
Proceedings of the Edinburgh Mathematical Society (1994) 37, 207-226 {

(p,r)-CONVEX FUNCTIONS ON VECTOR LATTICES

by JERZY SZULGA

(Received 22nd April 1992)

We study certain convexity-type properties of homogeneous functions on topological vector lattices, focusing
on a concept of 0+-convexity, and using some probabilistic inequalities.
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1. Introduction

In this paper, we study properties of positive homogeneous functions in topological
vector lattices. Our interest in such a topic, besides the existence of definite links to the
operator and vector lattices theory, stems from the integration with respect to vector
measures with values in linear metric spaces that are not necessarily locally convex (cf.
[12, Chapter 3] for a general overview). In general, one cannot apply the vast
technology wrapped around the Hahn-Banach theorem. Instead, of primary interest are
the shapes of neighbourhoods of zero. More precisely, the local boundedness, which by
the Aoki-Rolewicz Theorem [1,11], is equivalent to the existence of a p-homogeneous
metric, for some pe(0,1], is a desired property of a metric linear space from the view
point of one working with vector measures.

In this paper we consider vector lattices that are topologized with the help of positive
homogeneous functions (analogs of A-norms, as appear in [5]). We define a two-
parameter ((p, r), 0 < p ̂  r ̂  oo) analog of convexity of such functions, which in particular
(for p = r ^ 1) contains the notion of a p-homogeneous norm. The notion of p-convexity
used here is exactly Krivine's one [6], transplanted from the environment of Banach
lattices to that of relatively uniformly complete lattices. This notion is close yet slightly
stronger than the same seen in the literature, with no regard to the order structure (cf.
[5]). Additionally, we introduce a concept of 0+-convexity, which is precisely a sufficient
and necessary property that turns a locally bounded metric vector lattice into a normed
lattice, subject to applying a convexiflcation procedure. Since such a procedure is
invertible, many derivatives of the Hahn-Banach theorem, allowing use of continuous
functional, can be easily carried over to a class of non-locally convex vector lattices,
despite their poor dual structure.

We are interested in relations between various type of convexities. The related
formulas can be conveniently expressed with the help of comparison inequalities for
Pareto or stable distributions. The idea of using such distributions is very old, and can
be traced back to Paul Levy. However, in the specific context of this paper, we follow
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208 JERZY SZULGA

some concepts from [10, 9], where Pareto or stable random variables were employed to
obtain interpolation-type results for distinct types of convexities of a norm in a Banach
lattice.

If homogeneous expressions

l / p / n \ l / n

are given a meaning in a vector lattice, assuming that the first term is just V?=i|*i| ^
p = oo, then a monotone positive homogeneous real function | | | | on a vector lattice is
said to be (p,r)-convex if there is a constant C(p>r) = C(p>r)(|| II) such that

for all finite families {*,}<= L Clearly, we must have p^r. When p = r, we replace the
pair"p,p"by"p".

It is seen that no lattice structure is needed for defining (p, l)-convex functions
(0<p^ l ) , which are often called p-norms (one can observe in the literature quite a
selection of prefixes, like semi-, quasi-, pseudo-, para-, etc.).

Say that a postiive function II • II is 0+-convex if

ru l/n l/n

The paper is organized as follows. In Section 2 we introduce homogeneous functions
with values in relatively uniformly complete vector lattices. In Section 3, which might
also be of independent interest, we prove the aforementioned comparison inequalities for
Pareto and stable distributions. Section 4 presents further relations between convexities,
among which an interpolation property is the most important. This section also
contains a construction of a locally bounded F-lattice (with a p-homogeneous metric,
0 < p < l ) that does not admit a convexification turning it into a Banach space (again,
0+-convexity is exactly the property that allows such convexification).

2. Homogeneous functions

Throughout this paper L denotes a real relatively uniformly complete vector lattice
and ||*||:IL-»R+ is a positive homogeneous monotone function (see the definitions
below). For an auxiliary information pertaining to vector lattices we refer to one of
basic monographs, e.g., [8,13]. For a background in F-spaces, we refer to [12,5].

It is known that, in a Banach lattice, one can devise counterparts of continuous
homogeneous functions f:W->M (see [7, pages 40-41], [6], and references there). In

https://doi.org/10.1017/S0013091500006027 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006027


(p,r)-CONVEX FUNCTIONS ON VECTOR LATTICES 209

function spaces, this can be done pointwise. If a vector lattice is isomorphically
embeddable in such a space, then the construciton can be carried over. For example,
every Archimedean vector lattice can be identified, via a suitable order and linear
isomorphism, with a space of extended (i.e. admitting values + oo) continuous function
on a certain topological space (the Johnson-Kist spectral representation theorem, cf. [8,
Theorem 44.4]). However, the newly defined homogeneous functions need not take
values in the original vector lattice. In richer structures, like Banach lattices, this
problem can be resolved, but almost a verbatim construction can be repeated requiring
much weaker properties of L than that of being a Banach lattice.

A sequence (xn) of vectors from L is said to be relatively uniformly (r.u.) convergent to
a vector xeL if |xn—x|5^enu for some positive decreasing null sequence (en) (cf. [8,
Chapter 2.16]). L is called relatively uniformly complete, (r.ux., in short), if it is complete
with respect to the relative uniform convergence.

A function ||-||:L-»R+ is said to be homogeneous if ||cx|| = c||x||, c^O, xeL, and
monotone, if there exits a constant M = M(| | | | )>0 such that, for every x,yeL,
\x\^\y\=>\\x\\^M\\y\\. Note that the continuity of a monotone function || • || with respect
to the r.u. topology means exactly that the mapping IR3ti-»||x + t_y||elR+ is continuous
for every x,yeL+. Further, any homogeneous monotone function is r.u.-continuous.

With the help of a homogeneous monotone function one can introduce a topology on
L, using the sets {||x—xo||<r} as a base of neighbourhoods at a point x0. However, in
general, vector or lattice operations may be not continuous. On the other hand, we note
a simple positive result, which follows immediately from [4, Theorem 1.2].

Lemma 2.1. If the addition (or the operation " v ") is continuous at 0, that is, for some
C > 0, for every x, y e L,

||x||gl,y^l=>||x + 3>||̂ C (or ||x

then the topology is locally bounded and metrizable (cf. [4]. In particular, for some
pe(0,l] (p = \n2flnC), \\-\\ is (p, l)-convex.

Proposition 2.2. Let L be a vector lattice equipped with a r.u. topology. If \\ • || is
monotone, homogeneous, and complete, in the sense

||xn — xm||->0 => there is a unique xeL such that ||xn —c||-»0,

then L is r.u.c.

Proof. It is shown in [8, Thm 42.2] that D. is r.u.c. if and only if one of the following
equivalent conditions holds:

(r.u.c.) 0 ̂  xn ̂ Xnx where xn,xeL,(Aa)e 1+, implies £,,xn is order convergent;

(r.u.c.') 0 ̂  sn ̂  u where sn,ueL,(sn) is increasing, implies supnsn exists.

We will use (r.ux/). Let (sn) be a nonnegative increasing sequence majorized by
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210 JERZY SZULGA

neO_+. Hence, by monotonicity and completeness of the functional | | | | , \\sn—s\\-*0 for
some seO_+. By continuity, if sn^v for all n, \\sn A D - S A HI^O but also \\sn A V—S\\ =
\\sn — s\\-*0. Hence, by the uniqueness of the limit, s=s A v, i.e., s^v. In other words,
s = supnsB. •

The r.u.-completeness does not ensure the completeness of a norm (e.g., C[0,1] with
| jo|/(0|<fr)- Note also, that the uniqueness in the definition of a complete

homogeneous function is ensured, if the function induces a vector topology.
For two quantities A = A(6) and B = B(6) depending on some parameter 9, we will

write A B (A=^B, respectively) if there is a constant c>0 such that c~lA^B^cA
(respectively, A^cB), uniformly for 6. It will be clear from the context whether or not
the constant c depends on additional parameters, like dimension or some index a.

Symbol 1(.) stands for the {0, l}-valued indicator function of a set or a logic
statement. For <x>0 and teU, we denote t" =sgn(t)|t|a.

Random variables appearing in this paper are defined on a common probability space
(Q,^, P) which is assumed to be sufficiently rich to carry all needed sequences of
independent random variables. For a positive random variable X, we will write
EX = $nX((o)P(dco),E[X;A] = jAXdP, and \\X\\p=(EXp)llp(p>0). Define

\\X\\0.
d±exp{ElnX},

and note that, if Xq, for some q>0, and lnX are integrable (neither condition implies
the other), then \\X\\0+ = \imq^0(EXq)llq.

Let Jfn be the vector sublattice of the vector lattice C(W) of continuous functions
f:W->U spanned by the "projections" fi(t1,...,tn) = ti,i=l,...,n. Functions / from 3ten

are continuous and homogeneous of degree 1, i.e.

The completion Jfn of Jf? with respect to the norm ||/| |H = sup{|/(t)|:max1|tI| = l} can
be identified with the Banach lattice of all continuous functions /:R"-*R which are
homogeneous of degree 1.

Theorem 23. Let (L be r.u.c, n ^ l , and x=(x;)"=1elLn. Then there exists a unique
linear mapping x = xx: Jfn-*L which preserves lattice operations and such that t/j = xh

i=l,...,n. Moreover,

(2.1)

Proof. First, consider the case when 1 = C(S), where S is a compact space. Let
<j>1,...,4>neC(S) and put <£0=sup,|$|. Define a linear mapping xo:^fn-*C{S) by the
formula xof{s)=f(<t>{s),...,<t>(s)),^e^. Clearly, xof=xog whenever f=g, xfvg=^
xf v xg, and |TO/|^||H|<£O|> feJ^n- The latter inequality means that, for every
xof belongs to the ideal /(<j&0) = {$eC(S):|<£|^A|$0| for some A>0}.
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(p, r)-CONVEX FUNCTIONS ON VECTOR LATTICES 211

Consider the general case. Let xo,...,xneL and put xo = \/I|xI|. Denote by /(x0) the
ideal in L generated by x0. The completion l(x^) with respect to the M-norm on /(x0),
||x|| = inf{A:|x|^Ax0}, is order isometric to C(S) for some compact space S (cf. [7,
I.b.6]). Viewing xo,Xi,...,xn as continuous functions on S, we can define a linear
mapping r / , - t / ( x o ) c C ( J ) . More formally, if </>: l(x^) -»C(S) denotes the afore-
mentioned order isometry, ¥ denotes the mapping <f>~1 restricted to /(#(x0)), and iL is
the embedding of /(x0) into L, then x = ilo^>oi:0. Obviously, x preserves lattice
operations and

| T / | ^ | | / | | H | X 0 | , fetf. (2.2)

Now, we will extend x to the entire space &„ Let | | / n — / | | H - * 0 . Then the sequence
(xfn) is relatively uniformly Cauchy, and hence, by the completeness assumption,
r.u.-converges to a unique element in <£. The estimate (2.2) continues to hold on the
entire ^ . •

In the sequel, we will write simply f{x) = xsf, fsJtn. In particular, for every pair

=> /(x)^g(x), xeL". (2.3)

Let xl,...,xneL, 0<p<oo, p,-^0, i=l , . . . ,« , £,£,= 1. Then the expressions

I/P
and i x i p i - - - i x "h

are well defined in (L, and, by virtue of (2.3), any inequalities or identities, which are
valid in the real case, carry over to the lattice context. Holder's inequality is a typical
example.

If convexity or monotonicity constants of a homogeneous function || • || are finite, then
one can always find an equivalent (by means of the relation x ) function such that the
underlying constants are equal to 1. More precisely:

•|| is a monotone function on 0. then M(||-||') = l and
I, where

(i) If

(ii) If |l-|| is (p,r)-convex, 0<r<p^oo , then C(p-r)(||-||')= 1 and i/C(p-r)(|H|)||x||g
IIx N i l x I I , where

x =1
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212 JERZY SZULGA

(Hi) If ||• || is 0+-convex, then C(0*>(||-||') = 1 and l/C<0+)(||-||)||x||^||x||'g||x||, where

We omit a routine argument.

3. Some uses of Pareto random variables

For 0 < a < oo, let Xa denote a positive a-Pareto random variable, i.e., with the density
ax" 1 ""! ,^! ) . Throughout the section, U will stand for a random variable uniformly
distributed on [0,1]. Notice that we may choose Xx=U~lla. Denote by Zy,, ieN,
independent copies of a positive y-stable random variables Zy, 0<y< l , i.e., with the
Laplace transform Eexp{ — rZr} = exp{ — ty}, t^.0. In the sequel, parameters appearing
in subscripts may be dropped for the sake of clarity.

Remark 1. The distribution of an a-Pareto random variable, 0 < a < 1, belongs to the
domain of normal attraction of a positive a-stable distribution, i.e. the probability law of
n ~1/a £ , .Y; converges weakly to the positive a-stable law. Moreover, such normalized
sums are bounded in Lp for every p<<x, hence their qth powers, where q<<x, are
uniformly integrable.

Proposition 3.1. Let X = Xa be an a-Pareto random variable, and | | | | be a positive
homogeneous monotone function on L Then the following statements hold

(i) Hllx + ̂ l l l lo^dlxl l ' + IHI')1", x,yel+. (3.1)
(ii) IfO+^q<<x<r<oo, then there exists a universal constant b = b(a,q,r) such that

1/", s,teU+.

Proof, (i): Assume that ||x|| = ||y|| = 1. Notice that

Let t g l . We have
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(p,r)-CONVEX FUNCTIONS ON VECTOR LATTICES 213

Now let t>l.

= ln(fIexp{aElnA'})

To prove (ii), it is enough to consider the function (Eil + fX')"")11", t>0, where r>a.
Substitute /3=a/r<l, p = q/r<0, u = f (hence f = ullfi), Xp = Xr = U~lw. Thus it suffices
to prove that (E(l + ul'fiXfi)"f"'^l + bu for M>0, where O<p</?<1. First, we consider
the case u^l. The left hand side of the above inequality can be estimated as follows.

J
-'If V

0 v

where c'=JS>((1 + »)p—1/(»1+'))^d». Since p/p>l, the function w-»(l + we')"", t/6[0,l],
is convex. Therefore the estimate

{1 + uc'f^l+b'u, ue[0,l],

holds if we take fe' = ( l+c ' )W p - l .
Consider then the case u ^ l . The left hand side of the above inequality can be

estimated as follows. Since p< 1, we have

where c" = EYp
fi = P/(P-p). Since p/0<l . the function ut-^(l + uplfic")p/p, ue[l ,oo], is

concave. Therefore the estimate

(1 + u^c")*1" ̂ l+b"u, u e [ 1, oo]

holds if we take b"=(\ +c")plp- 1.
Finally, we put b = ma\(b',b"). Notice that c' and c" do not majorize each other

(hence V and b" do not, either). Indeed, c'->ao when fi->l while c" remains bounded.
On the other hand c'->0 while c"-+l, as p->0. •

The following result contains estimates of moments of combinations of Pareto
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random variables. It is a strengthened version of a classical relation (cf., e.g., [7, Lemma
I.f.8] or [9, Proposition 1.1]). Besides the use of a general function | | | | , the key point
lies in the augmentation of the standard family of 2.,,-norms, p>0, by the functional
|| -1|0+- This requires an exact evaluation of the appropriate constants.

Theorem 3.2. Let Xj = Xa , be independent copies of an a-Pareto random variable Xa,
0 < a < o o , and \\-\\ be a positive homogeneous monotone function on L Then

(ii) if 0 + ^ q < a < r, then, for some b = b(<x,q,r),

,1/r

t|6R + .

Proof, (i) We will apply an inductive argument (compare [14]). We will show that

exp < E In (3.2)

Let Xj,...,Xn be independent a-Pareto random variables. We may assume that these
random variables are defined on a product probability space. Denote by En_t

(respectively, En) the expectation with respect to the probability spaces that the n — 1
first variables (respectively, Xn) are defined on. Notice that, for positive random
variables A and B,

)1/a, (3.3)

(3.4)

(E(A* + B*)"1')11" ̂  ((EA")alq

(in other words, /"-norm is ^-convex), hence, by letting q-*0,

exp{Eln(/la + B'I)1/a}^(exp{aEln/4}+exp{aElnB})1/a.

By virtue of Fubini's theorem and by (3.4) and (3.1), we have

exp < E In x,X,

^expJE^ln/Ti;1
(. VII *=i

n - l

x+ £ xiXi
I + \\xn

l /a
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(p.r)-CONVEX FUNCTIONS ON VECTOR LATTICES 215

It is clear how the induction works. After completing the induction, we put x=0.
We will prove (ii) using a more elaborate argument (note that, basically, one needs an

inequality similar to (3.3) but, unfortunately, its direction is not appropriate for
purposes of this proof). By a suitable substitution, we may reduce the proof to the case
a< 1. Choose any s< 1, and put

Consider Xfi , = I/,"1'". Then the inequality in (ii) takes the form

1/ y/s / y//>
(3.5)

where 0<p</?<s<l .
By the classical standardization of stable distributions, (3.5) will follow from the

inequality

E

which, in turn, can be derived from the estimate

(3.6)

(3.7)

where a constant c>0 does not depend on v.
Since the distributions of Pareto random variables belong to the domain of normal

attraction of a stable distribution (cf. [3]), then by virtue of continuity of the function
t>->||.x + ty||, in Proposition 3.1 one can replace Pareto by stable random variables (cf.
Remark 1 and [2, Theorem 5.4]).

The sought-for estimate (3.7) follows from the inequality

which holds for suitable b = b(fi,s,p). Up to the appropriate adjustment of the constants,
this is the inequality appearing in Proposition 3.1(ii). Q

Statements (i) in the above proposition and theorem are essentially proved in the case
L = /°° and ||-|| being the supremum norm, since ||^i^^fll = rnaxifi||;*ci||- Therefore, the
lower bounds for combinations of Pareto random variables have a universal meaning.
They are independent on the choice of a particular homogeneous function || • || or an
Z/-norm even though, in some particular cases, one can obtain much better estimates.
For instance, when L = R, ||x|| = |x|, and <x>p> 1, then
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216 JERZY SZULGA

which immediately yields the bound

As a by-product, the following result allows us to derive a number of universal lower
bounds for certain combinations of AT.'s and positive vectors from L

Proposition 3.3. Let (Xi:i=l,...,n)=(Xllj:i=l,...,n) be a finite sequence of i.Ld.
a-Pareto random variables and 0<p<oo, Then

(i) * IN x,-elL

(ii) Let ^:R"-»R+ fee a positive homogeneous monotone function. Then, for the
^.-valued counterpart of \jj, the universal lower estimate

xt e L

holds if and only if

(3.8)

(3.9)

The constant, implicit in relation "?=", may depend only on \p.

Proof. That the constant in the estimate is independent of a (and n) is essential.
Statement (i) immediately follows from Theorem 3.2(i) by convexification. That is, it is
enough to note that, for pe(0, oo),

x,yel+.

In order to prove the sufficient condition in statement (ii), it suffices to approximate,
for a fixed n, Vlx i | by (X,|x,|'')1/P as p->oo. Hence (3.8) follows from the inequality

and (3.9).
In order to prove the necessity, we may confine ourselves to the case L=IR. Inequality

(3.8) yields
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(p,r)-CONVEX FUNCTIONS ON VECTOR LATTICES 217

However, since \\VC\\O+ = |lKllo* and Xa = X\", then

0 +

Therefore,

supX,,,
I/a

and it is enough to let oc-+oo. Notice that the same necessary condition appears in the
case of an arbitrary norm | | | | p , that might replace | | | | 0 + , where 0 < p < a . In the last
step of the proof we would rather use the Dominated Convergence Theorem,

| | | J , = l . •

4. Relations between convexities

Recall that || • || is a monotone positive homogeneous real function on a relatively
uniformly complete vector lattice L

4.1. Montonicity

It is known that, for r ^ s ^ l and a Banach lattice L, if L is r-convex then L is
s-convex (cf. [7, Proposition l.d.5]. We will extend this property to our context.

Theorem 4.1. Let and t^p, or if

and

then C(p ' ' r i )^C(p ' ' ' ) for every positive homogeneous monotone function ||-||. In particular,
the function ph-»C(p) is nondecreasing on its domain {p^0 + :C < p ) <oo}. This means that
|| • || is 0+-convex whenever is p-convex for some p > 0 .

We need two auxiliary results.

Lemma 4.2. If a monotone function \\-\\ on L is 0+-convex then

(4.1)
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218 JERZY SZULGA

Proof. Suppose ||-|| is 0+-convex. Then

for every selection of rational nonnegative numbers
rt = k,/lh and wi, = f7; (,&,•//,-, so Xi'Mi = n h==L. Then

where £,/•,= 1. Indeed, write

and the inequality follows by 0+-convexity.
Now, given, xl,...,xneL + , put xo = sup,x1, and, for an arbitrary discrete distribution

(Pi), choose nonnegative rational numbers r^pj. Put r=Y,irt- Then

(pn -r n ) / ( l -r)\i -r
I

= IHX1 Xn ) x0 ||

< / " ( 0 + ) | | r i /r v-r"/rllrll v III—'-
= C I I X 1 • • • X I I || | | X 0 | |

Finally, let r,-*pi,i=l,...,n.

For a discrete probability distribution p = (p!,...,pn), define its entropy

•

Lemma 4.3. Let | |-| |:L-»IR+ be a monotone homogeneous (p,r)-convex function on
L , 0 < p ^ r ^ o o , with a constant C(p>r). Let £ = (Pi,. . . ,pn) be a discrete probability
distribution, i.e. p, ^ 0, / = 1,..., n, ^,- p, = 1. Then

Proof. The following inequalities, involving homogeneous functions, can be verified
in the real context, and subsequently carried over to the lattice case. If ^Iu,p1-=0 then

Since | | | | is monotone and (p, r)-convex, then
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Computing the unique minimum, over the set {u-YdiUipi = 0}, of the strictly convex
function on the right hand side, we obtain the sought-for estimate.

Proof of Theorem 4.1. The part of the statement corresponding to the case
r ̂  rt ^ oo and 0 < pj ^ p is trivial.

Consider the other case. Let r<oo. Put <x = r/r1 and let /? be such that l//?+l/a=l,
i.e. p = r/(r-rt). Put

Then, using Holder's inequality, for x, e L we have

Let now r= oo. The above proof works exactly the same way, if we consider a= oo, /?= 1
and interpret (£,-|xi|

r)1/r as sup,|xj|. Hence the required monotonicity relation between
the convexity constants is fulfilled.

(ii) The first part of the statement is obvious. The second part follows immediately
from Lemma 4.3 by putting p = r. •

In the proof of Lemma 4.3, if one assumed additionally that || • || is ".[-continuous" (i.e.
xnJ.x^0=>||xn|||||x||), then, in the inequality defining (p,r)-convexity, one could use
positive numerical multipliers p\lr of x,'s such that ^ ,p ,= 1. They would appear in the
right hand side in the form pflr. Now, using the montonicity proposition, and letting
r-»0, the required limit estimate would follow. However, an example following
Proposition 4.4 shows a norm lacking this property.

The estimate obtained in Lemma 4.3 is sharp, i.e., the bound is attained for a concrete
lattice and function, which can be seen from the following construction.

Example 1. (An s-norm failing 0+-convexity). We will construct an (oo, l)-convex (in
particular, (1, ̂ -convex) positive monotone homogeneous functional which is not
0+-convex, hence this functional cannot be q-convex for any q>0. By convexification,
for any a>0, we can modify the construction to obtain the corresponding counter-
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example of (oo,a)-convex (in particular, (l,a/(l +a)-convex) functional which is not q-
convex for any q<^0+.

Let L = R" with the coordinatewise ordering. Let {«,-: 1 ^i^n!} be the set of all vectors
whose coordinates are permutations of {l,...,n}. Define

t/=U[o,«,].

Let ||'II = ||'Hi/ be the gauge function. It is easy to check that ||-|| is positive
homogeneous and monotone. We will prove that

sup ptui e U, Pi=0, X, P, = 1 (4.2)

and

Relation (4.3) follows easily, since (n!)l/n n and

while | | (1, . . . , 1)|| = 1.
The proof of (4.2) is more elaborate though still elementary. Let £ be a probability

distribution on {l,2,...,w!}. Without loss of generality we may assume that Pi^p 2 =
...^£pnl. We will find a specific enumeration uuii2,... of the family {«,} such that

max p,M, £ v = max pjiii.

As Mi, we choose a vector with n on the first coordinate. So, vl = npl. Other coordinates
will be chosen later. As u2, choose a vector with the first two coordinates equal (l,n),
and then choose («—1) as the second coordinate of u,. Now, v2 = (n — l)p1 v np2. As u3,
choose a vector whose first three coordinates are (l,2,n), then choose (n — 2) as the third
coordinate of ul and (n— 1) as the third coordinate of u2. Hence v3 = (n — 2)pi v
(n-l)p2 v np3.

Continuing, the vector v will have the following coordinates:

vk = (n-k+l)pi v {n-k + 2)p2 v ... v (n-l jp^i v npk,

Since 1 ^ p t + • • • +pk, then, by monotonicity, pt ̂  1/fc.
Hence
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In other words,

v£(n,n-l 2,1),

which proves (4.2).

4.2. Interpolation of convexities

By virtue of the following result, distinct convexities can be interpolated. A Banach
lattice version of this result is known ([7, Theorem l.f.7], see also [10,9]). Following the
same idea, we will also use Theorem 3.2 containing some comparison inequalities for
combinations of independent Pareto random variables, and providing sharper constants
(we need them) than those appearing in [7].

We will employ some probabilistic techniques. Let TilR"-*!^ be a continuous
positive homogeneous function and 9l,...,Qn be real random variables. Define 0 =
xf(0lxl,...,dnxn). By Theorem 2.3, the following L-valued homogeneous functions are
well defined

(E0")1/p, exp{Eln0}.

Proposition 4.4. Let ||-|| be a positive homogeneous monotone function. Let p ^ 0 + and
|| • || be p-convex. Then

Proof. We will prove the statement only in the case p = 0+ , which is slightly more
difficult than the case p>0, though the proof are similar. For any random event AcQ.
we have

|| exp {E In |0|}| | = || exp {E [In | 0 |M] + E [In |©|; X']} ||

= || exp {P(A) E [In |0 | ; A]/P(A) + P(A<)E [In |0 | ; A^/P(AC)}\\

g || exp {E [In |0 | ; A]/P(A)} \\PiA)\\ exp {E [In |0 | ; A^/V{AC)} ||p<"c>,

by 0+-convexity. Also, putting xo = sup1|x1|,0o = max,ln + |0,|, we have

exp {E [In |0 | ; A)/PW} ^ <A(*o) exp {E [0O; A]/P(A)}

Combining both observations, we obtain

|| exp {E In |0|} || ^ || exp {E [In |0 | ; A1/P(A*)} i r ^ l ^ C ^ H ^ ' e x p {E [0O; A]}.
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Now, for e > 0, we can find a set A and discrete random variables 9\c) such that

P(,4)ge, E[0oM]^e, d^gdi,0,^(1+6)0^ on AC, j = l,...,n, *eN.

Hence, for a certain numerical quantity A(e) that converges to 1 when £->0, we have

|| exp {E In |0 |} | | g A(e)|| exp {E [In |0« | ; Ae]/f{At)} ||p(/|e)

^A(e)exp{E[ln||0||]}.

To complete the proof, let e-»0. D

If the function ||-|| is monotone continuous (i.e. 0^xn |x=>| |xn | | T||x||> t n e n u s e of a
monotone approximation by simple functions simplifies the proof significantly. However,
even a norm need not be monotone continuous. For example, let L = /0O, and define a
norm

N

"1 £ x,.
N-+co i = l

Let O^a^&^oo. Choose two positive sequences (an) and (bn) such that fen^an,an-»
a,bn-*b. Define an increasing sequence of vectors

xn = (bl,b2,...,bn,an+1,an+2,...).

Clearly, ||xn|| = a and ||supnxn|| = b.

Theorem 4.5. / / | |*| | is (p,r)-convex for some p and r, 0<p:Sr^oo, and 0+-convex,
then || • || is s-convex for every s,Q<s<p.

Proof. By Proposition 4.4 and Theorem 3.2, we have
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This completes the proof. •

Combining this theorem with Lemma 2.1 we deduce the following:

Corollary 4.6. / / the addition (or the supremum) is continuous with respect to the
topology induced by a positive homogeneous monotone 0+-convex functional \\-\\, then this
functional is p-convex for some pe(0,1], which makes the underlying topology metrizable.

It is easy to see that 0+-convexity alone may imply none of other types of convexity
discussed here. Moreover, the lack of a stronger convexity may be determined by shapes
of two-dimensional spaces. The idea is as follows. Let Ln = IF82 be a sequence of
two-dimensional spaces and ||-||n:ILn-»R+ be positive homogeneous 0+-convex functions
with C(p)(||-||n)-Kx>. Let \f/:Uf<->M+ be any homogeneous monotone 0+-convex function.
The function ||-||:(R2)N-»IR+, defined by the formula

generates a vector lattice

l = {xe(R2)N:||x||<oo}.

Clearly, I is r.u.c, and | | | | is 0+-convex, but not ^-convex for any q>0. By Theorem
4.5, || || is not (p,r)-convex for any pair (p,r),0<p±£r^oo.

We give two examples.

1. Let Ln = /§" endowed with the usual positive homogeneous functionals || • ||Pn, 1 > pn \ 0.
2. Let a ^ l and let |H|fl=|H|i/a be the gauge function of the set Ua =

{(x,y)e[0,a]2:xy^l}. In other words, denoting ||(x,y)||0 = v/jxy| and ||(x,y)||00 =
N v Hl l - l | . = l|-||o vdHU/f l ) . It is clearly seen that C<i+(||-||a)= 1 and

4.3. Convexities via mutually disjoint vectors

In the definition of (p, oo)-convexity, it suffices to consider only mutually disjoint
vectors. This is known in the case of a Banach lattice, and the proof remains essentially
the same, up to some nuances. Again, for the sake of completeness, we will provide
details. We will follow the idea of the proof of [7, Proposition l.f.6].

Theorem 4.7. The function \\ • || is (p, ao)-convex if

(INN .
V •• /
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Proof. The theorem will follow from two observations stated below. The vector
lattice L can be embedded into an order complete vector lattice L However, extensions
(not unique, in general) of functions | | | | on £ need not preserve some of the discussed
properties (see examples following the proof). Recall that the order completeness (in
other words, Dedekind completeness) means that every nonempty set that is order
bounded from above has a supremum. Every Archimedean vector lattice has a
Dedekind completion (cf. [8, Theorem 32.5]), i.e., there exists an order complete vector
lattice L such that L is lattice and vector isomorphic to a sublattice of L (for simplicity,
we say from now on that L is a sublattice of I) and, for every x e C,

x = sup{xe(L:x^x}=inf{j>:_y^x}. (4.4)

The following observation belongs to the standard repertoire of the theory of vector
lattices (cf. the proof of aforementioned [7, Proposition l.f.6], or [13, Section II.2]).

Observation 1. If (L is an order complete vector lattice then, for every finite set
{x(: 1 g j ^ n } c L + , there exists a finite set {y,-: 1 gi^n}<=(L+ such that

yt A yj = 0, 0<L y, g,xh 1 ^ i, j^n, £ yt = sup yt = sup x,.
i i i

Observation 2. The "upper" extension || • ||* defined by the formula

preserves (p, r)-convexity for any p,r(0+ ^p^r^oo) .

The statement follows routinely. We omit details. •

We may also define the "lower" extension (cf. Section 4.3) of || • || on C

Then any positive monotone extension ||| |~ satisfies | | | | » ^ | | | | ~ S | | | | * - In general,
extensions need not be unique nor preserve any type of convexity.

For example, take l = C[0,1], put ||x|| = |x(l/2)
11,, = 0. For x1 = nl[O,i/2], *2 = "l(i/2,i]> we have

and x = l[o, i/2]- Then
v x2||^ = n while \\xt

x||+ = 1 while

. = n whileFor x t =n 2 l ( 0 . i /2 ] + l(i/2,i]. *2 = l[o,i/2] + "2l(i/2,n» we have | | ( x 1 ) x 2 ) 1

||x1||^ = ||x2||^ = l. Thus ||'H,,, fails to be (p,r)-convex for any p,r,0+ ^ p ^ r ^ o o . The
same may be true for the lower extension of a complete norm, e.g. consider a norm

4.4. Convexification of vector lattices

Definition 4.4.1. One can extend a procedure which is well known in the case of
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Banach lattices (cf. [7, p. 53]). In a vector lattice (L, we introduce new vector operations
and define an order turning the new structure to another vector lattice. Let <x>0. Define

aeU,xeL,

x,yeL.

If necessary, we will use a subscript, e.g., ©a, Qx. It is easy to check that (La, ©, O, © ) ,
called the <x-convexification of Q_, is a vector lattice. Clearly, in the case of a function
space, L(ot) = {/:/" e 1}. Let | | | | be a positive homogeneous function on L and a > 0 .
Define a homogeneous function ||-||(lI):ILa-»R+ by the formula ||^||((I) = ||^||1/°I-

Proposition 4.8. Let L be a r.u.c. vector lattice and || • ||: L-» U + .

(i) H.'"0 is also a r.ux. vector lattice, and the identity map constitutes a topological
isomorphism between L and L(a) endowed with r.u. topologies.

(ii) For a,P>0, we have (LW)(W = LW), L(1) = L, (L(a))(1/a) = L, where the identities are
meant in the sense of vector, lattice, and topological isomorphism.

(iii) / /
(iv) ||-
(v) If

is (p,r)-convex function on L, 0 + ^ p ^ r ^ o o , then ||-||(a) is {pec,m)-convex.
4 | | | | +

|| | | | | ( )
is 04-convex function on 0. if and only j/ | |"| |(a) is Q+-convex.
•|| is q-convex for some q>0 then \\-\\{x) becomes a norm if txq^l.

Proof, (i) One must show that

xB
r-*xinL o x /^ 'x inL" ,

or equivalently, that, for any a > 0,

The equivalence and the invariance of completeness follow immediately from two
inequalities involving homogeneous continuous functions. It is enough to verify the
following inequalities in the real context:

x,yel
x,yel i f a^ l .

(ii) For example, to prove the first identity, we have to check that

The identity clearly holds in the real context, and the functions of the two arguments
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appearing on both sides are homogeneous and continuous. Hence, it can be carried over
to the vector lattice case.

All other statements follow immediately. •

Besides 0+-convexity, there are a number of obvious invariants of convexification, like
monotonicity, completeness, continuity, to name but a sample. If a topology T generated
by || • || is separable, so is zM.

Acknowledgement. Nigel Kalton informed me that similar concepts to those appearing
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