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Abstract

Let S be a subset of a group G such that S~' = S. Denote by gr(S) the subgroup of G generated by §,
and by /5(g) the length of an element g € gr(S) relative to the set S. Suppose that V is a finite subset of
a free group F of countable rank such that the verbal subgroup V(F) is a proper subgroup of F. For an
arbitrary group G, denote by V(G) the set of values in G of all the words from the set V. In the present
paper, for amalgamated products G = A x4 B such that A # H and the number of double cosets of
B by H is at least three, the infiniteness of the set {Is(g) | g € gr(S)}, where § = VG)uU V(G)~ !, is
established.

2000 Mathemarics subject classification: primary 20E06, 20F22.
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Let G be an arbitrary group and let S a subset of G such that $™' = S. Denote by
gr(S) the subgroup of G generated by S. We say that the width of the set S is finite if
there is k € N such that any element g of gr(S) is representable in the form

(D g=-s55---5,, where 5;€S and n <k,

The minimal k& with this property is called the width of the set S in G, and we denote
it by wid(S, G). If for each k € N there is an element g, € gr(S) that cannot be
expressed in the form (1), we say that the width of S in G is infinite. Many papers are
devoted to investigating widths of various subsets: see [1-3,6-9].

In this paper we consider widths of verbal subgroups. Specifically, let V be a finite
subset of the free group F of countable rank. We say that V is proper if V(F) is
a proper subgroup of F. By the width of the verbal subgroup V(G) of an arbitrary
group G we mean the width of the set V(G)U V(G)™' in G. Widths of verbal
subgroups have been investigated in a series of papers (see [2,8,9] and references
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therein). In the present paper, for amalgamated products G = A %y B such that
A # H and the number of double cosets of B by H is at least three, the infiniteness
of the width of the verbal subgroup V(G) is established.

DEFINITION 1. A quasicharacter of a semigroup S is a real-valued function f on
S such that the set {f (xy) — f (x) — f (y) | x, y € S} is bounded.

DEFINITION 2. By a pseudocharacter of a semigroup S (or group §) we mean a
quasicharacter f satisfying the following condition: f (x") = nf (x) forall x € § and
alln € N (and all n € Z if S is group).

The set of quasicharacters of a semigroup S is a vector space (with respect to the
usual operations of addition of functions and their multiplication by numbers) which
will be denoted by K X (S). The subspace of K X (S) consisting of pseudocharacters
will be denoted by PX (), and the subspace consisting of real additive characters of
S will be denoted by X (§).

DEFINITION 3. By a quasicharacter of a semigroup S with involution * we mean a
quasicharacter ¢ such that p(v*) = —¢(v) forallv € S.

The set of quasicharacters of a semigroup S with involution will be denoted by
KX(S, *).

Let G = A #y B be the amalgamated product of two nontrivial groups A and B. Let
B = HU (J,., Hb;H) be the decomposition of the group B into double cosets. We
assume that |I| > 2. Let & be the free monoid with free generators X = {x; | i € I}.
Define £ : B\ H — X by £(b) = x, whenever b € Hb;H. The mapping b — b™'
on B induces a permutation * of order two on the set X, as follows: if b;' € Hb; H
we set x} = x;. Now we extend * to an involution on the entire semigroup %, that is,
for v =x; x;, - - - x;, setv* =x;---x;x;. LetAg=A\ H and By = B\ H.

DEFINITION 4. Let g € G\ H. By a canonical (or reduced) form of the element g
we mean an expression of the form

(2) g=rciCc-- - Cx,

where C; € Ao U] B() and CiCit1 ¢ AgU By.

Given a canonical form as above, we put ¢ = ¢; and g = ¢,. Now we define
£E:G— Fasfollows. If g€ A weseté(g) = 1. If g ¢ A and (2) is a canonical
form for g, we set £(g) = &(c1)&(cy) - - E(c). It is clear that the mapping & is
well defined. Now for each word v from the semigroup & we introduce the set
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of ‘beginnings’ H (v) and the set of ‘endings’ K (v) as follows. If v € X, we put
H@w)=K@w)=0.Ifv=1x,x;,- -x,,where i; € [ andn > 1, we set

H@) = {x;, XiXpyy oo o X3 Xiy o X0 X Xiy - X, ),

K@) ={xi, X X, Xiy o X Xiyy oo s Xip X0, X0 )
[t is evident that H (w) N K(w) = @ if and only if H(w*) N K(w*) = @.

DEFINITION 5. Two elements v and w of & are called conjugate if either v = w
or there exist elements a and b in & such that v = ab and w = ba. The conjugacy
relation will be denoted by ~.

Denote by P* the set of words w of length at least two in the alphabet X with the
property that H(w) N K(w) = @ and w # w*. Forany word w € P* andany v € &%
denote by ,, (v) the number of occurrences of w in v. Note that two occurrences of
w in v cannot overlap, since the overlapping portion would lie in H (w) N K (w). For
each pair of elements x, y from # we define a measure u, , on P+ as follows: we
set i, ,(w) =1if w = ab forsome a € K(x) U {x} and b € H(y) U {y}; otherwise
we set i, ,(w) = 0. Itis easy to verify that v, (xy) — ¥, (x) — ¥, (y) = . ,(w) for
alw e Ptandx,y € #. Now forw € P* and v € & we put

nw(v) = \//w(v) - ww'(v)-
Let A, o (w) = wy(w) — . (w*). We obtain the following equality

nm(uv) - r)w(u) - Uw(U) = Au.v(w)-

It is obvious that the relations 7, (v*) = —n,(v) and | A, ,(w)| < 1 hold; hence the
function 7,, is an element of the space K X (&£, *).

Next we define a metric d(-, -) on the semigroup % . By an elementary transforma-
tion of a word v in the alphabet X we mean an insertion or deletion of some a € X.
It is clear that any two words u and v from % can be connected by some sequence
of elementary transformations; we define the distance d(u, v) between « and v to be
the minimal number of elementary transformations required to connect them. It is
clear that the function d(u, v) is a metric, and that it is preserved by the left and right
actions of #.

LEMMA 1. Suppose that u, v € F with d(u, v) < 1. Then there exists a set of at
most three pairs of elements z;, s; € F such that for all w € P* we have

nw(u) - 7),,,(1)) - Z A:h.v,(w)-

Furthermore, |n,,(1) — n,.(v)| < 2.
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PROOF. We may assume that v is obtained from u by the insertion of one letter.
Thus we have u = u u; and v = u,au,, where a € X. Hence, ¥, (v) = ¥, (uauy) =
V(1) + ¥y (@) + Y (42) + Ly au, (W) + U, (w) and Y, (1) = Y, () + Yo (u2) +
Houy.uy (w). Therefore,

]l/w(v) - ‘l’w(“) = Ww(a) + Hu),au, ('Ll)) + /Jfa,uz(w) — My 4 (LU)
== Mu..auz(u}) + Ha’uz(w) - “u;,u;(w)~

It is easy to see that pt,, 4, (W) + Le..,(w) € {0, 1} and so it follows that ¥, (v) —
¥, (u) € {0, £1}. Since the same holds for w*, we have n,, (v) —n,(v) € {0, £1, £2}.

Moreover,
Nw (V) — Ny (1) = Yy (V) — Yoo (V) — Y (W) + Yo (1)
= ww(v) - ww(u) - ww‘ (U) + ww‘(u)
= /Lu;.aug(w) + /’La‘uz(w) - Mu..uz(w)
= Moy auy (W) — gy (W) + iy, (W)
= Au,.auz(w) + Aa.ug (w) - Aul.uz(w)a
and the lemma is proved. O

COROLLARY 1. Let u,v € F with d(u, v) < k. There exists a set of at most 3k
pairs of elements z;,s; € & such that for all w € P* we have

M) = M) = Y A, (w).

Furthermore, |n,(u) — n, (V)| < 2k.

DEFINITION 6. Let g € G with g 7 1. By subdivision of g we mean an expression
the form

8 =8182"""&m>

where the g; are canonical forms for each i, and g;8,, ¢ Ao U Bo.

LEMMA 2. Suppose that the elements g, t € G satisfy gt ¢ H. Then
d(&(gr), §(g)é(1)) < 3.

PROOF. It is clear that £(gt) = £(g)&(¢) unless g and ¢ are both in B. Writ-
ing g = g\b) and t = b,t,, where b, = g and b, = ¢, we see that £(g)&(r) =
E(g1)x1x28(1)), where x, = £(b,) and x, = £(b,) are elements of X. Furthermore,
E(gt) = §(g1)x:&(1y), where x3 = £(bby) € X. Now &(g)&(¢) can be transformed
into £(g?) by deleting x, and x, and inserting x;. O
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COROLLARY 2. Suppose that the elements g, t € G satisfy gt ¢ H. Then

In.(§(g1)) — 1, (5(R)E()| <6

forall w € P*. Further, there is a set of at most nine pairs of elements z;, s; from F
such that

Nw(E(g0) — nuE@EM) =D A, (w)

forallw € P*. Since n,(£(2)§(1)) — 0w, (E(8)) — nu(§ (1)) = Dgiy ey (W), thereis a
set of at most ten pairs of elements z;, s; such that

Nw(5(g1)) — nuw(§(8)) — nu(5(1) = Z A (w).

For each w € P* we define a function p,, : G = R by p,(g) = n.,(E(g)) for all
g € G. Our next result shows that p,, is a quasicharacter.

PROPOSITION 1. For any x, y from G there exists a set of at most twelve pairs of
elements g;, t; from G such that the relation

Pu(xy) = pu(x) + pu(y) + Z Agign.bup (W)

holds for all w € P*. Hence, we have the following estimate
|)0w(x)’) - pw(x) - Pw()")’ 5 12

PROOF. If ¥y ¢ H the result follows immediately from Corollary 2 above. So we
may assume that Xy € H. Now let x = gz, and y = z,¢ be subdivisions of x and y
such that z,z, € H and §z,2,f ¢ H. Then £(x) = £(g)&(z)), £(y) = E(22)&(r) and
&(z,) = E(z1)*. Hence, we obtain the following relations

771[7(5(/\?)) = nw(g(g)g(zl)) = nw(s(g)) + nw(E(Zl)) + AE(g),E(z.)(w)s
’Iw(s()’)) = nm(s(ZZ)S(t)) = nw(g(t)) + nw(E(ZZ)) + AE(Z:).E(I)(U)),
nw(s(x)) + nw(s(y)) = 77w(€(g)) + nw(g(t)) + AE(K).E(ZU(U)) + AE(::).E(!)(w)~

Now £(gz122) = §(g), since 7,z € H, and so n,(§(xy)) — n,(E(x)) — nw,(§(y))
equals

an'(S(gZIZZI)) - nw(g(gZIZZ)) - nw(g(t)) - AE(SLE(Z])(w) - AE(Z:),E(I)(w)‘

Hence by Corollary 2 (applied with gz;z, in place of g) there is a set of twelve or
fewer pairs g;, ; such that n,,(§(xy)) — 0, (E(x)) =N, (E(Y)) = X, Aggean(w). O
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DEFINITION 7. An element v € & is said to be simple if there is no integer m > 2
such that v = w™ for some w € .Z.

Obviously for any u € & there is an n € N and a simple element w such that
u = w". It is clear that if # ~ v, then u is simple if and only if v is simple, and
u™ ~ v forallm e N.

In {5] the following result was obtained.

LEMMA 3. If v is a simple element from F, then there is w € F such that v ~ w
and H(w) N K(w) = 4.

LEMMA 4. Let v € F be an element of length at least two with v # v*. Then there
existw € P* and n € N such that v ~ w".

PROOF. Suppose that v = w}, where w, is simple. It is clear that w; #* w}. Now
by Lemma 3 we obtain that there is w ~ w; such that H(w) N K(w) = &. O

In [4] the following result was obtained.

THEOREM 2. Let S be a semigroup, and f a quasicharacter of S such that |f (xy) —
f&X)—=fl <cforallx,y € S. Then the function
~ 1 .
f(x)=lim 2—,,f x*)

is well defined and is a pseudocharacter, with If(xy) — f(x) - fA(y)l < 4c for all
x,y €S

COROLLARY 4. Let G be a group, and f a quasicharacter of G such that |f (xy) —
fx)—fW) <cforall x,y € G. Then the function

- 1 -
fG)y=1lm —=f(x")

n-»o00 2N

is well defined and is a pseudocharacter, with If(xy) — f(x) — f(y)l < 4c for all
x,y €G.

PROOF. By Theorem 2 it suffices to show that for each x € G the equality f x =
—f(x) holds. Since f(x") = nf(x) for all x € G and n € N, we obtain f(l) =0.
Hence |f (1) — f (x) — f(x~")| < 4c becomes |f (x) + f (x™)| < 4c forall x € G,
whence it follows that

nlf )+ Fx D = 1F () + F((x7D)] < 4e
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for all x € G and n € N. This is possible only iff(x") = —f(x). Now for each
k > 0 we have f (x7%) = f((x)™") = —f((x*)) = —kf (x), and the corollary is
proved. 0

In particular, it follows from Corollary 4 that p,, is a pseudocharacter of G whenever
w e P*.

PROPOSITION 2. Let C <« G and C € H. Then there exists a pseudocharacter ¢ of
G such that (p‘c # 0.

PROOF. By Theorem 1 there is g € C of the form g = a8, - -, fx with ¢; €
(A\ H)and 8; € (B \ H) for each i, such that if v = £(g) € & thenv # v*.

Replacing g by a conjugate of itself if necessary, by Lemma 4 we may assume that
v = w" for some w € P* and n € N. The pseudocharacter p,, then has the desired
property, since p,,(g*) = nk for all kK € N, and thus 0,,(g) = n # 0. This completes
the proof. O

LEMMA 5. Let ¢ € PX(G), and suppose that jo(xy) — ¢(x) — ¢(¥)] < € for all

x,y € G. Then:
(A) The inequality l(p(x,xz ceeXppl) — Z:’: (p(x,-)l < ne holds for any positive
integer n and any x,, x,, ..., x, € G.

(B) If ¢ is a bounded function, then ¢ = 0.
(C) ¢(a~'ba) = p(b) foranya,b € G.

PROOF. Assertion (A) is easily proved by induction on n. Let us prove (B). If § is
a positive number such that |p(x)| < § for all x € G, then for any positive integer n
we have n|p(x)] = Jo(x")| < &. Therefore ¢(x) = 0, as required.

From (A) it follows that |p(a™'b"a) — p(a™') — ¢(b") — p(a)] < 2¢. Hence
lp(a~'b"a) —p(b")| = |p((a™'ba)") —p(b")| < 2&,and so n|p(a™'ba) —p(b)| < 2.
Since the latter inequality holds forall n > 1, we obtain ¢(a~'ba) = ¢(b). The lemma
is proved. O

Let i and j be distinct elements of I, and put w; = x“xf"xfxf, for each k € N.

Consider the set .# = {w; | k € N}. It can easily be checked that w; is not a subword
of wy for k # [, and also that

3 Hw )N K(w) =¥ forall k,[eN.

Hence |.# N supp p,,| < 1 forall u, v € &# and

4 |.# NsuppA,.| <2 forall u,veZF.
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By Proposition 1 it follows that for any pair of elements x, y from G there are at most
24 elements w in . such that p, (xy) # p,(x) + p,(y). For each g € G and each
integer m > 2, the set

On(g) ={we A | p,(g) #0 (mod m)}
is finite. Denote by y,,(g) the cardinality of O, (g). Evidently,

0,(xy) C 0,(x)U O, () U{w € A | pu(xy) # pu(x) + pu(¥) ).
Hence
(5) Ym(XY) < ym(x) + v (y) + 24.

Similar arguments establish the following assertions (for all x, y € G).
(a) There is a set of at most 36 pairs y;,, ¢; such that

Py T'xy) = pu () + o0 F Pu (D) + pu (M) + Y Az (W),
and since p,(x7") + pu,(y ") + pu(x) + P (¥) = O we see that there are at most 72
elements w € .# such that p,(x "'y~ 'xy) # 0. So
(6) Ym(x~lylyx) < 72,
(b) By Corollary 3, there are at most 12(m — 1) elements y;, ¢; such that

pw(-xm) = mpw(x) + Z Af(y,).f(li)(w)'

Now from (4) we obtain that there are at most 24(m — 1) elements in the set O(x™).
Hence

(7) }’m(X"') < 24("1 - 1)

THEOREM 3. Let V be a finite subset of the free group F such that the verbal
subgroup V(F) is a proper subgroup of F. Then the verbal subgroup V(G) of G has
infinite width.

PROOEF. Suppose that V(F) C F’. Let ¢ € PX(G) and choose r € R such that
lp(xy) —@(x) —@(y)] < rforallx, y € G. By Lemma5

o™y = e Ty T ay) — o7 — () <
for all x, y € G. Since V is finite there is an integer / such that each element of V

is a product of at most / commutators, and we deduce that ¢(g) < (I — 1)r for all
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g € V(G). Hence if wid(V(G)) < oo it follows that the pseudocharacter ¢ is bounded
on V(G). By Lemma 5 we obtain ¢ = 0 on V(G), contradicting Proposition 2.

Now suppose that V(F) € F'. Let Z = {z;, z5, ...} be a set of free generators of
F,and let V = {v,, v, ..., v}. Then there is positive integer n such that each v; is
uniquely expressible in the form

In i lin
®) vi =22 0w,

where l; € Z and u; € F’', and each u; is a word in the alphabet {z;, ..., z,}. Let m
be the highest common factor of the numbers {I; | 1 <i <k, 1 <j <n}, and for
each i let m; be the highest common factor of the numbers {I; | 1 < j <n}. Itis
clear that m is the highest common factor of the numbers {m; | 1 < i < k}. Choose

integers o; such thatm; = 3 77_ oy 1.

We have u; = u;(21, 22, ...,2,). If t is any element of F and %k, ..., k, are any
integers, then u;(t*, t*, ..., t*) = 1, since u; € F’. Hence we obtain
‘U,'(ta", oL ) = githiv | gl peinlin e
and we see that 1™ € V(F) for any ¢t € F. Now as there are integers 8, ..., B such

that 8ym, + - - - + Bim; = m it follows that for all g € F,

m Bimy+-+Bimy

g"=g — gﬂlml . “gﬂunk € V(F).

Since V(F) # F, it follows that m > 2.

From (8) and (5) we obtain

) Y 22 2 <) vz + ym(u) + 240,
i=1

We have |; = mp; for some p; € Z; hence by (7)

(10) Ym(Z") < 24(m — 1).

It is clear that there is ¢ € N such that each u; from (8) is representable as a product
of at most ¢ commutators, and then by (6) and (5) we have

(11 Ym(ui) < 72q +24(q — 1).

Now from (9), (10) and (11) we obtain that there is an / € N such that for any
ue V(G) the relation y,,(#) < I holds. This implies that if V(G) has finite width,
then the function y,, is bounded on V(G). Indeed, if wid V(G) = k, then by (5) for
any g € V(G) we have y,,(g) < 24(k — 1)l
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Let us choose ab; and ab; such that £(ab;) = x;, £(ab;) = x;, and consider the
elements g, = (ab;)*(ab;)*(ab;)*(ab;)* and d;, = g, 8m&3m - - - Gam» Where k € N.
It is clear £(g,;) = w, and £(dy) = Y = WpWapy, - - - Wim. Obviously, d; € V(G) for
all k € N. Now from (3) it follows that there is exactly one occurrence of w; in v,
if i € {m,2m, ..., km}, and no occurrence otherwise. It is easy to see that for any
i,J,k € N the relation g, ., (w;) = 0 holds. It follows that w} does not occur in vy
for any value of i. Hence p,(g:) = 1if w € {w,,, Wom, ..., Win}, and p,(g:) = O for
other elements w € .#. So y,(g:) = k for all k € N and we obtain a contradiction.
This completes the proof. O

COROLLARY 5 (See [8]). Let V be a finite subset of the free group F such that
V(F) # F. Suppose that A and B are nontrivial groups such that the order of B is
at least three, and let G = A * B be the free product. Then the width of the verbal
subgroup V(G) is infinite.
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