Multiplication operators and composition operators with closed ranges R.K. Singh and Ashok Kumar

The characterizations of the closed ranges of the multiplication operators and the composition operators on $L^2(\lambda)$ are reported in this paper.

1. Preliminaries

Let ϕ be a measurable transformation on a σ -finite measure space (X, S, λ) into itself. Then the composition operator C_{ϕ} , defined as

$$C_{\phi}f = f \circ \phi$$
 for every $f \in L^{2}(\lambda)$,

is a bounded linear transformation on $L^2(\lambda)$. The multiplication operator M_{θ} induced by an essentially bounded measurable function θ on X is defined by the relation

$$M_{\Omega}f = \theta \cdot f$$
 for every $f \in L^{2}(\lambda)$

The purpose of this note is to characterize multiplication operators and composition operators with closed ranges.

If H is a Hilbert space, then B(H) denotes the Banach algebra of all bounded linear operators on H. If A is an element of B(H), then R(A) and N(A) denote the range and the null space of A respectively.

Received 18 November 1976.

247

47B99

248

For a complex-valued measurable function θ on X the set Z^{θ} is defined by $Z^{\theta} = X \setminus \{x \in X : \theta(x) = 0\}$.

2. Multiplication operators and composition operators with closed ranges

First we shall give some examples of the multiplication operators and the composition operators with non-closed ranges.

EXAMPLE 1. Let $l^2(N)$ denote the Hilbert space of all squaresummable sequences of complex numbers. Let M_{θ} be the multiplication operator induced by the function θ defined as

$$\theta(n) = \begin{cases} 0 & \text{for } n = 1 \text{ and } n = 2, \\ \\ 1/n & \text{for } n = 3, 4, \dots \end{cases}$$

Then the range of M_{θ} consists of all sequences $\langle \delta_1, \delta_2, \delta_3, \ldots \rangle$ with $\sum_{n=3}^{\infty} n^2 |\delta_n|^2 < \infty$, and it is dense in $\ell^2(N_2)$, where

$$l^{2}(N_{2}) = \left\{ \{x_{n}\} : x_{1} = x_{2} = 0 \text{ with } \sum_{n=3}^{\infty} |x_{n}|^{2} < \infty \right\};$$

since it does not contain the sequence $\langle 0, 0, 1/3, 1/4, \ldots \rangle$, it is not closed.

EXAMPLE 2. If $\theta(x) = x$, then M_{θ} does not have closed range in $L^{2}[0, 1]$.

EXAMPLE 3. Let N be the set of positive integers and let 0 < a < 1. Then define λ on N by $\lambda(\{n\}) = a^{2n}$. If ϕ is a function on N defined as $\phi(n) = n/2$ if n is even and $\phi(n) = (n+1)/2$ if n is odd, then C_{ϕ} is a composition operator on $\mathcal{I}^{2}(\lambda)$, where $\mathcal{I}^{2}(\lambda) = \left\{ \{x_{n}\} : \sum_{n=1}^{\infty} \lambda(n) |x_{n}|^{2} < \infty \right\}$. For every $n \in \mathbb{N}$ let $f^{(n)}$ be the sequence defined by $f^{(n)}(m) = 0$ if $m \leq n$ and $f^{(n)}(m) = 1$ if m > n. Then $\left\|C_{\phi}f^{(n)}\right\|^{2}/\|f^{(n)}\|^{2} = a^{2n}$. This shows that C_{ϕ} is not bounded below. Since C_{ϕ} is one-to-one the range of C_{ϕ} is not closed.

LEMMA 2.1. Let $A \in B(H)$. Then A has closed range if and only if it is bounded away from zero on $(N(A))^{\perp}$.

Proof. The necessary part follows from [1, Problem 41], and sufficiency is clear.

COROLLARY. Every partial isometry has closed range.

THEOREM 2.1. Let $M_{\theta} \in B(L^2(\lambda))$. Then M_{θ} has closed range if and only if θ is bounded away from zero on z^{θ} .

Proof. Let $X_1 = \{x : \theta(x) = 0\}$ and $X_2 = X \setminus X_1$. Then we can write $L^2(X, S, \lambda) = L^2(X_1, S_1, \lambda) \oplus L^2(X_2, S_2, \lambda)$, where $S_1 = S \cap X_1$ and $S_2 = S \cap X_2$. Here $N(M_{\theta}) = L^2(X_1, S_1, \lambda)$ and $(N(M_{\theta}))^{\perp} = L^2(X_2, S_2, \lambda)$. Now suppose θ is bounded away from zero on Z^{θ} . Then M_{θ} is invertible on $(N(M_{\theta}))^{\perp} = L^2(X_2, S_2, \lambda)$ [1, Problem 52]. Therefore $R(M_{\theta}) = L^2(X_2, S_2, \lambda)$ is closed.

Since X is σ -finite, we can write $X = \bigcup_{i=1}^{\infty} Y_i$, where $\lambda(Y_i) < \infty$ for all i. There is no loss of generality in assuming that $\lambda(Y_i) = 1$ for all $i \in N$. Now suppose θ is not bounded away from zero on $Z^{\theta} = X_2$. Then $E_j = \{x : x \in X_2 \text{ and } |\theta(x)| < 1/j\}$ has positive measure and let $F_{j_i} = Y_i \cap E_j$. Now define g_j as

$$g_{j} = \sum_{n=1}^{\infty} (1/n) X_{F_{j_n}}$$

Then $\|M_{\theta}g_{j}\|/\|g_{j}\| \leq 1/j$. Thus M_{θ} is not bounded below on $(N(M_{\theta}))^{\perp}$, and hence, by Lemma 2.1, M_{θ} does not have closed range.

LEMMA 2.2. Let $A \in B(H)$ be normal. Then A has closed range if and only if A^n has closed range for some $n \in N$.

Proof. Since A is normal, by the Spectral Theorem, A is unitarily equivalent to a multiplication operator M_{θ} , and hence A^n is unitarily equivalent to M_{θ} . Suppose A^n has closed range. Then θ^n is bounded θ^n

away from zero on 2^{θ} , which implies that θ is bounded away from zero on Z^{θ} . Hence, by Theorem 2.1, A has closed range.

The necessary part follows similarly.

LEMMA 2.3. Let $A \in B(H)$. Then A has closed range if and only if A^*A has closed range.

Proof. Sufficiency follows from Theorem 1 [6, p. 205] and Lemma 2.1.

Conversely, suppose A^*A has closed range. We write A = UP, where U is partial isometry and $P = \sqrt{A^*A}$ [1, Solution for Problem 105]. Since P is normal and P^2 has closed range, therefore, from Lemma 2.2, P has closed range. The rest of the proof follows from Lemma 2.1.

THEOREM 2.2. Let $C_{\phi} \in B(L^2(\lambda))$. Then C_{ϕ} has closed range if and only if f_0 is bounded away from zero on 2^{f_0} , where f_0 is the Radon-Nikodym derivative of the measure $\lambda \phi^{-1}$ with respect to λ .

Proof. Since $C_{\phi}^*C_{\phi} = M_{f_0}$, where $f_0 = d\lambda \phi^{-1}/d\lambda$, [3], the proof follows from Lemma 2.3 and Theorem 2.1.

Let $p = \{p_1, p_2, \ldots\}$ be a sequence of non-zero positive numbers and let

$$l^{2}(p) = \left\{ \{x_{n}\} : \sum_{n=1}^{\infty} p_{n} |x_{n}|^{2} < \infty \right\}.$$

Then $l^2(p)$ is a Hilbert space.

COROLLARY. If $\inf p = \alpha_1 > 0$ and $\sup p = \alpha_2 < \infty$ then all

250

composition operators on $l^2(p)$ have closed range.

Proof.

$$f_0(n) = \lambda \phi^{-1}(n) / \lambda(n) \ge \alpha_1 / \alpha_2 = \alpha > 0 \quad \text{if} \quad n \in \phi(N)$$
$$= 0 \quad \text{if} \quad n \in N \setminus \phi(N) \quad .$$

Therefore f_0 is bounded away from zero on Z. Hence C_{ϕ} has closed range.

COROLLARY. Every composition operator on $l^2(N)$ has closed range.

EXAMPLE. Let ϕ be the real valued function on the set of real numbers R defined by $\phi(x) = x + 1$ if $x \in (-\infty, 4]$ and $\phi(x) = x + 2$ if $x \in (4, \infty)$. Then C_{ϕ} is a composition operator on $L^2(-\infty, \infty)$ and

$$f_0(x) = 1$$
 if $x \in (-\infty, 5] \cup (6, \infty)$,

and

 $f_0(x) = 0$ if $x \in (5, 6]$.

Hence, by Theorem 2.2, C_{ϕ} has closed range.

References

- Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto; London; 1967).
- [2] William C. Ridge, "Spectrum of a composition operator", Proc. Amer. Math. Soc. 37 (1973), 121-127.
- [3] Raj Kishor Singh, "Compact and quasinormal composition operators", Proc. Amer. Math. Soc. 45 (1974), 80-82.
- [4] Raj Kishor Singh, "Normal and Hermitian composition operators", Proc. Amer. Math. Soc. 47 (1975), 348-350.
- [5] R.K. Singh, "Composition operators induced by rational functions", Proc. Amer. Math. Soc. 59 (1976), 329-333.

R.K. Singh and Ashok Kumar

 [6] Kôsaku Yosida, Functional analysis, second edition (Die Grundlehren der mathematischen Wissenschaften, 123. Springer-Verlag, Berlin, Heidelberg, New York, 1968).

Department of Mathematics, University of Jammu, Jammu Tawi, India.

252