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Abstract

We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n
by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent
symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent
symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of
an (n — l)-edge colouring of Kn (n even), and for an n-edge colouring of Kn (n odd) in which the colours
assigned to the edges incident with two vertices are specified in advance.

2000 Mathematics subject classification: primary 05B15.

1. Introduction

An n by n (partial) latin square is an n by n array in which each cell contains (at
most) one symbol, chosen from an n-set, such that each symbol occurs (at most) once
in each row and (at most) once in each column. A partial latin square is said to be
completed to (or embedded in) a latin square if its empty cells are filled to produce a
latin square. There exist many results on completions or embeddings of partial latin
squares, see [2, Sections II. 1.6 and IV.17]. Perhaps two of the best known relate to
the Evans Conjecture and Hall's Marriage Theorem [4]. In 1960, Evans conjectured
that any partial n by n latin square with at most n — 1 filled cells can be completed to
a latin square. The conjecture was proved in 1981 by Smetaniuk [7].

An m by n latin rectangle is an m by n array in which each cell contains one
symbol, chosen from an n-set, such that each symbol occurs once in each row and at
most once in each column. An m by n latin rectangle may be thought of as a partial
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110 Darryn Bryant and C. A. Rodger [2]

n by n latin square in which the first m rows are filled and the remaining cells are
empty. An easy corollary of Hall's Theorem is that any m by n latin rectangle can be
completed to an n by n latin square.

A latin square is symmetric if for i ^ j , the symbol in cell (i, j) is also in cell (j, i).
Consider the more difficult problem of completing latin rectangles to symmetric latin
squares. If m = 1, it is trivial to complete any m by n latin rectangle to a symmetric
latin square. Just take any n by n symmetric latin square and permute the symbols so
that the first row is the 1 by n latin rectangle. However, the question is far from trivial
for m > 1. In this paper we prove necessary and sufficient conditions under which a
2 by n latin rectangle can be completed to a symmetric latin square; see Theorem 3.3.

A latin square is unipotent if every diagonal cell contains the same symbol. If
there exists an n by n unipotent symmetric latin square, then n is necessarily even
(since the number of occurrences of each symbol, other than the symbol which occurs
on the diagonal, must be even). A latin square is idempotent if symbol i is in cell
(i, i) for all i. If there exists an n by n idempotent symmetric latin square, then n is
necessarily odd (since each symbol occurs once on the diagonal and an even number
of times not on the diagonal). We also prove necessary and sufficient conditions
under which a 2 by n latin rectangle can be completed to a unipotent symmetric latin
square (see Theorem 3.1), and necessary and sufficient conditions under which a 1
by n latin rectangle can be completed to an idempotent symmetric latin square (see
Theorem 3.2).

These results extend a rich literature of related embedding results. In the containing
n by n latin square L, when either symmetry has been required of L, or the diagonal
of L has been prescribed in some way, then results in the literature have limited the
filled cells to all occur in cells (i,j), where i,j < r for some r < n. For example,
Cruse has settled such an embedding problem in the case where L is required to be
symmetric [3]. It turns out that if n is odd then because of the limitation on where
the filled cells occur, this result also solves the embedding problem in the case where
L is both symmetric and idempotent. The more general result that predetermines the
diagonal of L when L is symmetric was later solved by Andersen [1]. The extremely
difficult related problem of specifying the diagonal of L, but not requiring L to be
symmetric, has yet to be solved. However, it has been solved by Rodger in the case
where n > 2r + 1 [6], and in the idempotent case where n = 2r [5]. In none of
the literature to this point has any result been able to deal with the case where the
non-diagonal filled cells span the rows or columns of the containing latin square L,
and either L is required to be symmetric or the diagonal of L is specified in some way.
Such completions are the main focus of this paper.

An edge colouring of a graph G is an assignment of colours to the edges of G
such that adjacent edges are assigned distinct colours. If k colours are used then the
colouring is called a k-edge colouring. An n by n symmetric latin square defines a

https://doi.org/10.1017/S1446788700008739 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008739


[3] Symmetric completion of latin squares 111

proper edge colouring of Kn as follows: with {v\, v2,. •., vn] being the vertex set of
Kn, let the symbol in cell (i,j), i ^ j , be the colour assigned to the edge vtVj. For
n even, an n by n unipotent symmetric latin square is equivalent to an (n — l)-edge
colouring of Kn (the colour corresponding to the symbol that occurs in the diagonal
cells is not assigned to any edge). For n odd, an n by n symmetric latin square is
equivalent to an n-edge colouring of Kn (each symbol must occur exactly once on the
diagonal and the symbol in cell (i, i) is the colour which does not occur at vertex vt).
Our results allow us to prove necessary and sufficient conditions for the existence of
an n-edge colouring of Kn in which the colours incident with two particular vertices
are specified in advance, see Theorem 3.4 and Theorem 3.5.

The proof of our results will follow from the existence of symmetric quasi-latin
squares with specified diagonals. We define and construct these in the following
section.

2. Symmetric quasi-latin squares

We define a symmetric quasi-latin square (SQLS) with symbols x0, X\, ..., xn to
be an n by n array of cells such that

(i) each cell not on the diagonal contains exactly one symbol;
(ii) each cell on the diagonal contains exactly two distinct symbols;

(iii) each of the symbols xux2, ... ,xn occurs in exactly two diagonal cells and x0

occurs in no diagonal cells;
(iv) for 1 < i < j < /I, cell (i,j) contains the same symbol as cell (/, 0 ; and
(v) each symbol occurs exactly once in each row and exactly once in each column.

It is clear from (iii) and (iv) that the number of occurrences of each symbol is even
and so there are no n by n SQLS's when n is odd.

Suppose an SQLS has symbol x in cells (ix, ir), (i2,h), (u, is), • • •, (4- i , h) and
symbol y in cells (I'I, i2), (z3, i4), (i5, i6), •••, (4-2, i*-i), 0t , 4) where iu i2, ..., 4
are distinct. If we put y instead of x in the cells

O'i. '1). (»2. '3). (»3.12). («4. is), Us, h), • • •, (4- i . 4) , (4 , 4- i )

and x instead of y in the cells

(«i, 12). («2, »'i), O3. U), (U, h), (is, ie), (it, is), •••, (4-2. 4- i ) , (4- i , 4-2), (4. 4)

then we obtain a new SQLS whose diagonal differs from that of the original SQLS
only in that y is in cell (ii, i\) instead of x, and x is in cell (4, 4) instead of y. We
call such a configuration of cells and symbols an (x, y)-path from cell (i'i, U) to cell
(4, it).
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The diagonal of an n by n SQLS defines a 2-regular multigraph with n vertices
in an obvious way: the vertices are the symbols occurring on the diagonal and uv
is an edge if and only if u and v occur together in a diagonal cell (so a 2-cycle
results whenever two distinct diagonal cells contain the same pair of symbols). An
SQLS whose diagonal defines a 2-regular multigraph F will be called an SQLS(F).
If F = Cm, + Cmi + • • • + Cmt is the vertex disjoint union of k cycles of lengths
nti, nx-i, . . . , mk, then an SQLS (F) with symbols 0, 1,... ,n(n = mi+m2-\ l-wu),
with

• i and i — m, + 1 in cell (/, i) for / = J2'r=i m " ' = 1. 2 , . . . , fc; and with
• i and i + 1 in cell (/, i) for i e {1,2 n } \ [ Y ! r = \ m r : t = 1 , 2 , . . . , k ]

is said to be in standard form. It is clear that an SQLS(F) exists if and only if an
SQLS(F) in standard form exists; either can be obtained from the other by applying
a permutation a to the symbols and a permutation it to the rows and columns. Unless
stated otherwise, from here on, all SQLS(F)s will be assumed to be in standard form.
We will however rearrange the order of the cycles in F to aid our constructions. We
define &n to be the class of all 2-regular multigraphs with n vertices.

If n = 0 (mod 4) then let m = (n - 4)/2 and if n = 2 (mod 4) let m = (n- 2)/2.
We partition the cells of an SQLS into four regions as follows.

• The cells (i,j) with 1 < i,j < m will be called the top left.
• The cells (/, j) with m + 1 < i, j < n will be called the bottom right.
• The cells (i, j) with 1 < i < m and m + 1 < j < n will be called the top

right.
• The cells (i, j) with m + 1 < i < n and 1 < j < m will be called the bottom

left.

Before our main SQLS constructions, we need the following lemma.

LEMMA 2.1. Suppose n > 6 and let a be any permutation of {1,2,... ,n] with
«( ' ) 5 i — I or a(i) = i + 1. There exists a colouring of the edges of the n-
cycle (vu v2,..., vn) with the colours {cu c2,..., cn} such that each edge receives a
different colour and such that for i e {1, 2 , . . . , n), c,, ca(i) and the colours of the two
edges incident with u, are all distinct.

PROOF. In this proof, the subscripts are reduced modulo n to the residues 1 , . . . , n.
For i = 1 , . . . , n, call c, and ca(0 the colours assigned to the vertex vt. Let B be a
bipartite graph with bipartition {E(Cn), {c,, . . . , cn}} of the vertex set V(B). Define
the edge set E(B) by joining the edge {u,, u,+1} to the colour c} if and only if cj
is not assigned to either v, or vi+x. Then clearly 8(B) > n - 4. It is sufficient
the show that B contains a perfect matching. Suppose there exists a subset 5 c
{cu c2,..., cn) such that the neighbourhood NB(S) of 5 contains fewer vertices than
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S. Then \S\ > \N(S)\ > S(B) > n - 4. If there is a vertex v e E(Cn) \ N(S)
then it is adjacent to at least 8(B) vertices, none of which are in S. Therefore
n = |{ci, . . . , c n } | > |S| + |/V(u)| > 2(n-4) ;son 6 {6, 8}. It is now straightforward
to verify that there is no such set S and the result follows by Hall's Theorem [4]. •

The following is well known, but is included for completeness.

LEMMA 2.2. There exists a l-factorization of Kix+x — H, where H is a hamilton
cycle.

PROOF. The usual l-factorization [Fo,..., F^-i) of K21+1 defined by

F, = {{oo, i} , [i -j, i+j)\l <j <x - 1}

has the property that Fo U Ft is a hamilton cycle. •

LEMMA 2.3. Let n > 6 be even, let m = (n - 2)/2 if n = 2 (mod 4) and let
m = (n- 4)/2 ifn = 0 (mod 4). If there exists an SQLS(F,), F, e &m, then there
exists an SQLS(F, + F2)for all F2 6 &n-m.

PROOF. We fill the diagonal cells so that they define Fx + F2 and complete the top
left to an SQLStFO. If n = 2 (mod 4), we can fill the remaining cells in the bottom
right with symbols chosen from {0, 1, 2 , . . . , m], since this is equivalent to finding an
(n — m — l)-edge colouring of ATn_m. I f « s O (mod 4), then by Lemma 2.1 we can
fill the n — m diagonally opposite pairs of cells {(w + l ,w+2) , (m + 2,m + l)}, {(m +
2, m + 3), (m + 3, m + 2 )} , . . . , {(n - 1, n), (n, n - 1)}, {(n, m + 1), (m + 1, n)} with
the symbols m + l,m + 2,... ,n such that each symbol occurs in exactly one pair of
cells. We can then fill the remaining cells in the bottom right with symbols chosen
from (0, 1, 2 , . . . , m), since this is equivalent to finding an (n — m — 3)-edge colouring
of K(n-m) with the edges of a hamiltonian cycle removed (see Lemma 2.2).

Let /?o be the 2 by n—m latin rectangle constructed by placing, for i = 1, 2, . . . , n —
m, symbol m + i in cell (1, i) and the other symbol from cell (m + i,m + i) of the
existing partial SQLS in cell (2, i). If n = 2 (mod 4), then we let R = Ro and if
n = 0 (mod 4), we let R be the 4 by n — m latin rectangle defined as follows. Let
rows 1 and 2 of R be equal to rows 1 and 2 of Ro. For i = 1, 2 , . . . , n — m — 1, place
the symbol from cell (m + i + 1, m + i) of the existing partial SQLS in cell (3, i) and
the symbol from cell (m + 1, n) in cell (3, n — m). For i = 2,3,... ,n — m, place the
symbol from cell (m 4-1 — 1, m + i) of the existing partial SQLS in cell (4, i) and the
symbol from cell (w, m + 1) in cell (4, 1). Note that all the symbols in R are chosen
from [m + 1, m + 2,..., n).

We can fill the cells in the top right with symbols chosen from {m +1, m+2,..., n},
since this is equivalent to completing the latin rectangle R to an (n — m) by (n — m)
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latin square. We then complete the SQLS(F, + F2) by filling the cell (/', 0 with the
symbol from cell (/, j) for 1 < / < m and m + 1 <j < n. •

LEMMA 2.4. Let n = 6 or n > 10 be even, let m = (n - 2)/2 ifn s 2 (mod 4)
and let m = {n — 4)/2 ifn~0 (mod 4). Let 2 < r < m — 2 or r = m and let
2<s<n-m-2ors — n-m. If there exists an SQLS(F, + Cr), Fi e &m-r, then
there exists an SQLS(F, + Cr+S + F2)for all F2 e &n-m-s.

PROOF. Let F = F, + Cr+S + F2 and let F' = F, + Cr + Cs + F2. By Lemma 2.3
there exists an SQLS(F'). Note that the diagonal cells of an SQLS(F') differ from
those of an SQLS(F) only in cell (m, m), where symbols m and m — r + 1 occur
instead of symbols m and m + 1, and in cell (m + s, m + s), where symbols m + s
and m + 1 occur instead of symbols m + s and m — r + 1.

However, by the construction of the SQLS(F') in Lemma 2.3, we have the freedom
to independently permute the rows in the top right (and simultaneously perform
the corresponding permutation to the columns in the bottom left) and the symbols
0, 1, 2 , . . . , m in the bottom right. We will carry out such permutations so that there
exists an (m — r + 1, m + l)-path from cell (m, m) to cell (m + s, m + s). We can
then interchange symbols m — r + 1 and m + 1 along this path so that the required an
SQLS(F) results.

When n = 2 (mod 4), we permute the symbols 0, 1, 2 , . . . . m in the bottom right
so that symbol m — r + 1 occurs in cell (m + s, t) where t is such that cell (m, t)
contains the symbol m + 1. This ensures that there exists an (m — r + 1, m + l)-path
involving cells (m, m), (m, t), (m + s, t), (m + s,m + s), (t, m + s), (t, m).

When n = 0 (mod 4), we permute the symbols 0, 1, 2 , . . . , m in the bottom right
so that symbol m — r + 1 occurs in cell (m + s, t) where t is such that the occurrence
of symbol m + 1 in column t is in the top right. Since m > 4, this is always possible
(note that m + 1 occurs m times in the top right, there are m + 1 occurrences of the
symbols 0, 1, 2 , . . . , m in each row of the bottomright, and 2m +1 > n — m —m +4).
We then permute the rows in the top right so that symbol m + 1 occurs in cell (m,t).
Then, as in the n s 2 (mod 4) case, we have an (m — r + 1, m + l)-path involving
cells (m, m) , (m, t), (m + s, t), (m + s,m + s), (r, m + s), (t, m). •

LEMMA 2.5. Let n = 0 (mod 4), n > 12, m = (n - 4 ) /2 , 3 < r < m - 2 o r

r = m, and let 2 < s < n — m — 2 or s = n — m. If there exists an SQLS(F! + Cr),
F, 6 ^"m_r, then there exists an SQLS(F, + Cr_, + CJ+1 + F2) for all F2 e •£„_„,_,.

PROOF. Let F = F, + Cr_! + Cs+i + F2 and let F' = F, 4- C + C, + F2. By
Lemma 2.3 there exists an SQLS(F'). Note that the symbols in the diagonal cells of
an SQLS(F') differ from those of an SQLS(F) only
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• in cell (m — 1, m — 1) where symbols m — 1 and m occur instead of symbols
m — 1 and m — r + 1;

• in cell (m, m) where symbols m and m — r + 1 occur instead of symbols m
andm + 1; and

• in cell (m + s, m + s) where symbols m + s and m +1 occur instead of symbols
m + s and m.

However, by the construction of the SQLS(F'), we have the freedom to indepen-
dently permute the rows in the top right and the symbols 0, 1, 2 , . . . , m in the bottom
right. We will carry out such permutations so that there exists an (m, m + l)-path
from cell (m - 1, m - 1) to cell (m + s, m + s), an (m — r + 1, m + l)-path from cell
(m — r + 1, m — r + I) to cell (m + 1, m + 1), and such that no cell is common to these
two paths. By switching the symbols along these two paths and then interchanging
symbols m — r + 1 and m + 1 throughout the SQLS we will obtain the required
SQLS(F).

The (m, m + l)-path will involve cells (m — 1, m — 1), (w — 1, t), (m + s, t), (m +
5, m + s), (f, m + s) and(r, m — 1) where f is some integer in the range m + 1 < t < n.
Choose t arbitrarily such that the symbol m + 1 in column t is in the top right and such
that cell (m + s, t) contains one of the symbols 0, 1, 2, . . . , m. Since m > 4 implies
n — m > 8, since there are four occurrences of symbol m + 1 in the bottom right, and
since in each row of the bottom right there are two off-diagonal cells which are filled
with symbols other than 0, 1, 2, . . . , m, there are at least two choices for t. Permute
the symbols in the bottom right so that m is in cell {m + s, t) and permute the rows in
the top right so that symbol m + 1 is in cell (m — 1, t), thus ensuring that the required
(m, m + l)-path exists.

The (m — r + 1, m + l)-path will involve cells (m — r + 1, m — r + 1), (m — r +
l,t'),(m + l, t'), (m + l, m + l), (t',m — r+l) and(r',m + l) where t' is some integer
in the range m + 1 < t' < n. We require that t' ^ t, the symbol m + 1 of column t' is
in the top right, and that cell (m + l, t') contains one of the symbols 0, 1, 2, . . . , m — 1.
As in the case of finding t for the (m, m + l)-path, we have at least two choices for
t1 after excluding the columns in which m + l occurs in the bottom right and the two
cells which do not contain one of the symbols 0, 1, 2 , . . . , m. However, we now also
need to ensure that t ^ t' and that the cell (m + 1, f) does not contain m. But since
the two columns that do not contain one of the symbols 0, 1, 2 , . . . , m in row m + s
of the bottom right are not the same as the two columns that do not contain one of
the symbols 0, 1, 2 , . . . . m in row m + 1 of the bottom right, we can always find a
suitable t'. We now permute the symbols, leaving symbol m fixed, in the bottom right
so that symbol m — r + 1 is in cell (m + 1, f) and we permute the rows in the top
right, leaving row m — 1 fixed, so that symbol m + 1 is in cell (m — r + 1, f), thus
ensuring that the required (m — r + 1, m + l)-path exists. •
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L E M M A 2 . 6 . Let n = 2 ( m o d 4 ) , n > 10 , m = ( n - 2 ) / 2 , 2 < r < m - 2 o r
r — m and Iet3 < s < n — m — 2 or s = n — m. If there exists an SQLS(F] + Cr),
Fx e &m-r, then there exists an SQLS(F, + Cr+, + C,_, + F2)for all F2 e &n-m-s.

PROOF. Let F = F, + Cr+1 + C,_i + F2 and let F' = Fx + Cr + Cs +'F2. By
Lemma 2.3 there exists an SQLS(F'). Note that the symbols in the diagonal cells of
an SQLS(F') differ from those of an SQLS(F) only

• in cell (m,m) where symbols m and m — r + 1 occur instead of symbols m
and m + 1;

• in cell (m + l, m + l) where symbols m +1 and m + 2 occur instead of symbols
m + l and m — r + 1; and

• in cell (m + s, m + s) where symbols m + s and m + l occur instead of symbols
m + s and m + 2.

As in the previous lemma, we have the freedom to permute the rows in the top right
and we have an amount of freedom when we fill the cells in the bottom right with
the symbols 0, 1, 2, . . . , m. We will ensure that there exists an (m — r + 1, m + 1)-
path from cell (m, m) to cell (m + s, m + s), an (m — r + 1, m + 2)-path from cell
(m — r + 1, m — r + 1) to cell (m + 2, m + 2), and such that no cell is common to these
two paths. By switching the symbols along these two paths and then interchanging
symbols m — r + 1 and m + 2 throughout the SQLS we will obtain the required
SQLS(F).

The (m — r + 1, m + l)-path will involve cells (m, m), (m, t), (m + s, t), (m +
s, m + s), (/, m + s), (t, m) and the (m — r + 1, m + 2)-path will involve cells
(m-r+l, m-r+l), (m-r+1, t'), (m+2, t'), (m+2, m+2), (tr, m-r+l), (tr, m+2)
where / and t' are integers in the range m + 1 < t < n.

There aren — m — 3 = m — 1 columns in the top right that contain both m + l and
m + 2 (the columns that do not contain both m + l and m + 2 are columns m + 1, m + 2
and m + s). Since n > 10, m > 4, and so we always have at least 3 such columns in
the top right. Let these columns be t, t' and t". We permute the rows in the top right
so that symbol m + 1 is in cell (m, t). This may force symbol m + 2 into cell (m, f)
or into cell (m, t") but not both, and so we can assume without loss of generality that
symbol m + 2 is not in cell (m, t'). Thus we can permute the rows in the top right
(leaving m + 1 in cell (m, t)) so that symbol m + 2 is in cell (m - r + 1, t1).

When constructing the SQLS(F'), we ensure that symbol m - r + l occurs in cells
(m + s, t) and (m + 2, t'). This is possible, as filling in these cells is equivalent to
finding an (n — m — l)-edge colouring of Kn_m (with vertex set {m + l, m + 2, . . . ,«})
and we can ensure by relabeling the vertices that the the edges corresponding to the
cells (m + s, t) and (m + 2, t') are assigned the same colour. Note that our choice of
t and t' ensures that m + 2, m + s, t and f are distinct. •
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LEMMA 2.7. Letn < 12 be even and let F e &„. Then there exists an SQLS(F) if
and only if F ^ C2 + C2.

PROOF. Forn = 2 and n = 4, the only cases are F — C2, F = C4 and F = C2 + C2.
It is easy to see that there is no SQLS(C2 + C2). An SQLS(C2) and an SQLS(C4) are
shown below. For n = 6, the result follows by Lemma 2.3 (and the existence of an
SQLS(C2)) if F contains a 2-cycle. For F = C6, we can use Lemma 2.4 with r = 2
and 5 = 4. This leaves only the case of an SQLS(C3 + C3) which is shown below.

1,2
0

0
2,1

1,2
4
0
3

4
2,3

1
0

0
1

3,4
2

3
0
2
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0

4
2,3
6
1
0
5

5
6

3, 1
0
4
2

6
1
0

4,5
2
3

3
0
4
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5,6
1

0
5
2
3
1

6,4

For the case n = 8, the result follows by Lemma 2.3 (and the existence of an
SQLS(C2)) if F contains a 2-cycle. This leaves only an SQLS(C8), an SQLS(C4+ C4)
and an SQLS(C5 + C3) which are shown below.
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0
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0
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6

3,4
8
1
5
0
2

5
7
8

4, 1
0
2
3
6

3
4
1
0

5,6
8
2
7

4
0
5
2
8

6,7
1
3

6
5
0
3
2
1

7,8
4

0
1
2
6
7
3
4

8,5

1,2
8
7
6
3
5
4
0

8
2,3
6
7
4
1
0
5

7
6

3,4
8
2
0
5
1

6
7
8

4,5
0
2
1
3

3
4
2
0

5,1
8
6
7

5
1
0
2
8

6,7
3
4

4
0
5
1
6
3

7,8
2

0
5
1
3
7
4
2

8,6

For the case n = 10, the result follows by Lemma 2.3 (and the existence of an
SQLS(C4)) if F contains a 4-cycle. Also, if F contains a cycle Cx with x > 6 then
the result follows by Lemma 2.4 with r = 4 and s = x — 4. For F = C5 + C$ and
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F = C5+C3+C2 we use Lemma 2.6 with r = 4 and with s = 6 and s = 4 respectively.
This leaves only an SQLS(C3 + C3 + C2 + C2) and an SQLS(C2 + C2 + C2 + C2 + C2)
which are shown below.

1,2
10
9
8
0
7
3
4
5
6

10
2, 1
8
9
7
0
4
3
6
5

9
8
3,4
10
1
2
5
6
7
0

8
9
10
4,3
2
1
6
5
0
7

0
7
1
2
5,6
8
9
10
3
4

7
0
2
1
8
6,5
10
9
4
3

3
4
5
6
9
10
7,8
0
1
2

4
3
6
5
10
9
0
8,7
2
1

5
6
7
0
3
4
1
2

9,10
8

6
5
0
7
4
3
2
1
8

10,9

1,2
10
9
8
0
7
3
4
5
6

10
2,3
8
9
7
1
4
5
6
0

9
8
3,1
10
2
0
5
6
7
4

8
9
10
4,5
1
2
6
3
0
7

0
7
2
1
5,6
8
9
10
4
3

7
1
0
2
8
6,4
10
9
3
5

3
4
5
6
9
10
7,8
0
1
2

4
5
6
3
10
9
0
8,7
2
1

5
6
7
0
4
3
1
2

9,10
8

6
0
4
7
3
5
2
1
8

10,9

For the case n = 12, the result follows by Lemma 2.3 (and the existence of an
SQLS(C4)) if F contains a 4-cycle. Also, if F contains a cycle Cx with x > 6 then the
result follows by Lemma 2.4 with r = 4 and s = x - 4. For F = C3 + C3 + C3 + C3

and F = C3 + C3 + C2 + C2 4- C2, we use Lemma 2.5 with r = 4, 5 = 2 and with
F2 = C3 + C3 and F2 = C2 + C2 + C2 respectively. For F = Q + C5 + C2 + C2,
we use Lemma 2.5 with r = 4, J = 4 and with F2 = C2 4- C2. This leaves only an
SQLS(C5 + Q + C2) and an SQLS(C2 + C2 +C2 +C2+C2 + C2) which are shown
in Figure 1. •

LEMMA 2.8. Let n be an integer and let F e &n. Then there exists an SQLS(F) if
and only ifn is even and F ^ C2 + C%.

PROOF. The proof is by induction. We have already noted that there do not exist
n by n SQLS's for n odd and the result is true for all F e &„ with n < 12 by
Lemma 2.7. So assume n > 14 is even and assume the result is true for all even
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1,2
10
11
12
9
8
4
0
5
6
3
7

10
2,1
12
11
8
9
0
4
6
5
7
3

11
12
3,4
10
7
0
6
9
1
8
2
5

12
11
10
4,3
0
7
5
6
2
1
9
8

9
8
7
0
5,6
1
2
12
11
3
4
10

8
9
0
7
1
6,5
3
11
4
12
10
2

4
0
6
5
2
2
7,8
10
12
11
1
9

0
4
9
6
12
11
10
8,7
3
2
5
1

5
6
1
2
11
4
12
3

9,10
0
8
7

6
5
8
1
3
12
11
2
0

10,9
7
4

3
7
2
9
4
10
1
5
8
7

11,12
0

7
3
5
8
10
2
9
1
7
4
0

12, 11

1,2
10
11
12
9
8
4
0
5
3
6
7

10
2,3
12
11
8
9
0
4
6
5
7
1

11
12
3,4
10
7
0
6
1
2
8
5
9

12
11
10
4,5
0
2
1
6
7
9
3
8

9
8
7
0
5,1
3
2
12
11
4
10
6

8
9
0
2
3
6,7
5
11
4
12
1
10

4
0
6
1
2
5
7,8
10
12
11
9
3

0
4
1
6
12
11
10
8,9
3
7
2
5

5
6
2
7
11
4
12
3

9, 10
1
8
0

3
5
8
9
4
12
11
7
1

10,6
0
2

6
7
5
3
10
1
9
2
8
0

11,12
4

7
1
9
8
6
10
3
5
0
2
4

12,11

FIGURE 1. An SQLS(C5 + C5 + C2) and an SQLS(C2 + C2 + C2 + C2 + C2 + C2).

integers less than n. We use Lemmas 2.3-2.6. As before, let m = (n — 2)/2 if n = 2
(mod 4) and m = (n — 4)/2 if w = 0 (mod 4). Since n > 14, m > 6 and so an
SQLS(F') exists for all F' e &m.

It is clear that for any F e &n, the cycles of F can be arranged in some order
C , , C m 2 , . . . , Cmj such that m — \ £ {J2'i=i mt : t = 1,2,... ,k) unless there exists
an integer that divides both m — 1 and n. Similarly, the cycles of any F € &n can be ar-
ranged in some order Cm,, C m 2 , . . . , Cmk such that m + 1 £ {5ZJ=1 m, : r = 1, 2 , . . . , £}
unless there exists an integer that divides both m + 1 and n.

When n = 2 (mod 4), m — 1 and « are relatively prime, and so the cycles of F
can be ordered such that we can use either Lemma 2.3, 2.4 or 2.6 to construct an
SQLS(F). Similarly, when n = 0 (mod 4), m + 1 and n are relatively prime, and so
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the cycles of F can be ordered such that we can use either Lemma 2.3, 2.4 or 2.5 to
construct an SQLS(F). •

3. Main results

With Lemma 2.8 in hand, we are now ready to prove our main results. Unless
stated otherwise, all n by n latin squares will have symbols 1, 2 , . . . , n.

THEOREM 3.1. Let n >2be an integer. A 2 by n latin rectangle can be completed

to a unipotent n by n symmetric latin square if and only if

(i) n is even;

(ii) the symbol in cell (1, 2) is also in cell (2, 1);
(iii) the symbol in cell (1, 1) is also in cell (2, 2); and
(iv) the 2 by n latin rectangle cannot be obtained from

1
2

2
1

3
4

4

3
5
6

6
5

or
1
2

2
1

3
4

5
6

4
3

6
5

or
1
2

2
1

3
4

5
6

6
5

4
3

by any symbol permutation.

PROOF. Conditions (i), (ii) and (iii) are clearly necessary. Suppose a latin rectangle
satisfying conditions (i)-(iv) is completed to a 6 by 6 symmetric latin square. By
symmetry row 3 contains symbols 3 and 4 in cells (3, 1) and (3, 2). Therefore the
occurrence in row 3 of symbols 1 and 2 must be in the columns that already contain
symbols 5 and 6; so symbol 1 does not occur in cell (3, 3) and the latin square is not
unipotent. Hence condition (iv) is also necessary.

We use Lemma 2.8 to prove sufficiency. To construct the required latin square
L, we first place, for / = 3, 4, . . . , n and t = 1, 2, the symbol in cell (t, i) of the
latin rectangle in cell (i, t) of L. By Lemma 2.8 and condition (iv), there exists an
(n — 2) by (n — 2) SQLS T with diagonal defined by placing, for / = 3, 4 , . . . , w, the
symbols in cells (1, i) and (2, i) of the latin rectangle in cell (/ — 2, i — 2) of T. Let 0
be the symbol not occurring on the diagonal of T and let y and z be the symbols in
cells (1, 1) and (1, 2) of L respectively. For 3 < ; < n, if cell (i - 2,j - 2) of T
contains symbol JC then place y, z or x in cell (/, j) of L if i — j , x = 0, or otherwise
respectively. •

THEOREM 3.2. Let n > 1 be an integer. A 1 by n latin rectangle can be completed
to an idempotent n by n symmetric latin square if and only if

(i) n is odd;
(ii) the symbol in cell (1, 1) fj 1;
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(iii) for i = 2, 3, . . . , n, symbol i is not in cell (1, /); and
(iv) the 1 by n latin rectangle is not

1 3 2 5 4 or 4 I 5 I 2 1 3 or \ 1 5 | 4 | 3 2 j.

PROOF. Conditions (i), (ii) and (iii) are clearly necessary. To see that the latin rect-
angles given in condition (iv) cannot be completed to a 5 by 5 idempotent symmetric
latin square, fill in the first column (by symmetry) and the diagonal, and then observe
that symbol 1 is forced to occur in at least two cells of column 2.

Sufficiency follows almost immediately from Theorem 3.1. First, construct a 2
by n + 1 latin rectangle R with first row oo, 1, 2 , . . . , n, symbol 1 in cell (2, 1),
symbol oo in cell (2, 2) and the symbol from cell (1, i) of the given latin rectangle in
cell (2, i + 1) for i = 2, 3, . . . , n. By Theorem 3.1, R can be completed to an n + 1 by
n + 1 unipotent symmetric latin square U. The required n by n idempotent symmetric
latin square can then be obtained from U by deleting the first row and column, and
then replacing the symbol in cell (i, i) with symbol i for all i. O

THEOREM 3.3. Let n > 2 be an integer. A 2 by n latin rectangle can be completed
to annby n symmetric latin square if and only if

(i) the symbol in cell (1,2) is also in cell (2, 1);
(ii) ifn is odd, the symbols in cells (1,1) and (2, 2) are distinct; and

(iii) the 2 by n latin rectangle cannot be obtained from

1
2

2

3
3
1

4

5
5
4 or

1
2

2
3

4
5

3
1

5
4 or

1
2

2
3

4

5
5
4

3
1

by any symbol permutation.

PROOF. Condition (i) is clearly necessary. Ifn is odd, then in any n by n symmetric
latin square each symbol occurs exactly once on the diagonal and so condition (ii) is
also necessary. It is simpler if we deal separately with the cases n = 2, 3, 4, 5 and 6.
First we make the following observation.

If we apply any permutation n of {3, 4 , . . . , n} to the columns of a given 2 by
n latin rectangle R (that is, we shift the symbol in cell (i,j) to cell (i, n(j)) for
i = 1, 2 and,/ = 3, 4 , . . . , n) and then apply any permutation a of {1, 2 , . . . , n] to
the symbols, we obtain a 2 by n latin rectangle R'. If R' can be completed to an n
by n symmetric latin square L', then R can be completed a symmetric latin square L.
Applying the symbol permutation a~x to L' and then shifting the symbol in cell (/, j )
tocell (jr~'(i). n~l(j)) for 3 < i,j < n results in a symmetric latin square L which
has R as its first two rows. Hence we need only consider latin rectangles that cannot
be obtained from each other by applying such column and symbol permutations.
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The cases n = 2 and n = 3 are trivial and for n = 4, completions of the two latin
rectangles that we need to consider are shown below.

1
2
3
4

2
1
4

3

3
4
1

2

4
3
2
1

1

2
3
4

2
3
4
1

3
4
1
2

4
1
2
3

For n = 5, we need to consider the following two latin rectangles.

1

2
2

3
3
1

4
5

5
4

1

2
2
3

3
4

4

5
5
1

It is straightforward to check that the first has no completion and so condition (iii) of
the theorem is necessary. A completion of the second is shown below.

1

2
3
4

5

2

3
4
5
1

3
4
5
1
2

4

5
1
2

3

5
1
2
3
4

For n = 6, there are five cases to consider and completions of each of these are shown
below.

1
2
3
4
5

6

2
1
4

3
6

5

3
4
5
6
1

2

4
3
6
5
2
1

5
6
1
2
3
4

6
5
2
1
4
3

1
2
3
4
5
6

2
1

4
5
6
3

3
4
1

6
2
5

4
5
6
1
3
2

5
6
2
3
1

4

6
3
5
2
4
1

1

2
3
4
5
6

2
3
1

5
6
4

3
1

2
6
4

5

4
5
6
2
3
1

5
6
4
3
1

2

6
4
5
1
2
3

1
2
3
4
5
6

2
3
4
1

6
5

3
4

5
6
1

2

4
1

6
5
2
3

5
6
1
2
3
4

6
5
2
3
4
1

1
2
3
4

5
6

2
3
4
5
6
1

3
4
1

6
2
5

4
5

6
1

3
2

5
6
2
3
1
4

6
1

5
2
4

3

Now assume that n > 7 is odd. We begin by adding an extra column and placing
a new symbol oo in cells (1, n + 1) and (2, n + 1). We then switch the symbols in
cells (1, 1) and (1, n + 1) and switch the symbols in cells (2, 2) and (2, n + 1) to
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obtain an (n + 1) by (« + 1) latin rectangle. By Theorem 3.1, this latin rectangle can
be completed to a unipotent symmetric latin square. For / = 1, 2, . . . , ra, we replace
symbol oo in cell (i, i) with the symbol from cell (i, n + 1). We then delete row n + 1
and column n + 1 to obtain the required n by n symmetric latin square.

Now assume that n > 8 is even. Let x, y and z be the symbols in cells (1, 1), (2, 2)
and (1,2) respectively (it is possible that x = y) and let w be a symbol, distinct from
x, y and z that is not in the same column as either x or y in the latin rectangle (since
n > 8, such a symbol exists). Suppose w is in cells (1, r) and (2, s). We begin by
switching symbols x and iu in row 1 and symbols y and w in row 2. The resulting latin
rectangle can be completed to a unipotent symmetric latin square by Theorem 3.1. We
then switch symbols x and w in rows 1 and r and switch symbols y and w in rows 2
and s to obtain the required symmetric latin rectangle. •

Because of the equivalence between n by n unipotent symmetric latin squares and
(n — l)-edge colourings of Kn for n even, and the equivalence between symmetric
latin squares and n-edge colourings of Kn for n odd, we obtain the following two
results as immediate corollaries of Theorem 3.1 and Theorem 3.3 respectively.

THEOREM 3.4. Let n be even and let u and v be two vertices ofKn. An assignment A
of colours to the edges incident with either uorv can be completed to an (n — \)-edge
colouring of Kn if and only if

• A assigns distinct colours to adjacent edges; and
• ifn = 6, each A-cycle that is assigned colours by A is assigned at least three

distinct colours.

THEOREM 3.5. Let n be odd and let u and v be two vertices of Kn. An assignment
A of colours to the edges incident with either u or v can be completed to an n-edge
colouring of Kn if and only if

• A assigns distinct colours to adjacent edges;
• every colour is assigned either to u or to v; and
• ifn = 5, each A-cycle that is assigned colours by A is assigned at least three

distinct colours.
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