PROBLEMS FOR SOLUTION

<u>P 50.</u> (Corrected) Let A(t) be an $n \ge n$ matrix which is continuous on an interval I: a < t < b of the real t-axis. Show that on a subinterval of I there exists a complex continuously differentiable and non-singular matrix T(t) such that the substitution $\ge T(t)$ transforms the linear and homogeneous system of n differential equations $\frac{dx}{dt} = A(t)$ into a similar system $\frac{dy}{dt} = B(t)$ with B(t)continuous and skew-symmetric.

H. Helfenstein, University of Ottawa

<u>P 55.</u> Let P be a regular polygon and S a concentric sphere. Prove that the sum of the squares of the distances from a variable point of S to the vertices of P is a constant.

L. Moser, University of Alberta

P 56. If $x \neq 0$ prove that

$$y + y^2 = x + x^2 + x^3$$

has no solutions in integers.

W.J. Blundon, Memorial University of Newfoundland

<u>P 57.</u> Let m, n be relatively prime positive integers: (m, n) = 1. Write

$$f(x) = \frac{(1-x^{mn})(1-x)}{(1-x^{m})(1-x^{n})},$$

and show

195

(i) f(x) is a polynomial of degree (m-1)(n-1) whose non-zero coefficients are alternately +1 and -1,

(ii) the number of non-zero coefficients is

Mm + Nn - 2MN

where M, N are integers defined by Mm - Nn = 1, 0 < M < n.

J. D. Dixon California Institute of Technology

<u>P 58.</u> (Conjecture) A graph of $\binom{k}{2}$ + t edges with $0 \le t < k$ has at most $\binom{k}{3} + \binom{t}{2}$ triangles.

J. W. Moon and L. Moser, University of Alberta

SOLUTIONS

<u>P 43.</u> (Corrected) Let G be a group generated by P and Q, and let H be the cyclic subgroup generated by T. If P and Q satisfy only the relations $P^2QP = Q^2$ and $Q^2PQ^{-4} = P^k$ for some k, then the index of H in G is 1 or 7.

N.S. Mendelsohn, University of Manitoba

Solution by F.A. Sherk, University of Toronto. Enumerating cosets of H by the Todd-Coxeter method (Coxeter and Moser, Generators and Relations for Discrete Groups, Ergebn. Math. 14 (1957) Chapter 2), we obtain the tables