : A

(44)

Σ1; Σ2; Γ, x : A � M1 ≈ζ M2 : B

Σ1; Σ2; Γ � λx : A.M1 ≈ζ λx : A.M2 : A → B
(45)

Σ1; Σ2; Γ � M1 ≈ζ M2 : A → B

Σ1; Σ2; Γ � N1 ≈ζ N2 : A

Σ1; Σ2; Γ � M1N1 ≈ζ M2N2 : B
(46)

Level(�) � ζ Σ1(�) = Σ2(�)

Σ1; Σ2; Γ � � ≈ζ � : refLevel(�) Σ1(�)
(47)

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o A

Σ1; Σ2; Γ � val E1 ≈ζ val E2 : ©oA
(48)

Σ1; Σ2; Γ � M1 ≈ζ M2 : A � A � B

Σ1; Σ2; Γ � M1 ≈ζ M2 : B
(49)

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o C

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o′ C o′ � o

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o C
(50)

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷(r,w) C � C ↗ r

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷(⊥,w) C
(51)

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o B � B � C

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o C
(52)

Σ1; Σ2; Γ � M1 ≈ζ M2 : C

Σ1; Σ2; Γ � [M1] ≈ζ [M2] ÷(⊥,�) C
(53)

Σ1; Σ2; Γ � M1 ≈ζ M2 : ©oA

Σ1; Σ2; Γ, x : A � E1 ≈ζ E2 ÷o C

Σ1; Σ2; Γ � let val x = M1 in E1 ≈ζ

let val x = M2 in E2 ÷oC

(54)

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

278 K. Crary et al.

Σ1; Σ2; Γ � M1 ≈ζ M2 : A

Σ1; Σ2; Γ � refa (M1 : A) ≈ζ

refa (M2 : A) ÷(⊥,�)refa A

(55) Σ1; Σ2; Γ � M1 ≈ζ M2 : refra A

Σ1; Σ2; Γ �!M1 ≈ζ!M2 ÷(a,�) A
(56)

Σ1; Σ2; Γ � M1 ≈ζ M2 : refwa A

Σ1; Σ2; Γ � N1 ≈ζ N2 : A

Σ1; Σ2; Γ � M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

� (H1 : Σ1) ≈U
ζ (H2 : Σ2)

� Hi : Σi for i = 1, 2

Σ1 � U = Σ2 � U

Σ1; Σ2; · � H1(�) ≈ζ H2(�) : Σ1(�) for all � ∈ U

� (H1 : Σ1) ≈U
ζ (H2 : Σ2)

(58)

� S1 ≈ζ S2 ÷o C

� (H1 : Σ1) ≈dom(Σ1)∩dom(Σ2)∩↓(ζ)
ζ (H2 : Σ2)

Σ1; Σ2; · � E1 ≈ζ E2 ÷o C

� (H1,Σ1, E1) ≈ζ (H2,Σ2, E2) ÷o C
(59)

B Evaluation rules

M → M ′

M → M ′

if M then N1 else N2 → if M ′ then N1 else N2
If1

if true then N1 else N2 → N1
IfTrue

if false then N1 else N2 → N2
IfFalse

M → M ′

MN → M ′N
App1

N → N ′

VN → VN ′ App2

(λx : A.M)V → M[V/x]
App

S → S ′

M → M ′

(H,Σ, [M]) → (H,Σ, [M ′])
Ret1

M → M ′

(H,Σ, let val x = M in E) →
(H,Σ, let val x = M ′ in E)

Letval1

(H,Σ, E) → (H ′,Σ′, E ′)

(H,Σ, let val x = val E in F) →
(H ′,Σ′, let val x = val E ′ in F)

Letvalval

(H,Σ, let val x = val [V] in E) → (H,Σ, E[V/x])
Letval

M → M ′

(H,Σ, refa (M : A)) →
(H,Σ, refa (M ′ : A))

Ref1

� �∈ dom(H) Level(�) = a

(H,Σ, refa (V : A)) →
(H{� �→ V },Σ{� : A}, [�])

Ref

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 279

M → M ′

(H,Σ, !M) → (H,Σ, !M ′)
Bang1

(H,Σ, !�) → (H,Σ, [H(�)])
Bang

M → M ′

(H,Σ,M := N) → (H,Σ,M ′ := N)
Assn1

N → N ′

(H,Σ, V := N) → (H,Σ, V := N ′)
Assn2

� ∈ dom(H)

(H,Σ, � := V) → (H{� �→ V },Σ, [∗])
Assn

C Proofs

C.1 Type safety proof

C.1.1 Properties of informativeness and subtyping

Before we go on to prove type safety and non-interference, we take the time to prove

several (standard) lemmas.

Lemma C.1 (Informativeness Inversion)

If � A ↗ a and if

• A = bool then a = ⊥
• A = B → C then � C ↗ a

• A = ©(r,w)B then a � w � b and � B ↗ b

• A = refb B then � B ↗ c and a � c � b

• A = refrb B then � B ↗ c and a � c � b

• A = refwb B then a � b

Proof

by induction on the given derivation. By cases on the last rule used. �

Lemma C.2 (Subtyping Inversion)

If � A′ � A and if

• A = 1 then A′ = 1

• A = bool then A′ = bool

• A = B → C then A′ = B′ → C ′ and � B � B′ and � C ′ � C

• A = refa B then A′ = refa B

• A = refra B then

— either A′ = refra′ B′ with � B′ � B and a′ � a

— or A′ = refa′ B′ with � B′ � B and a′ � a

• A = refwa B then

— either A′ = refwa′ B′ with � B � B′ and a � a′

— or A′ = refa′ B′ with � B � B′ and a � a′

• A = ©oB then A′ = ©o′B′ and � B′ � B and o′ � o

and moreover, all the result derivations are subderivations of the given derivation.

Proof

by cases on the last rule used in the given derivation. Each case follows immediately

from the rules. �

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

280 K. Crary et al.

C.1.2 Typing judgment properties

Lemma C.3 (Substitution)

If Σ; Γ,Γ′ � M : A and

1. if Σ; Γ, x : A,Γ′ � N : B then Σ; Γ,Γ′ � N[M/x] : B

2. if Σ; Γ, x : A,Γ′ � E ÷o B then Σ; Γ,Γ′ � E[M/x] ÷o B

Proof

Parts (1) and (2) simultaneously by induction on Σ; Γ, x : A,Γ′ � N : B (or

Σ; Γ, x : A,Γ′ � E ÷o B). By cases on the last rule used. �

Lemma C.4 (Inversion)

Two parts:

• If Σ; Γ � M : A and

1. if M = x then � Γ(x) � A

2. if M = ∗ then � 1 � A

3. if M = true or M = false then � bool � A

4. if M = if N1 then N2 else N3 then Σ; Γ � N1 : bool, Σ; Γ � N2 : B,

Σ; Γ � N3 : B′, and � B � A, � B′ � A

5. if M = λx : B.N then Σ; Γ, x : B � N : C and � B → C � A

6. if M = NP then Σ; Γ � N : B → C and Σ; Γ � P : B and � C � A

7. if M = � then � refLevel(�) Σ(�) � A

8. if M = val E then Σ; Γ � E ÷o B and � ©oB � A

• If Σ; Γ � E ÷o A and

1. if E = [M] then Σ; Γ � M : A

2. if E = let val x = M in F then Σ; Γ � M : ©o′B and Σ; Γ, x : B � F ÷o′ C ,

� C � A and o′ = (r′, w′) with either o′ � o or � C ↗ r′ and (⊥, w′) � o

3. if E = refa (M : B) then � refa B � A and Σ; Γ � M : B

4. if E =!M then Σ; Γ � M : refra B and � B � C , � C � A and either

(a,�) � o or � C ↗ a

5. if E = M := N then Σ; Γ � M : refwa B, Σ; Γ � N : B, � 1 � A, and

(⊥, a) � o

Proof

by induction on the given derivation. By cases on the last rule used.

For part (1), in cases of rules (21) − −(27) the result is immediate, by rule (12). In

case of rule (28), the result follows by IH, and transitivity of subtyping (which can

be shown to be admissible).

For part (2), the cases for rules (29), (30), (31), (32), (33) are immediate. The cases

for rules (34), (35) and (36) follow by IH, by subcases on E. �

Lemma C.5 (Canonical Forms)

If Σ; · � V : A and

1. if A = 1 then V = ∗
2. if A = bool then V = true or V = false

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 281

3. if A = B → C then V = λx : B′.M

4. if A = refa B then V = � and � ∈ dom(Σ)

5. if A = refra B then V = � and � ∈ dom(Σ)

6. if A = refwa B then V = � and � ∈ dom(Σ)

7. if A = ©oB then V = val E

Proof

by induction on the typing derivation; by inspection of the last typing rule used.

�

C.1.3 Store properties

Lemma C.6 (Store Weakening)

If Σ′ ⊇ Σ and Σ′ well-formed, and

• if Σ; Γ � M : A then Σ′; Γ � M : A

• if Σ; Γ � E ÷o C then Σ′; Γ � E ÷o C

Proof

by simultaneous induction on the given derivations. By cases on the last rule used.

• Case

Σ; Γ � � : refLevel(�) Σ(�)
(20)

1. Since Σ′ is well-formed, there is at most one occurrence of � in Σ′

2. Evidently � ∈ dom(Σ), therefore � ∈ dom(Σ′).

3. Since Σ′ ⊇ Σ, Σ′(�) = Σ(�).

4. By rule (20), Σ′; Γ � � : refLevel(�) Σ
′(�).

• All the remaining cases are straightforward by IH.

�

Corollary C.7 (Allocation Safety)

If Σ; · � V : A, � H : Σ and if � �∈ dom(H) then � H{� �→ V } : Σ{� : A}

Proof

Directly. Using the Store Weakening lemma. �

Lemma C.8 (Store Update)

If � H : Σ and if � ∈ dom(Σ) and Σ; · � V : Σ(�) then � H{� �→ V } : Σ

Proof

Directly. �

C.1.4 Preservation, progress and type safety

Lemma C.9 (Term Preservation)

If Σ; · � M : A and M → M ′ then Σ; · � M ′ : A

Proof

by induction on the evaluation relation. By cases on the last rule used. Since terms

are pure, the proof is particularly straightforward. �

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

282 K. Crary et al.

Preservation If � S ÷o A and S → S ′ then � S ′ ÷o A

Proof

by induction on the evaluation relation.

By pattern matching, S = (H,Σ, E), S ′ = (H ′,Σ′, E ′), o = (r, w)

By Inversion,

• � H : Σ

• Σ; · � E ÷o A

Now proceed by cases on the last rule used in S → S ′. The proof is straightforward,

using Inversion, Term Preservation, Store Weakening, Allocation Safety, and Store

Update. �

Lemma C.10 (Term Progress)

If Σ; · � M : A then either M is a value, or ∃M ′ such that M → M ′

Proof

by induction on the given derivation. By cases on the last rule used. The proof is

straightforward, using the Canonical Forms lemma. �

Progress If � S ÷o A then either S is terminal, or ∃S ′ such that S → S ′

Proof

By pattern matching, S = (H,Σ, E).

By Inversion, � H : Σ, and Σ; · � E ÷o A.

Proceed by induction on the typing derivation, by cases on the last rule used.

In each case the result is either immediate by IH, or follows from Term Progress,

Canonical Forms and the IH. �

C.2 Structural properties of equivalence

We show that the judgments for ≈ζ admit reflexivity (for well-typed computations),

symmetry, and transitivity rules, that is they are equivalence relations on well-typed

computation states.

Lemma C.11 (Reflexivity)

1. If Σ; Γ � M : A then Σ; Σ; Γ � M ≈ζ M : A.

2. If Σ; Σ; Γ � E ÷o C then Σ; Σ; Γ � E ≈ζ E ÷o C

3. If � H : Σ then � (H : Σ) ≈U
ζ (H : Σ) for all U ⊆ dom(H)

4. If � S ÷o C then � S ≈ζ S ÷o C

Proof

Parts (1) and (2) simultaneously by induction on the given derivation, by cases on

the last rule used. Parts (3) and (4) follow by inversion on the single rule for the

given derivation, and then using parts (1) and (2).

In part (1), the case of store locations l is not immediate. There are two cases

depending on whether Level(�) is below ζ or not. When � is low-security, the result

is straightforward. Otherwise, note that store locations are values and that since

Level(�) �� ζ, � refLevel(�) Σ(�) ↗ Level(�), and the result follows using rule (39).

The remaining cases follow by induction. �

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 283

Lemma C.12 (Symmetry)

1. If Σ1; Σ2; Γ � M1 ≈ζ M2 : A then Σ2; Σ1; Γ � M2 ≈ζ M1 : A.

2. If Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o C then Σ2; Σ1; Γ � E2 ≈ζ E1 ÷o C

3. If � (H1 : Σ1) ≈U
ζ (H2 : Σ2) then � (H2 : Σ2) ≈U

ζ (H1 : Σ1)

4. If � S1 ≈ζ S2 ÷o C then � S2 ≈ζ S1 ÷o C

Proof

by induction on derivations. Evident as all the judgments are symmetric. �

Lemma C.13 (Transitivity)

Four parts:

1. If Σ1; Σ2; Γ � M1 ≈ζ M2 : A and Σ2; Σ3; Γ � M2 ≈ζ M3 : A then Σ1; Σ3; Γ �
M1 ≈ζ M3 : A

2. If Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o C and Σ2; Σ3; Γ � E2 ≈ζ E3 ÷o C then Σ1; Σ1; Γ �
E1 ≈ζ E3 ÷o C

3. If � (H1 : Σ1) ≈U
ζ (H2 : Σ2) and � (H2 : Σ2) ≈U

ζ (H3 : Σ3) then � (H1 : Σ1) ≈U
ζ

(H3 : Σ3)

4. If � S1 ≈ζ S2 ÷o C and � S2 ≈ζ S3 ÷o C then � S1 ≈ζ S3 ÷o C

Proof

Parts (1) and (2) follow by simultaneous induction on derivations.

Part (3):

1. By Inversion on each given derivation, � Hi : Σi for i = 1, 2, 3, Σ1 � U =

Σ2 � U = Σ3 � U, and for each � ∈ U, Σ1; Σ2; · � H1(�) ≈ζ H2(�) : Σ1(�) and

Σ2; Σ3; · � H2(�) ≈ζ H3(�) : Σ2(�)

2. By Part (1), for each � ∈ U, Σ1; Σ3; · � H1(�) ≈ζ H3(�) : Σ1(�)

3. By rule (58), � (H1 : Σ1) ≈U
ζ (H3 : Σ3)

Part (4):

1. By pattern matching, Si = (Hi,Σi, Ei) for i = 1, 2, 3

2. By Inversion, � (H1 : Σ1)) ≈U12

ζ (H2 : Σ2), Σ1; Σ2; · � E1 ≈ζ E2 ÷o C where

U12 = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)

3. By Inversion, � (H2 : Σ2)) ≈U23

ζ (H3 : Σ3), Σ2; Σ3; · � E2 ≈ζ E3 ÷o C where

U23 = dom(Σ2) ∩ dom(Σ3) ∩ ↓(ζ)

4. Let U13 = dom(Σ1) ∩ dom(Σ3) ∩ ↓(ζ)

5. Suppose � ∈ U13 \ (dom(Σ2) ∩ ↓(ζ))

(a) Evidently, � �∈ U12 and � �∈ U23

(b) Choose �′ �∈ U13 ∪ dom(Σ2) such that Level(�′) = Level(�)

(c) α-vary (H3,Σ3, E3) with �′ for �

6. So for all � ∈ U13, � ∈ dom(Σ2) ∩ ↓(ζ)

7. Evidently, U13 ⊆ U12 and U13 ⊆ U23

8. By Store Equivalence Coarsening, � (H1 : Σ1) ≈U13

ζ (H2 : Σ2), and � (H2 :

Σ2) ≈U13

ζ (H3 : Σ3)

9. By Part (3), � (H1 : Σ1) ≈U13

ζ (H3 : Σ3)

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

284 K. Crary et al.

10. By Part (2), Σ1; Σ3; · � E1 ≈ζ E3 ÷o C

11. By rule (59), � S1 ≈ζ S3 ÷o C

�

Lemma C.14 (Regularity of Equivalence)

Four parts:

1. If Σ1; Σ2; Γ � M1 ≈ζ M2 : A then Σi; Γ � Mi : A

2. If Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o C then Σi; Γ � Ei ÷o C

3. If � (H1 : Σ1) ≈U
ζ (H2 : Σ2) then � Hi : Σi

4. If � S1 ≈ζ S2 ÷o C then � Si ÷o C

Proof

by induction on the derivations. �

Next, we establish inversion and functionality. Inversion will let us reason by cases

in subsequent proof. Functionality is the analog of a substitution for the equivalence

judgment.

Lemma C.15 (Equivalent Term Inversion)

If Σ1; Σ2; Γ � M1 ≈ζ M2 : A then either

there exists a B, such that � B � A and � B ↗ a and a �� ζ and M1 and M2 are

values and Σi; Γ � Mi : B for i = 1, 2,

or

1. if M1 = x then � Γ(x) � A and M2 = x.

2. if M1 = ∗ then � 1 � A and M2 = ∗.

3. if M1 = true then � bool � A and M2 = true.

4. if M1 = false then � bool � A and M2 = false.

5. if M1 = if N1 then P11 else P12 then M2 = if N2 then P21 else P22 and

Σ1; Σ2; Γ � N1 ≈ζ N2 : bool and Σ1; Σ2; Γ � P11 ≈ζ P21 : B and Σ1; Σ2; Γ �
P12 ≈ζ P22 : B′ and � B � A, � B′ � A

6. if M1 = � then � refb B � A and M2 = � and b � ζ and Σi(�) = B for i = 1, 2

and Level(�) = b

7. if M1 = λx : B.N1 then � B → C � A and M2 = λx : B.N2 and Σ1; Σ2; Γ, x :

B � N1 ≈ζ N2 : C

8. if M1 = val E1 then � ©oB � A and M2 = val E2 and Σ1; Σ2; Γ � E1 ≈ζ

E2 ÷o B

9. if M1 = N1P1 then M2 = N2P2 and Σ1; Σ2; Γ � N1 ≈ζ N2 : B → C and

Σ1; Σ2; Γ � P1 ≈ζ P2 : B and � C � A

Proof

by induction on the derivation. �

Lemma C.16 (Equivalent Expression Inversion)

If Σ1; Σ2; Γ � E1 ≈ζ E2 ÷o A then

1. if E1 = [M1] then E2 = [M2] and Σ1; Σ2; Γ � M1 ≈ζ M2 : A

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 285

Proof

by induction on the given derivation. By cases on the last rule used. The proof is

straightforward. �

Lemma C.17 (Functionality)

If Σ1; Σ2; Γ,Γ′ � M1 ≈ζ M2 : A then

1. if Σ1; Σ2; Γ, x : A,Γ′ � N1 ≈ζ N2 : C then Σ1; Σ2; Γ,Γ′ � N1[M1/x] ≈ζ

N2[M2/x] : C

2. if Σ1; Σ2; Γ, x : A,Γ′ � E1 ≈ζ E2 ÷o C then Σ1; Σ2; Γ,Γ′ � E1[M1/x] ≈ζ

E2[M2/x] ÷o C .

Proof

by induction on the TD. �

Although we established Functionality for arbitrary terms to be substituted for

x, as befits a call by value language, we only substitute values in the proof of

non-interference.

Lemma C.18 (Store Equivalence Coarsening)

If � (H1 : Σ1) ≈U ′

ζ (H2 : Σ2) and U ⊆ U ′ then � (H1 : Σ1) ≈U
ζ (H2 : Σ2)

Proof

1. By Inversion, � Hi : Σi for i = 1, 2, Σ1 � U ′ = Σ2 � U ′, for each � ∈ U ′,

Σ1; Σ2; · � H1(�) ≈ζ H2(�) : Σ1(�)

2. Evidently, Σ1 � U = Σ2 � U

3. Evidently, for each � ∈ U, Σ1; Σ2; · � H1(�) ≈ζ H2(�) : Σ1(�)

4. By rule (58), � (H1 : Σ1) ≈U
ζ (H2 : Σ2)

�

Lemma C.19 (Equivalent Values)

If Σ1; Σ2; · � M1 ≈ζ M2 : A then M1 is a value if and only if M2 is a value.

Proof

by induction on the equivalence derivation. By cases on the last rule used. The

proof is straightforward. The restriction to values in rule (39) greatly simplifies

matters. �

With the Equivalent Values lemma in hand, we can establish the Hexagon Lemma

for terms.

C.3 Term Hexagon lemma proof

Term Hexagon Lemma For all ζ, if Σ1; Σ2; · � M1 ≈ζ M2 : A and M1 → M ′
1 and

M2 → M ′
2 and M ′

1 ↓ and M ′
2 ↓, then there exist M ′′

1 ,M
′′
2 such that M ′

1 →∗ M ′′
1 ,

M ′
2 →∗ M ′′

2 , Σ1; Σ2; · � M ′′
1 ≈ζ M

′′
2 : A

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

286 K. Crary et al.

Proof
by induction on the given derivation. By cases on the last rule used.

• Cases rules (39), (40), (42), (43), (45), (47), (48). Vacuous, M1,M2 are values,

no applicable evaluation rules.
• Case rule (41). Vacuous, Γ = ·
• Case rule (49). By IH.
• Case rule (44):

Σ1; Σ2; · �N1 ≈ζ N2 : bool Σ1; Σ2; · �P11 ≈ζ P21 :A Σ1; Σ2; · �P12 ≈ζ P22 :A

Σ1; Σ2; · � if N1 then P11 else P12 ≈ζ if N2 then P21 else P22 :A

(44)

By pattern matching, Mi = if Ni then Pi1 else Pi2 for i = 1, 2

There are three possible evaluation rules for M1 → M ′
1

— Case If1: M ′
1 = if N ′

1 then P11 else P12, N1 → N ′
1

1. By Equivalent Values, N2 is not a value

2. The only applicable evaluation rule for M2 → M ′
2 is If1: M ′

2 =

if N ′
2 then P21 else P22, N2 → N ′

2

3. By Subterm Termination, N ′
1 ↓, N ′

2 ↓
4. By IH, there exist N ′′

1 , N
′′
2 such that N ′

i →∗ N ′′
i for i = 1, 2, and

Σ1; Σ2; · � N ′′
1 ≈ζ N

′′
2 : bool

5. By repeated application of If1, M ′
i →∗ M ′′

i for i = 1, 2

6. By rule (44), Σ1; Σ2; · � M ′′
1 ≈ζ M

′′
2 : A

— Case IfTrue: N1 = true, M ′
1 = P11

1. By Equivalent Values, N2 is a value

2. By Equivalent Term Inversion, there are two subcases:

– Either there exists a B such that � B � bool, � B ↗ a, a �� ζ and

Σi; · � Ni : B

By subtyping inversion, B = bool. By Informativeness Inversion,

a = ⊥, for a contradiction (since ⊥ � ζ)

– Or N2 = true

(a) There is a single applicable evaluation rule for M2 → M ′
2, IfTrue:

M ′
2 = P21.

(b) Let M ′′
i = M ′

i for i = 1, 2.

(c) Evidently, Σ1; Σ2; · � M ′′
1 ≈ζ M

′′
2 : A

— Case IfFalse: N1 = false, M ′
2 = P12

Similar to previous case.

• Case rule (46):

Σ1; Σ2; · � N1 ≈ζ N2 : B → A Σ1; Σ2; · � P1 ≈ζ P2 : B

Σ1; Σ2; · � N1P1 ≈ζ N2P2 : A
(46)

Similar to the previous case.

�

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 287

C.4 High security step

To show the HSS Lemma 5.2, we need to show that after executing a high security

expression, the resulting store is equivalent to the original store. We first show this

for one evaluation step, and then extend to multiple steps.

Lemma C.20 (Single High Security Step)

If � (H,Σ, E) ÷o A, o = (r, w) and w �� ζ, and (H,Σ, E) → (H ′,Σ′, E ′) then

� (H : Σ) ≈dom(Σ)∩↓(ζ)
ζ (H ′ : Σ′).

Proof

By induction on (H,Σ, E) → (H ′,Σ′, E ′)

By inversion on � (H,Σ, E) ÷o A, we have

• � H : Σ

• Σ; · � E ÷o A

Now consider cases on the evaluation rule used:

• Case Ret1: E = [M], H ′ = H , Σ′ = Σ, E ′ = [N], M → N

By Reflexivity, � (H : Σ) ≈U
ζ (H ′ : Σ′) where U = dom(Σ) ∩ ↓(ζ)

Cases for Letval1, Ref1, Bang1, Assn1, Assn2, Bang, and Letval are similar.

• Case Letvalval: E = let val x = val E1 in F , E ′ = let val x = val E2 in F ,

(H,Σ, E1) → (H ′,Σ′, E2)

1. By Inversion, for some o′ = (r′, w′), Σ; · � val E1 : ©o′B, Σ; x : B � F ÷o′ C ,

� C � A, where either o′ � o or both � C ↗ r′ and (⊥, w′) � o

2. Either way, w � w′, so w′ �� ζ

3. By Inversion, Σ; · � E1 ÷o′′ B′ and � ©o′′B′ � ©o′B

4. By rule (38), � (H,Σ, E1) ÷o′′ B′

5. By IH, � (H : Σ) ≈U
ζ (H ′ : Σ′) where U = dom(Σ) ∩ ↓(ζ)

• Case Ref: E = refa (V : B), H ′ = H{� �→ V }, Σ′ = Σ{� : B}, E ′ = �,

� �∈ dom(H), Level(�) = a

1. By Inversion, Σ; · � V : B, � refa B � A

2. By rule (37), � H ′ : Σ′

3. Consider �′ ∈ U, by construction, H ′(�′) = H(�′) and Σ′(�′) = Σ(�′)

4. By rule (58) � (H : Σ) ≈U
ζ (H ′ : Σ′)

• Case Assn: E = � := V , H ′ = H{� �→ V }, Σ′ = Σ, E ′ = [∗]

1. By Inversion, Σ; · � � : refwa B, Σ; · � V : B, (⊥, a) � o, � 1 � A

2. By Inversion, � refLevel(�) Σ(�) � refwa B

3. By Subtyping Inversion, � B � Σ(�), a � Level(�)

4. Since (⊥, a) � o, w � a � Level(�)

5. Since w �� ζ, Level(�) �� ζ, so � �∈ U where U = dom(Σ) ∩ ↓(ζ)

6. By rule (37), � H ′ : Σ′

7. By rule (58), � (H : Σ) ≈U
ζ (H ′ : Σ′)

�

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

288 K. Crary et al.

Corollary C.21

If � (H,Σ, E) ÷o A, o = (r, w) and w �� ζ, and (H,Σ, E) →n (H ′,Σ′, E ′) then � (H :

Σ) ≈dom(Σ)∩↓(ζ)
ζ (H ′ : Σ′).

Proof

By induction on n, the number of steps.

By inversion,

• � H : Σ

• Σ; · � E ÷o A

If n = 0, the result follows by Reflexivity.

If n > 0, then (H,Σ, E) → (H ′′,Σ′′, E ′′) →n−1 (H ′,Σ′, E ′). The result follows by

IH, Single High Security Step, Preservation, Store Equivalence Coarsening and

transitivity of the store equivalence judgment. �

D λREF
SEC well-typed translation proof

Well-typed Translation

1. If Σ; Γ � bv : t ⇒ M then Σ; Γ � M : t
2. If Σ; Γ[pc] � e : s ⇒ E then Σ; Γ � E ÷(⊥,pc) s

Proof
Both parts simultaneously, by induction on the given derivations. By cases on the

last rule used.

Part (1)

• The cases for unit and boolean values, and store locations are immediate.
• Case

Σ; Γ, x : s1[pc] � e : s2 ⇒ E

Σ; Γ � λ[pc]x : s1.e : s1
pc
−→ s2 ⇒ λx : s1.val E

1. By IH,

Σ; Γ, x : s1 � E ÷(⊥,pc) s2

2.

Σ; Γ, x : s1 � E ÷(⊥,pc) s2

Σ; Γ, x : s1 � val E : ©(⊥,pc)s2

Σ; Γ � λx : s1.val E : s1
pc
−→ s2

• The case for subsumption follows by well-typed type translation

Part (2)

• Case

Σ; Γ[pc]�e1 : (bool, a)⇒E1 Σ; Γ[pc � a]�e2 : s⇒E2 Σ; Γ[pc � a]�e3 : s⇒E3

Σ; Γ[pc] � if e1 then e2 else e3 : s ⇒

let y = E1 in

let y′ = !y in

run if y′

then val E2

else val E3

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 289

1. By IH, Σ; Γ � E1 ÷(⊥,pc) refra bool, and Σ; Γ � Ei ÷(⊥,pc�a) s for i = 2, 3

2. Let Γ1 = Γ, y : refra bool

3. By rule (32), Σ; Γ1 �!y ÷(a,�) bool

4. Let Γ2 = Γ1, y
′ : bool

5.

Σ; Γ2 � y′ : bool
(19)

Σ; Γ2 � val Ei : ©(⊥,pc�a)s
(27)

for i = 2, 3

Σ; Γ2 � if y′ then val E2 else val E3 : ©(⊥,pc�a)s
(24)

Σ; Γ2 � run if y′ then val E2 else val E3 ÷(⊥,pc�a) s

6. We can promote the operation levels of !y and run . . . to (a, pc � a), such

that

Σ; Γ1 � let y′ = !y in run . . . ÷(a,pc�a) s

7. Let (t, b) = s, and note that s = refrb t.

8. By lemma 6.1, a � b. Hence � s ↗ a.

9. Therefore,

Σ; Γ1 � let y′ = !y in run . . . ÷(a,pc�a) s � s ↗ a

Σ; Γ1 � let y′ = !y in run . . . ÷(⊥,pc�a) s
(35)

Σ; Γ1 � let y′ = !y in run . . . ÷(⊥,pc) s
(34)

10. Therefore,

Σ; Γ � let y = E1 in let y′ = !y in run . . . ÷(⊥,pc) s

• Case

Σ; Γ[pc] � e1 : (ref (t, b), a) ⇒ E1 Σ; Γ[pc] � e2 : (t, b) ⇒ E2 a � b

Σ; Γ[pc] � e1 := e2 : (1, pc) ⇒

let y1 = E1 in

let y2 = E2 in

let y′
1 = !y1 in

let = y′
1 := y2 in

refpc (∗ : 1)

1. By IH, Σ; Γ � E1 ÷(⊥,pc) refra refb refrb t and Σ; Γ � E2 ÷(⊥,pc) refrb t

2. By Lemma 6.1, pc � b

3. Let Γ1 = Γ, y1 : refra refb refrb t, y2 : refrb t

4.

Σ; Γ1 �!y1 ÷(a,�) refb refrb t (a,�) � (a, b)

Σ; Γ1 �!y1 ÷(a,b) refb refrb t

Note that (a, b) is a well-formed operation level since a � b

5. Let Γ2 = Γ1, y
′
1 : refb refrb t

Σ; Γ2 � y′
1 := y2 ÷(⊥,b) 1 Σ; Γ2 � refpc (∗ : 1) ÷(⊥,�) refrpc 1

Σ; Γ2 � let = y′
1 := y2 in refpc (∗ : 1) ÷(⊥,b) refrpc 1 (⊥, b) � (a, b)

Σ; Γ2 � let = y′
1 := y2 in refpc (∗ : 1) ÷(a,b) refrpc 1

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

290 K. Crary et al.

6.

Σ; Γ1 �!y1 ÷(a,b) refb refrb t

Σ; Γ2 � let = y′
1 := y2 in refpc (∗ : 1) ÷(a,b) refrpc 1

Σ; Γ1 � let y′
1 = !y1 in

let = y′
1 := y2 in refpc (∗ : 1) ÷(a,b) refrpc 1

� 1 ↗ a
� refrpc 1 ↗ a

Σ; Γ1 � let y′
1 = !y1 in

let = y′
1 := y2 in refpc (∗ : 1) ÷(⊥,b) refrpc 1

7. Since pc � b,

Σ; Γ � let y1 = E1 in let y2 = E2 in let y′
1 = !y1 in ... ÷(⊥,pc) refrpc 1

• Other cases are similar.

�

Acknowledgements

This material is based on work supported in part by NSF grants CCR-9984812 and

CCR-0121633. Any opinions, findings, and conclusions or recommendations in this

publication are those of the authors and do not reflect the views of this agency.

References

Abadi, M., Banerjee, A., Heintze, N. and Riecke, J. G. (1999) A core calculus of dependency.

Twenty-sixth ACM Symposium on Principles of Programming Languages, pp. 147–160.

Harrison, W., Tullsen, M. and Hook, J. (2003) Domain separation by construction. Foundations

of Computer Security Workshop (FCS’03).

Heintze, N. and Riecke, J. G. (199) The SLam calculus: Programming with secerecy and

integrity. Twenty-fifth ACM Symposium on Principles of Programming Languages, pp. 365–

377.

Honda, K. and Yoshida, N. (2002) A uniform type structure for secure information flow.

Twenty-ninth ACM Symposium on Principles of Programming Languages, pp. 81–92.

Huet, G. (1980) Confluent reductions: Abstract properties and applications to term rewriting

systems. J. ACM, 27(4), 797–821.

Moggi, E. (1989) Computational lambda-calculus and monads. Fourth IEEE Symposium on

Logic in Computer Science, pp. 14–23.

Moggi, E. (1991) Notions of computation and monads. Infor. & Computation, 93, 55–92.

Morrisett, G., Walker, D., Crary, K. and Glew, N. (1999) From System F to typed assembly

language. ACM Trans. Program. Lang. & Syst. 21(3), 527–568.

Myers, A. C. (1999) JFlow: Practical mostly-static information flow control. Twenty-sixth

ACM Symposium on Principles of Programming Languages, pp. 228–241.

Pfenning, F. and Davies, R. (2001) A judgmental reconstruction of modal logic. Mathematical

Struct. in Comput. Sci. 11(4), 511–540.

Pottier, F. and Simonet, V. (2003) Information flow inference for ML. ACM Trans. Program.

Lang. & Syst. 25(1), 117–158.

Sabelfeld, A. and Myers, A. C. (2003) Language-based information-flow security. IEEE J.

Selected Areas in Comm. 21(1), 5–19.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

A monadic analysis of information flow security with mutable state 291

Smith, G. and Volpano, D. (1998) Secure information flow in a multi-threaded imperative

language. Twenty-fifth ACM Symposium on Principles of Programming Languages, pp. 355–

364.

Volpano, D., Smith, G. and Irvine, C. (1996) A sound type system for secure flow analysis.

J. Comput. Security, 4(3), 167–187.

Zdancewic, S. (2002) Programming languages for information security. PhD thesis, Department

of Computer Science, Cornell University, Ithaca, New York.

Zdancewic, S. (2003) A type system for robust declassification. Nineteenth Mathematical

Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science.

Zdancewic, S. and Myers, A. C. (2001a) Robust declassification. Fourteenth IEEE Computer

Security Foundations Workshop, pp. 15–23.

Zdancewic, S. and Myers, A. C. (2001b) Secure information flow and CPS. Tenth European

Symposium on Programming: Lecture Notes in Computer Science 2028, pp. 46–61. Springer-

Verlag.

Zdancewic, S. and Myers, A. C. (2002) Secure information flow via linear continuations.

Higher Order & symbolic Computation, 15(2–3), 209–234.

https://doi.org/10.1017/S0956796804005441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005441

