
Canad. Math. Bull. Vol. 56 (1), 2013 pp. 148–160
http://dx.doi.org/10.4153/CMB-2011-173-1
c©Canadian Mathematical Society 2011

On the Gras Conjecture for Imaginary
Quadratic Fields

Hassan Oukhaba and Stéphane Viguié

Abstract. In this paper we extend K. Rubin’s methods to prove the Gras conjecture for abelian

extensions of a given imaginary quadratic field k and prime numbers p that divide the number of

roots of unity in k.

1 Introduction

Let k ⊂ C be an imaginary quadratic field, and let Ok be the ring of integers of k.

Let H ⊂ C be the Hilbert class field of k. Let K ⊂ C be a finite abelian extension of

k, and write G for the Galois group of K/k, G := Gal(K/k). Let OK and O
×
K be the

ring of integers of K and the group of units of OK , respectively. In [8, Theorem 3.3],

K. Rubin applied the technique of Euler systems to prove the Gras conjecture for K,

when H ⊂ K and for all prime number p, p ∤ wH[K : k], where wH is the number

of roots of unity in H. Soon after he generalized his result in [9, Theorem 1] to all K
(that is, without the assumption H ⊂ K) and all p, p ∤ wk[K : k], where wk is the

number of roots of unity in k. The Gras conjecture is a very subtle information about

the ideal class group, used for example, in the proof of [8, Theorem 10.3] as the last

step in the direction of the main conjecture.

In this paper we complete the result of Rubin. Indeed, we prove the Gras conjec-

ture for those prime numbers p |wk and p ∤ [K : k]. As a first step, we prove a weak

form of the Gras conjecture for every prime number p ∤ [K : k]. More precisely, let

EK be the group of units of K defined in the following section (see the end of Section

4 for a description of the elements of EK as elliptic units, and also for a comparison

with the group of elliptic units considered by Rubin in [8, 9]). Let Cl(K) be the ideal

class group of K, and let g := [K : k]. Then, by applying the elementary approach

used in [13] (hence without using Euler systems), we prove the following formula for

every nontrivial, irreducible, rational character Ψ of G:

(1.1)
[

eΨ
(

Z[g−1] ⊗Z O
×
K

)
: eΨ

(
Z[g−1] ⊗Z EK

)]
= #

[
eΨ
(

Z[g−1] ⊗Z Cl(K)
)]
,

where eΨ is the idempotent of Z[g−1][G] associated with Ψ. By #X we mean the

cardinality of the finite set X. Of course the formula (1.1) is already known if we

replace g by wkg. This is a consequence of [9, Theorem 1]. Let us remark that the

product of (1.1) for all the nontrivial irreducible rational characters of G yields the
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equality

(1.2)
[

Z[g−1] ⊗Z O
×
K : Z[g−1] ⊗Z EK

]
=

#
(

Z[g−1] ⊗Z Cl(K)
)

#
(

Z[g−1] ⊗Z Cl(k)
) ,

which has been known for a long time. Indeed, (1.2) is a straightforward consequence

of [1, Théorème 5]. It was the ultimate ingredient used by Rubin to prove the Gras

conjecture.

In Sections 4 and 5, we define our Euler systems for p |wk and establish all the

results needed to apply them to the p-part of the ideal class group of K. Their ap-

plication gives Theorem 5.4, which, with the help of (1.1) (in fact (1.2) is sufficient),

implies the following theorem.

Theorem 1.1 Let p be a prime number such that p |wk and p ∤ [K : k]. Let χ be a
nontrivial irreducible Zp-character of G. Then

(1.3)
[

eχ
(

Zp ⊗Z O
×
K

)
: eχ

(
Zp ⊗Z EK

)]
= #

[
eχ
(

Zp ⊗Z Cl(K)
)]
,

where eχ is the idempotent of Zp[G] associated with χ.

In a forthcoming paper we shall apply Theorem 1.1 to the main conjecture for

prime numbers p, p |wk.

2 The Group EK

It is well known that Stark conjectures are satisfied for abelian extensions of imagi-

nary quadratic fields. Moreover, the Stark units are constructed by using appropriate

elliptic units. On the other hand, the groups of elliptic units are generated by the

norms of these Stark units.

For each nonzero ideal m of Ok, we denote by Hm ⊂ C the ray class field of k
modulo m. Suppose m 6∈ {(0),Ok}, then Stark proved in [11] the existence of an

element ε = εm ∈ Hm characterized, up to a root of unity, by the following three

properties

(i) Let wm be the number of roots of unity in Hm. Then the extension Hm(ε1/wm )/k
is abelian.

(ii) If m is divisible by two prime ideals, then ε is a unit of OHm
. If m = qe, where q

is a prime ideal, then

εOHm
= (q)

wm
wk

m ,

where (q)m is the product of the prime ideals of OHm
that divide q.

(iii) Let |z| = zz̄ for any complex number z, where z̄ is the complex conjugate of z.

Then

(2.1) L ′
m(0, χ) = − 1

wm

∑

σ∈Gal(Hm/k)

χ(σ) ln |εσ|

for all the complex irreducible characters χ of Gal(Hm/k).
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Here s 7→ Lm(s, χ) is the L-function associated with χ, defined for the complex num-

bers s such that Re(s) > 1, by the Euler product

Lm(s, χ) =
∏
p∤m

(
1 − χ(σp)N(p)−s

)−1
,

where p runs through all prime ideals of Ok not dividing m. For such ideals, σp

and N(p) are the Frobenius automorphism of Hm/k and the order of the field Ok/p,

respectively.

For any finite abelian extension L of k, we denote by µL the group of roots of unity

in L, by wL the order of µL, and by FL ⊂ Z[Gal(L/k)] the annihilator of µL. The

description of FL given in [12, p. 82, Lemme 1.1] and property (i) of εm imply that

for any η ∈ FHm
there exists εm(η) ∈ Hm such that

εm(η)wm = εηm.

Definition 2.1 Let PK be the subgroup of K× generated by µK and by all the norms

NHm/Hm∩K (εm(η)),

where m is any nonzero proper ideal of Ok and η is any element of FHm
. By definition,

EK := PK ∩ O
×
K .

At the end of section 4 we give another description of EK as a group of elliptic

units.

3 The Weak Gras Conjecture for EK

Let p ∤ g be a prime number, and let Z(p) be the localization of Z at p. Let Op be

the integral closure of Z(p) in Q(µg). Remark that Op is a (semi-local) principal ring.

Moreover, if ζ ∈ µg is such that ζ 6= 1, then (1−ζ) ∈ O
×
p . Let us set v∞(z) := − ln |z|

for all z ∈ C×. Let ℓK : K× → R[G] be the G-equivariant map defined by

ℓK(x) =
∑

σ∈G

v∞(xσ)σ−1.

Let Ĝ be the group of complex irreducible characters of G.

Lemma 3.1 Let χ ∈ Ĝ be such that χ 6= 1. Let χpr be the character of Gal(Hfχ/k)

defined by χ, where fχ is the conductor of the fixed field Kχ of ker(χ). Then the following
equality holds in C[G]

(3.1) OpℓK(EK )eχ = OpFK L ′
fχ

(0, χ̄pr)eχ.
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Proof Formula (3.1) is a direct consequence of (2.1) and can be proved in the same

way as [13, formula (3.2)]. Indeed, let m be a nonzero proper ideal of Ok, and let

η ∈ FHm
. Let

εK,m := NHm/Hm∩K (εm) and εK,m(η) := NHm/Hm∩K(εm(η)).

Then

wmℓK (εK,m(η)) = resHm

K (η)ℓK(εK,m),

where resHm

K : FHm
→ FK is the natural restriction map. Since this map is surjective

we can proceed now exactly as in the proof of the [13, formula (3.2)].

To prove formula (1.1) we shall use the generalized index of Sinnott; see [10, §1,

page 187]. Let V be an F-vector space of finite dimension d, where F = Q or F = R.

Let M and N be two lattices of E, that is, two free Z-submodules of E, of rank d such

that FM = FN = V . Then we define the index (M : N) by

(M : N) = | det(γ)|,

where γ is any automorphism of the F-vector space E such that γ(M) = N. If N ⊂
M, then (M : N) coincides with the usual index [M : N]. We also have the following

transitivity formula:

(M : P) = (M : N)(N : P).

This leads to the identity

(M : N) =
[M + N : N]

[M + N : M]
,

which may be used as a definition of (M : N). We refer the reader to [10] for more

details about this generalized index.

Remark 3.2 By the Dirichlet Theorem we know that ℓK(O×
K ) is a lattice of

R[G](1 − e1), where e1 is the idempotent associated with the trivial character of G. In

particular, for every nontrivial, irreducible, rational character Ψ of G, the Z-module

ℓK (O×
K )eΨ is a lattice of R[G]eΨ. This implies that for every nontrivial χ ∈ Ĝ, the

Op-module OpℓK(O×
K )eχ is free of rank one. Thus, there exists Rχ ∈ C× such that

OpℓK(O×
K )eχ = RχOpeχ.

Lemma 3.3 Let Ψ be a nontrivial irreducible rational character of G. Then there exists
u ∈ O

×
p such that

(
Z[G]eΨ : ℓK(O×

K )eΨ
)
= u

∏
χ|Ψ

Rχ.
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Proof Let γ be an automorphism of the R-vector space eΨR[G] such that 0 < det(γ)

and γ(Z[G]eΨ) = ℓK (O×
K )eΨ. Let (bχ)χ|Ψ be a Z-basis of Z[G]eΨ. Then (bχ)χ|Ψ is

an Op-basis of Op[G]eΨ. Since (eχ)χ|Ψ is also an Op-basis of Op[G]eΨ, the automor-

phism β1 of the C-vector space C[G]eΨ, defined by

β1(bχ) = eχ, χ|Ψ,

is such that det(β1) ∈ O
×
p . In the same manner, since (γ(bχ))χ|Ψ and (Rχeχ)χ|Ψ both

are Op-basis of OpℓK (O×
K )eΨ, the automorphism β2 of C[G]eΨ, defined by

β2(γ(bχ)) = Rχeχ, χ|Ψ,

is such that det(β2) ∈ O
×
p . Let γ ′ be the automorphism of C[G]eΨ defined by

γ ′(eχ) = Rχeχ for all χ|Ψ. Then det(γ ′) =
∏

χ|Ψ Rχ. Let us extend u to C[G]eΨ

by linearity. Since (Z[G]eΨ : ℓK (O×
K )eΨ) = det(γ) and γ ◦ β−1

1 = β−1
2 ◦ γ ′, the

lemma follows.

Lemma 3.4 Let F ⊆ K be an extension of k, and let RF be the regulator of F. We
denote by ΞF the set of χ ∈ Ĝ such that χ is trivial on Gal(K/F). Then there exists
v ∈ O

×
p such that

(3.2) RF = v
∏
χ∈ΞF

χ 6=1

Rχ.

Proof It is easy to see that RF = (IF : ℓF(O×
F )), where IF is the augmentation ideal of

Z[Gal(F/k)]. Let

D := Gal(K/F) and s(D) :=
∑

σ, σ ∈ D.

Let corK/F : Z[Gal(F/k)] → Z[G] be the corestriction map. Then we have

(
IF : ℓF(O×

F )
)
=

(
corK/F(IF) : corK/F

(
ℓF(O×

F )
))

=
(

s(D)IK : ℓK(O×
F )

)
.

But the group ℓK(O×
F )/s(D)ℓK(O×

K ) is finite and is annihilated by #D. Thus,

(
IF : ℓF(O×

F )
)
= w

(
s(D)IK : s(D)ℓK(O×

K )
)
,

for some unit w ∈ O
×
p . To get formula (3.2) we proceed now exactly as in the proof

of Lemma 3.3.

Theorem 3.5 Let Ψ be a nontrivial, irreducible, rational character of G. Then

[
eΨ
(

Z[g−1] ⊗Z O
×
K

)
: eΨ

(
Z[g−1] ⊗Z EK

)]
= #

(
eΨ
(

Z[g−1] ⊗Z Cl(K)
))
.
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Proof Since Kχ does not depend on the choice of χ|Ψ, let us set Kψ := Kχ. Let ΞΨ

be the set of χ ∈ Ĝ such that ker(χ) strictly contains Gal(K/KΨ). For any I ⊆ ΞΨ,

we define

KI :=

{
KΨ if I = ∅,⋂
χ∈I Fχ if I 6= ∅.

For any I ⊆ ΞΨ let ζKI
(resp. ζk) be the Dedekind zeta function of KI (resp. k), and

let ζ̃KI
(0) be the first nonzero coefficient of the Taylor expansion of ζKI

(s) at s = 0.

We also set ΞI := ΞKI
. It is well known that ζKI

has a zero of order [KI : k] − 1 at 0,

and that for any nontrivial χ ∈ Ĝ, s 7→ Lfχ(s, χpr) has a zero of order 1 at 0. Then

(3.3) −hIRI

wI
= ζ̃KI

(0) = ζk(0)
∏
χ∈ΞI

χ 6=1

L ′
fχ

(0, χpr),

where hI := # (Cl(KI)), wI := #
(
µKI

)
, and RI is the regulator of KI . For any χ ∈ Ĝ,

let hχ ∈ Op and wχ ∈ Op be such that

Ophχ = FittOp

(
eχ(Op ⊗Z Cl(K))

)
and Opwχ = FittOp

(
eχ(Op ⊗Z µK )

)
.

By the inclusion-exclusion principle, as in the proof of [13, Proposition 3.2], we ob-

tain from (3.3) and Lemma 3.4 the formula

(3.4) Op

∏
χ|Ψ

L ′
fχ

(0, χ̄pr) = Op

∏
χ|Ψ

hχw−1
χ Rχ.

Let us remark that

(3.5) OpFK eχ = Opwχeχ

for all χ ∈ Ĝ. Indeed, since µK is a cyclic Z [G]-module, we have FK = FittZ[G] (µK ),

and then

OpFK = FittOp[G](Op ⊗Z µK ) = ⊕
χ∈Ĝ

FittOp

(
eχ(Op ⊗Z µK )

)
eχ,

which implies (3.5). Therefore, proceeding as in the proof of Lemma 3.3, one can

show from Lemma 3.1 and (3.5) that

(3.6) Op

(
Z[G]eΨ : ℓK (EK )eΨ

)
= Op

∏
χ|Ψ

wχL ′
fχ

(0, χ̄pr).

From (3.6) and (3.4), we obtain

(3.7) Op

(
Z[G]eΨ : ℓK (EK )eΨ

)
= Op

∏
χ|Ψ

hχRχ = Op#
(

eΨ(Z(p) ⊗Z Cl(K))
) ∏
χ|Ψ

Rχ.

From (3.7) and Lemma 3.3, we have

(3.8) Op

[
ℓK (O×

K )eΨ : ℓK (EK )eΨ
]
= Op#

(
eΨ(Z(p) ⊗Z Cl(K))

)
.
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Since p is prime to g, (3.8) gives

Op

[
Z[g−1]ℓK(O×

K )eΨ : Z[g−1]ℓK(EK )eΨ
]
= Op#

(
eΨ(Z[g−1] ⊗Z Cl(K))

)
.

This being true for every prime p ∤ g, and since the integers we are comparing are

prime to g, we have

[
Z[g−1]ℓK(O×

K )eΨ : Z[g−1]ℓK(EK )eΨ
]
= #

(
eΨ(Z[g−1] ⊗Z Cl(K))

)
.

But O×
K /EK ≃ ℓK(O×

K )/ℓK (EK ), and the theorem follows.

4 The Euler System

For any finite abelian extension F of k, and any fractional ideal a of k prime to the

conductor of F/k, we denote by (a, F/k) the automorphism of F/k associated with a

by the Artin map. If a ⊂ Ok, then we denote by N(a) the cardinality of Ok/a. Let I be

the group of fractional ideals of k, and let us consider its subgroup P := {xOk, x ∈
k×}. Let H := H(1) ⊂ C be the Hilbert class field of k. Then the Artin map gives an

isomorphism from Cl(k) := I/P into Gal(H/k). Let p be a prime number such that

p|wk, and let Clp(k) be the p-part of Cl(k). Then fix a1, . . . , as, a finite set of ideals of

Ok such that

Clp(k) = 〈ā1〉 × · · · × 〈ās〉,

where 〈āi〉 6= 1 is the group generated by the class āi of ai in Cl(k). If ni is the order

of 〈āi〉, then (ai)
ni = aiOk with ai ∈ Ok. If Clp(k) = 1, then we set s = 1, a1 = Ok,

and a1 = 1.

Let p|wk be a prime number as above, and let M be a power of p. Let µM be the

group of M-th roots of unity in C. Then we define

KM := K
(
µM , (O

×
k )1/M

)
.

Moreover, we denote by L the set of prime ideals ℓ of Ok such that ℓ splits completely

in the Galois extension KM(a
1/M
1 , . . . , a

1/M
s )/k. Exactly as in [9, Lemma 3] or in [2,

Lemma 3.1], we have the following lemma.

Lemma 4.1 For each prime ℓ ∈ L there exists a cyclic extension K(ℓ) of K of degree
M, contained in the compositum K.Hℓ, unramified outside ℓ, and such that K(ℓ)/K is
totally ramified at all primes above ℓ.

Proof See, for instance, the proof of [2, Lemma 3.1].

Let S be the set of squarefree ideals of Ok divisible only by primes ℓ ∈ L. If

a = ℓ1 · · · ℓn ∈ S, then we set K(a) := K(ℓ1) · · ·K(ℓn) and K(Ok) := K. If g is

an ideal of Ok, then we denote by S(g) the set of ideals a ∈ S that are prime to g.

Following Rubin we define an Euler system to be a function α : S(g) → C×, such

that
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E1 α(a) ∈ K(a)×;

E2 α(a) ∈ O
×
K(a); if a 6= Ok;

E3 NK(aℓ)/K(a)(α(aℓ)) = α(a)1−Fr(ℓ)−1

, where Fr(ℓ) is the Frobenius of ℓ in

Gal(K(a)/k);

E4 α(aℓ) ≡ α(a)Frob(ℓ)−1(N(ℓ)−1)/M modulo all primes above ℓ.

For the convenience of the reader we recall now the construction of Euler systems

by using elliptic units. To this end we use the elliptic functions Ψ( · ; L, L ′) : z 7→
Ψ(z; L, L ′) introduced by G. Robert in [4, 6], where L ⊂ L ′ are lattices of C such that

the index [L ′ : L] is prime to 6. As proved by Robert, for instance in [3, 5], if m is a

nonzero proper ideal of Ok and g is an ideal of Ok prime to 6m, then Ψ(1; m, g−1m) ∈
Hm. Let us denote by rm the order of the kernel of the natural map µk → (Ok/m)×,

and let m ′ be a nonzero proper ideal of Ok such that m|m ′, m ′ is divisible by the same

prime ideals that divide m and rm ′ = 1, then

NHm ′/Hm

(
Ψ(1; m ′, g−1m ′)

)wm
= ε

N(g)−(g,Hm/k)
m .

In particular, PK is generated as an abelian group by µK and by all the norms

Ψm(g) := NHm/Hm∩K (Ψ(1; m, g−1m)),

where m and g are any nonzero ideals of Ok such that m 6= Ok and g is prime to 6m.

If m = nq, where n 6= Ok and q is a prime ideal of Ok, then

NHm/Hn
(Ψ(1; m, g−1m))

rn
rm =

{
Ψ(1; n, g−1n) if q|n
Ψ(1; n, g−1n)1−(q,Hn/k)−1

if q ∤ n.

Moreover, if q ∤ n, then Ψ(1; m, g−1m)N(q) ≡ Ψ(1; n, g−1n) modulo all primes above

q. Therefore, the map α : S(mg) → C×, defined by

α(a) := NKHma/K(a)(Ψ(1; ma, g−1ma)),

is an Euler system satisfying α(1) = Ψm(g). In particular, we have the following

corollary.

Corollary 4.2 If u ∈ EK , then there exists an ideal f of Ok and an Euler system
α : S(f) → C× such that α(1) = u

Proof In view of the discussion above we only have to check the corollary for the

roots of unity in K. We leave this as an exercise or direct the reader to the proof of

[8, Proposition 1.2].

Remark 4.3 We recall that the group of elliptic units considered by Rubin in [8, 9]

is the subgroup of O×
K generated by µK and by all Ψm(g)σ−1, where σ ∈ G and m

and g are as above. Let us denote this group by CK . It is clear that CK ⊂ EK and

(EK )g ⊂ CK , and thus

Z[g−1] ⊗Z EK = Z[g−1] ⊗Z CK .
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5 The Gras Conjecture

Exactly as in [8, Proposition 2.2], one can prove that for any Euler system α : S(g) →
C× there is a natural map

(5.1) κα : S(g) −→ K×/(K×)M , κα(a) ≡ α(a)Da modulo (K×)M .

Let I = ⊕λZλ be the group of fractional ideals of K written additively. If ℓ is a

prime ideal of Ok, then we define Iℓ := ⊕λ|ℓZλ. If y ∈ K×, then we denote by

(y)ℓ ∈ Iℓ, [y] ∈ I/MI and [y]ℓ ∈ Iℓ/MIℓ the projections of the fractional ideal

(y) := yOK . Let us suppose that ℓ ∈ L. Let λ ′ be a prime ideal of OK(ℓ) above ℓ, and

let π ∈ λ ′ − (λ ′)2. Then π1−σℓ has exact order M in the cyclic group (OK(ℓ)/λ
′)×,

because K(ℓ)/K is cyclic, totally ramified at λ := λ ′ ∩ OK . In particular, using the

isomorphism OK(ℓ)/λ
′ ≃ OK/λ, there exists xλ ∈ (OK/λ)× such that the image of

π1−σℓ in (OK/λ)× is equal to (xλ)d, where d := (N(ℓ) − 1)/M. Let us remark that

the projection of xλ in (OK/λ)×/((OK/λ)×)M is well defined, does not depend on π,

and, in fact, has exact order M. Thus, the isomorphism OK/ℓOK ≃ ⊕λ|ℓOK/λ allows

us to define a G-equivariant isomorphism

ϕ̂ℓ : (OK/ℓOK )×/((OK/ℓOK )×)M −→ Iℓ/MIℓ

such that the image of an element x := ⊕λ|ℓ(xλ)eλ is ϕ̂ℓ(x) := ⊕λ|ℓeλλ. Let us

consider the map

ψℓ : K(ℓ)× −→ (OK/ℓOK )×/((OK/ℓOK )×)M ,

which associates with z the sum ⊕λ|ℓzλ such that the image of z1−σℓ in (OK/λ)× is

equal to (zλ)d. Let ϕℓ := −ϕ̂ℓ, then

(ϕℓ ◦ ψℓ)(x) = [NK(ℓ)/K(x)]ℓ.

The map ϕℓ induces a homomorphism {y ∈ K×/(K×)M , [y]ℓ = 0} → Iℓ/MIℓ,

which we also denote by ϕℓ. Then, as in [8, Proposition 2.4], one can prove that for

any Euler system α : S(g) → C×, and any a ∈ S(g), such that a 6= 1

(5.2) [κα(a)]ℓ =

{
0 if ℓ ∤ a,

ϕℓ(κα(a/ℓ)) if ℓ|a.

In the sequel, if p is a prime number such that p ∤ [K : k], χ a nontrivial irreducible

Zp-character of G, and Π is a Zp[G]-module, then we define Πχ := eχΠ. If Π is a

Z[G]-module, then we define Πχ := eχ(Zp ⊗Z Π). Before proving Theorem 1.1 we

first need to prove the analogue of [9, Theorem 4] and [8, Theorem 3.1]. For this, if

p |wk is a prime number and M is a p-power, then we set

K ′ := KM

(
a

1/M
1 , . . . , a1/M

s

)
.

https://doi.org/10.4153/CMB-2011-173-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-173-1


On the Gras Conjecture for Imaginary Quadratic Fields 157

Lemma 5.1 Let p be a prime number such that p |wk, and let M ≥ p be a power of p.
Let us consider the natural map

Θ : K×/(K×)M −→ K×
M/(K×

M )M .

(i) If p = 3 or (p = 2 and µ4 ⊂ K) or M = 2, then ker(Θ) = O
×
k /(O×

k )M .
(ii) If 4 |M and wk ∈ {2, 6}, then ker(Θ) is generated by the projections in

K×/(K×)M of O×
k and 2M/2

In particular, ker(Θ) is annihilated by [K : k] − s(G), where s(G) :=
∑
σ, σ ∈ G.

Furthermore, since K ′/KM is a Kummer extension and a1, . . . , as are elements of k, the
kernel of the natural map

K×/(K×)M −→ K ′×/(K ′×)M

is also annihilated by [K : k] − s(G).

Proof Let x ∈ K× ∩ (K×
M )M . If p = 3, then KM = K(µ3M). By [7, Lemma 5.7(i)] we

have x3 ∈ (K×)3M , that is to say, x ∈ µ3(K×)M ⊂ µk(K×)M . If p = 2 and wk = 4,

then KM = K(µ4M). Again by [7, Lemma 5.7(i)] we deduce that x ∈ µk(K×)M .

Suppose now that p = 2 and wk ∈ {2, 6}. Then KM = K(µ2M). By using the

same arguments as before, we see that x ∈ µk(K(µ4)×)M . If µ4 ⊂ K or M = 2,

we are done. Let us assume that µ4 6⊂ K and 4|M, and write x = zMζ , for some

z ∈ K(µ4) and ζ ∈ µk. Let σ be the unique nontrivial automorphism of K(µ4)/K.

If zσ−1 ∈ µ2, then it is easy to check that x ∈ µk(K×)M . Suppose we have the case

zσ−1 = i, where i2 = −1. Since σ(i) = −i and z = a + ib, where a, b ∈ K,

the equation a − ib = σ(z) = i(a + ib) implies that b = −a, z = a(1 − i) and

x = aM2M/2(−1)M/4ζ . The complex number ζ8 := (1 + i)
√

2/2 is a root of unity

of order 8. An easy computaion shows that we can not have zσ−1 = ζ8. This proves

assertions (i) and (ii). The rest of the lemma is straightforward.

Lemma 5.2 Suppose p is a prime number such that p ∤ [K : k] and p|wk. Let M be
a power of p. Let χ be a nontrivial irreducible Zp-character of G. Let Hχ be the abelian
extension of K corresponding to the χ-part Cl(K)χ. Then Hχ ∩ K ′ = K.

Proof The group G acts trivially on Gal(Hχ ∩ KM/K) because KM is abelian over

k. On the other hand, Gal(Hχ ∩ KM/K) is a G-quotient of Gal(Hχ/K) ≃ Cl(K)χ.

This implies that Hχ ∩ KM = K, since χ 6= 1. In addition, if p ∤ [H : k], then

K ′ = KM . In particular we have proved that Hχ ∩ K ′ = K in case p ∤ [H : k]. Let

E := KM(Hχ ∩ K ′). By Kummer theory we deduce from the inclusion E ⊂ K ′ that

E = KM(V 1/M), where V is a subgroup of the multiplicative group 〈a1, . . . , as〉 ⊂ k×.

If p |[H : k], then G acts on Gal(E/KM) via the trivial character. This implies that

Gal(E/KM) = 1 because this group is isomorphic to Gal(Hχ ∩ K ′/K) on which G

acts via χ 6= 1. The proof of the lemma is now complete.

Theorem 5.3 Suppose p is a prime number such that p ∤ [K : k] and p |wk. Let M be a
power of p. Let χ be a nontrivial irreducible Zp-character of G. Let β ∈ (K×/(K×)M)χ
and A be a Zp[G]-quotient of Cl(K)χ. Let m be the order of β in K×/(K×)M , W the G-
submodule of K×/(K×)M generated by β, H the abelian extension of K corresponding
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to A, and L := H∩K ′(W 1/M). Then there is a Z[G] generator c ′ of Gal(L/K) such that
for any c ∈ A whose restriction to L is c ′, there are infinitely many prime ideals λ of OK

of degree one such that

(i) the projection of the class of λ in A is c;
(ii) if ℓ := λ ∩ Ok then ℓ ∈ L;
(iii) [β]ℓ = 0 and there is u ∈ (Z/MZ[G])×χ such that ϕℓ(β) = (M/m)uλ.

Proof We follow [8, Theorem 3.1]. Since W ⊂ (K×/(K×)M)χ and χ 6= 1,

we deduce from Lemma 5.1 that the Galois group of the Kummer extension

K ′(W 1/M)/K ′ is isomorphic as a Z[Gal(KM/k)]-module to Hom(W, µM). But

W ≃ (Z/mZ[G])χ, which is a direct factor of (Z/mZ)[G]. On the other hand,

Hom((Z/mZ)[G], µM) is Z[Gal(KM/k)]-cyclic, generated for instance by the group

homomorphism Ψ : (Z/mZ)[G] → µM defined by Ψ(1) = ζ and Ψ(g) = 1, for

g 6= 1, where ζ ∈ µM is a primitive m-th root of unity. Therefore, we can find

τ ∈ Gal(K ′(W 1/M)/K ′), which generates Gal(K ′(W 1/M)/K ′) over Z[Gal(KM/k)].

The restriction c ′ of τ to L is a Z[G]-generator of Gal(L/K) ≃ Gal(LK ′/K ′) by

Lemma 5.2. Let c ∈ Gal(H/K) = A be any extension of c ′ to H. Then one can find

σ ∈ Gal(HK ′(W 1/M)/K) such that

σ|H = c and σ|K ′(W 1/M ) = τ .

By the Chebotarev density theorem there exist infinitely many primes λ of OK whose

Frobenius in Gal(HK ′(W 1/M)/K) is the congugacy class of σ, and such that ℓ :=

λ∩Ok is unramified in K ′(W 1/M)/k. Now it is immediate that (i) and (ii) are satisfied.

The rest of the proof is exactly the same as the proof of [8, Theorem 3.1].

Theorem 5.4 Suppose p is a prime number such that p ∤ [K : k] and p |wk. Let χ be
a nontrivial irreducible Zp-character of G. Then we have

(5.3) #Cl(K)χ | #(O×
K /EK )χ.

Proof We proceed exactly as in the proofs of [8, Theorem 3.2] or [2, Theorem 4.4].

Let χ̂ be a Q p-irreducible character of G such that χ̂|χ, and let χ̂(G) := {χ̂(σ), σ ∈
G}. Then the ring R := Zp[G]χ is isomorphic to Zp[χ̂(G)], which is the ring of

integers of the unramified extension Qp[χ̂(G)] of Qp. Thus, R is a discrete valuation

ring. Moreover, the R-torsion of any R-module is equal to its Zp-torsion. Since χ 6=
1, Dirichlet unit theorem implies that the quotient (O×

K )χ/(µK )χ is a free R-module

of rank 1. Let us define

M := p#(O×
K /EK )χ#Cl(OK )χ.

Let µ, U , and V be the images of µK , O×
K , and EK in K×/(K×)M , respectively. We

deduce from the above, that Uχ/µχ is a free R/MR-module of rank 1. But since

(5.4) Uχ/Vχ ≃ (O×
K )χ/(EK )χ ≃ R/tR

for some divisor t of M, there exists ξ ∈ Uχ giving an R-basis of Uχ/µχ and such

that ξt ∈ (EK )χ. In particular, ξ has order M in K×/(K×)M . By Corollary 4.2
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there exists an ideal g of Ok and an Euler system α : S(g) → C×, such that the map

κ := κα defined by (5.1) satisfies κ(1) = ξt . We define inductively classes c0, . . . , ci ∈
Cl(OK )χ, prime ideals λ1, . . . , λi of OK , coprime with g, and ideals a0, . . . , ai of Ok

such that c0 = 1 and a0 = 1. Let i ≥ 0, and suppose that c0, . . . , ci and λ1, . . . , λi

(if i ≥ 1) are defined. Then we set ai =
∏

1≤n≤i ℓn (if i ≥ 1), where ℓn := λn ∩ Ok.

Moreover:

• If Cl(OK )χ 6= 〈c0, . . . , ci〉G, where 〈c0, . . . , ci〉G is the G-module generated

by c0, . . . , ci , then we define ci+1 to be any element of Cl(OK )χ whose image in

Cl(OK )χ/〈c0, . . . , ci〉G is nontrivial and is equal to a class c which restricts to the

generator c ′ of Gal(L/K) in Theorem 5.3 applied to β := κ(ai)χ, the image of κ(ai)

in (K×/(K×)M)χ, and to A := Cl(OK )χ/〈c0, . . . , ci〉G. Also we let λi+1 be any prime

ideal of OK prime to g and satisfying Theorem 5.3 with the same conditions.
• If Cl(OK )χ = 〈c0, . . . , ci〉G, then we stop.

This construction of our classes c j implies that the ideals ℓ j := λ j ∩ Ok ∈ S(g). Let

mi be the order of κ(ai)χ in K×/(K×)M , and let ti := M/mi . By Theorem 5.3(iii) we

have ϕℓi+1
(κ(ai)χ) = utiλi+1 for some u ∈ Z/MZ[G]×χ . But ai+1 = aiℓi+1. Thus

(5.5) [κ(ai+1)χ]ℓi+1
= utiλi+1,

thanks to (5.2). Now, by the definition of ti+1, the fractional ideal of OK generated

by κ(ai+1)χ is a ti+1-th power. Thus, we must have ti+1|ti . Actually, we can say more.

Indeed, there exist ζ ∈ µK and z ∈ K× such that κ(ai+1)χ = ζzti+1 . Therefore, (5.2)

and (5.5) imply

(5.6) zOK = (λi+1)uti/ti+1

( i∏
j=1

λ
u j

j

)
bM/ti+1 ,

where u j ∈ Zp[G] for all j ∈ {1, . . . , i} and b is a fractional ideal of OK . But we

see from (5.4) that t0|#(O×
K /EK )χ, and since ti+1|t0, the integer M/ti+1 annihilates

Cl(OK )χ. The identity (5.6) then implies

(5.7) (ti/ti+1)ci+1 ∈ 〈c0, . . . , ci〉G.

Let dim(χ) := [Qp[χ̂(G)] : Qp], then (5.7) implies

#Cl(OK )χ

∣∣∣
i∏

j=1

(t j−1/t j)
dim(χ)

∣∣∣ t
dim(χ)
0 = #(O×

K /EK )χ.

Proof of Theorem 1.1 Let the hypotheses and notation be as in Theorem 1.1. Let

Ψ be the irreducible rational character of G such that χ|Ψ. Formula (1.1) may be

written as follows ∏
χ ′|Ψ

#Cl(K)χ ′ =
∏
χ ′|Ψ

#(O×
K /EK )χ ′ ,

where χ ′ runs over the irreducible Zp-characters of G such that χ ′|Ψ. Moreover, the

formula (5.3) is satisfied for such characters χ ′, since χ 6= 1. This implies (1.3).
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