P 50. (Correcied) Let $A(t)$ be an $n \times n$ matrix which is continuous on an interval I : $a<t<b$ of the real t-axis. Show that on a subinterval of I there exists a complex continuously differentiable and non-singular matrix $T(t)$ such that the substitution $x=T(t) y$ transforms the linear and homogeneous system of n differential equations $\frac{d x}{d t}=A(t) x$ into a similar system $\frac{d y}{d t}=B(t) y$ with $B(t)$ continuous and skew-symmetric.

H. Helfenstein, University of Ottawa

P 55. Let P be a regular polygon and S a concentric sphere. Prove that the sum of the squares of the distances from a variable point of S to the vertices of P is a constant.
L. Moser, University of Alberta

P 56. If $x \neq 0$ prove that

$$
y+y^{2}=x+x^{2}+x^{3}
$$

has no solutions in integers.

W.J. Blundon,
Memorial University of Newfoundland

P 57. Let m, n be relatively prime positive integers: $(m, n)=1$. Write

$$
f(x)=\frac{\left(1-x^{m n}\right)(1-x)}{\left(1-x^{m}\right)\left(1-x^{n}\right)}
$$

and show
(i) $f(x)$ is a polynomial of degree $(m-1)(n-1)$ who se non-zero coefficients are alternately +1 and -1 ,
(ii) the number of non-zero coefficients is

$$
\mathrm{Mm}+\mathrm{Nn}-2 \mathrm{MN}
$$

where M, N are integers defined by $M m-N n=1,0<M<n$.
J. D. Dixon

California Institute of Technology

P 58. (Conjecture) A graph of $\binom{k}{2}+t$ edges with $0 \leq t<k$ has at most $\left(\begin{array}{l}k\end{array}\right)+\left(\begin{array}{l}t\end{array}\right)$ triangles.

> J. W. Moon and L. Moser, University of Alberta

SOLUTIONS

P43. (Corrected) Let G be a group generated by P and Q, and let H be the cyclic subgroup generated by T. If P and Q satisfy only the relations $P^{2} Q P=Q^{2}$ and $Q^{2} P Q^{-4}=P^{k}$ for some k, then the index of H in G is 1 or 7.
N. S. MendeIsohn, University of Manitoba

Solution by F.A. Sherk, University of Toronto. Enumerating cosets of H by the Todd-Coxeter method (Coxeter and Moser, Generators and Relations for Discrete Groups, Ergebn. Math. 14 (1957) Chapter 2), we obtain the tables

