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1. Introduction

In recent years a great deal of attention has been devoted to the study of
finite simple groups, but one aspect which seems to have been little considered is
that of the laws they satisfy. In a recent paper [3], the first two of the present
authors gave a basis for the laws ofPSL(2, 5). The techniques of [3] can be used
to show that (modulo certain classification problems) a basis for the laws of
PSL(2, p") can be made up from laws of the following types:

(1) an exponent law,
(2) laws which determine the Sylow subgroups,
(3) laws which determine the normalisers of the Sylow subgroups,
(4) in certain special cases, laws which determine subvarieties of smaller exponent,

e.g. the subvariety of exponent 12 for those PSL(2,p") which contain 5 4 ,
(5) a law implying local finiteness.

Laws (1) and (5) are easily obtained and this paper reports on an attempt
to make a systematic investigation of laws of types (2) and (3) which hold in
PSL(2, p"). In general we have most success with PSL(2, 2") and it seems quite
likely that it will be possible to find the requisite set of laws. For PSL(2, 23) we
have been able to complete the basis. For PSL(2, p") we have not been as successful,
though some progress has been made. The laws in these cases are found by a
systematic use of the (two-valued) two-dimensional representation and its charac-
ter; the proofs can be found in § 5. In the cases p" = 7, 9, 11 we have also been
able to complete the bases; the proofs are in § 6. An important feature of the
proofs in § 6 is the use of a 2-variable basis for the laws of 5 4 ; this can be found in
§ 4. In § 7 we show how the laws of certain SL(2, p") can be derived from those of
the corresponding PSL(2, p"). Finally we state bases for the laws of Ss, for the
variety of proper factors of PSL(2,7), and the variety of soluble factors of
PSL(2, 2"), an outline of the proofs being given in § 8.

The results are fairly technical in nature and we defer precise statement of
them until we have established our notation.
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Parts of Theorems 3.1, 3.2 and 3.4, and Theorem 3.5 have already been an-
nounced, [4]. We note that we have changed the fifth law given there in the basis
for PSL{2, 9) in order to have one which conforms with the general type of such
laws given in theorem 3.2. (B). Clearly either law serves the same purpose.

2. Notation, definitions and preliminary results

The reader is referred to the book of Hanna Neumann [17] for the basic
concepts of the theory of varieties; as there we use upper case Gothic letters for
varieties and upper case Roman letters for groups. However we differ in using 1
indiscriminately for the identity element and the trivial subgroup. Finally we note
that 'group' means 'finite group' and 'simple' means 'non-abelian simple' through-
out.

2.1 NOTATION AND DEFINITIONS

2.1.1. Q denotes the quaternion group of order 8 and £1 the variety which it
generates.

2.1.2. Cm denotes the cyclic group of order m and Dm the dihedral group of order
2m.

2.1.3. Sm and Am denote, respectively, the symmetric and alternating groups of
degree m.

2.1 A. 9lm denotes the abelian variety of exponent m.

2.1.5. The terms of the lower central series are denoted by ytG, where yxG = G
and yi+1G = [ytG, G]; Z(G) denotes the centre of G, $G the Frattini subgroup
of G and oG the socle of G.

2.1.6. A finite group with a unique minimal subgroup, M, is said to be monolithic
with monolith M. Then M = oG and we denote the centraliser in G of M by a*G.

2.1.7. The word um is defined recursively by

(Note that this corresponds to the word vm-1 as defined in [17] 52.31.)

2.1.8. C(e, m, c) denotes the class of all groups of exponent dividing e, whose
chief factors have order at most m, and the class of whose nilpotent factors does
not exceed c.

2.1.9. C(X*, m), where X is prime and XJfm, denotes the critical group with a
normal subgroup which is a direct product of t copies of Q« and whose factor
group is cyclic of order m where t is the least integer such that m\X'— 1.
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2.1.10. If H, K are groups with isomorphic non-trivial central subgroups Z1 and
Z2 respectively, then (HcpK: Zx = Z2> denotes the direct product of H and K
with Z t and Z2 amalgamated. When there is no ambiguity we write (HcpK).

2.1.11. Var G will denote the variety generated by the group G and var(w1, • • •, wr)
the variety defined by the laws w^ = 1, • • •, wr = 1.

2.1.12. If TC is a set of primes then a 7t-element, or ?t-group, will denote an element,
or group, whose order is divisible only by primes in n. n' will denote the comple-
mentary set of primes. When n = {/>}, we write /^-element etc.

2.1.13. The upper re-series of a group G:

1 = Po ^ 7V0 < Pi < Ni < • • • ^ G

is denned by NjPt being the greatest normal rc'-subgroup of G/Pi, and Pi+JNi
being the greatest normal 7t-subgroup of G/N-,. If for some /, Nt = G, G is said
to be 7i-soluble of 7t-length /.

2.1.14. If xeSL(2,p") then t r x denotes the trace of x. If xePSL(2,p") then
tr x denotes the traces of the two elements of SL(2, p") mapped onto x in the
natural homomorphism. Thus we shalll write tr x = ±s.

2.2 PRELIMINARY RESULTS

We list in this section various results to which we wish to make frequent
reference.

2.2.1. JQ = var Z>4 = var (x4, [x2,y]). (P.M. Weichsel [23], Theorem 1.1, [24]
Lemma 5.1.)

2.2.2. The law um has the following properties:
(i) every group of order less than m satisfies um = 1;
(ii) a group with a chief centraliser of index greater than m — 1 does not satisfy

um = 1;
(iii) a group with a normal abelian subgroup of index less than m — 1 satisfies

um = 1. (L. G. Kovacs and M. F. Newman [16], 1.71, 1.72, 1.73.)

2.2.3.
(i) C(e, m, c) is a Cross variety;

(ii) if 33 is a variety of exponent e, whose nilpotent groups have class at most c
and which satisfies um = 1 then S3 ^ C(e, em, c). (L. G. Kovacs and M. F.
Newman [15].)

2.2.4. %.^.m = var C{k", m) (John Cossey [2], Lemma 4.3.1)

2.2.5. If G is 7t-soluble with upper Tt-series

1 = P o ^ No < Pi < • • • g N, = G then

(0 CW^PJNJZPJN,;
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(ii) if the 7c-subgroups of G are abelian then G has 7r-length 1;
(iii) if the 2-subgroups of G e Q, then G has 2-length g 2. (P. Hall and G.

Higman [11], Lemma 1.2.3, Theorem 1.2.6.)

2.2.6. LEMMA. Let G be a finite group, and suppose that N is minimal normal in
G such that G/N is an abelian p-group. If G\N is cyclic, then \Mp(G)\ ^ \MP{N)\,
where M(G) denotes the multiplicator of G and Mp{G) its Sylow p-subgroup.

PROOF. Let H be a representing group for G, with KjM{G) = N. Then
K/y2 K has nontrivial Sylow /^-subgroup if \MP{G)\ > |MP(A^)|. Let L/y2 K be the
Hall //-subgroup of K/y2K; then HfL is a />-group. If D\L = y2(H[L), D < K,
for a />-group has cyclic factor derived group if and only if it is itself cyclic. But
this gives a contradiction, for H/K is also the largest abelian /^-quotient of H.

2.2.7. PSL(2,p") possesses subgroups isomorphic to the following groups only:

(1) Cp x • • • x Cp ( ^ n factors),

Pn ± 1
(2) Cf where J and k = (p — 1,2),

k

(3) Df w i th /as in (2),

(4) A4 for/? > 2 orp = 2 and n = 0(2),

(5) S4 for/>2"-l = 0(16),

(6) A5 for/7 = 5 orp2n-l = 0(5),

(7) subgroups of C(p, t) where t\pn— 1,

(8) PSL(2,pm) for m\n and PGL(2,pm) for 2m\n.

(B. Huppert [13], Hauptsatz II 8.27, L. E. Dickson [6], § 260.)

3. Statement of results

THEOREM 3.1.

(A) The following set of laws forms a basis for the laws o/var S^:

(1) * 1 2 = 1,

(2) {(x3y3rix3,y6rr = l,
(3) [x2 , / ] 2 = l,

(4) [x,y]6 = l,

(5) [x6,y6] = l,

(6) [[x,y]3,y3,y2] = l.

(B) The following set of laws forms a basis for the laws o/9l32I4 u var

(1) x12 = 1,
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(2) {(*V)4[x3,/]3}3 = 1,

(3) [x\y*]2 = 1,

(4) [x,y]6 = l,

(5) [x\y6]3 = \,

(6) [[x,y]3,y3,y2] = 1,

(7) us = 1.

(C)Let G be a finite group of exponent 12, whose Sylow 1-subgroups and
Sylow 3-subgroups belong respectively to £} and 213. If, in addition, G satisfies the
laws [x,y]6 = 1, [x6, y6]3 = 1, and [[x,y]3,y3,y2] = 1, G belongs to 2I32l4 u
var S4, and if [x6, y6]3 = 1 is replaced by [x6, y6] = 1, then G belongs to var S4.

THEOREM 3.2.

(A) The following laws hold in PSL(2,p"),p # 2:

p" = 1(4), p ^ 5: {(xV)*[xs,

/> = 5: {(*y(*yj)10)10(y.

where s = i(p2"-l);

i// = — l(ps) or — \{p) and 0(5);

X = 0(s) and 4(5).

(B) The following laws hold in P$L(2,p"),p ± 2:

f s 1(4), P ^ 3 :

p = 3, n CTe«

5 = i (^ 2 " — 1),

' = -£(/>"-1),
), x^ = 1(3).

The laws in (A) imply that Sylow p-subgroups are abelian, and the laws in (B)
fail to hold in C(p, r) where r is a divisor of$(p"+1).

THEOREM 3.3.

(A) PSL(2, 2") satisfies the following laws:

(1) * 2 ( 2 2 " - 1 ) = 1,

(2) [ x . y * 2 - " ] 2 2 1 - 1 - ! ,
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(3) { [x 2 ( 2 n -^^x 2 ( 2 "- 1 >] 2 2 n - 1 -V,* 2 ( 2 "~ 1 ) ] } 2 = 1>
(4) U2 n ( 22n_1 ) + 1 = 1.

(B) A basis for PSL(2, 23) is given by the above laws (with n = 3) together
with:

(5) { [ [X 1 8 , / 1 2 ] 3 6 , x 3 6 ] 6 3 [ [ x 1 8 , / 4 ] 3 6 ^ 1 8 ] 9 4 [ / 4 , ^ 8 ] } 1 8 = 1,

or

(5')[[[*18,/4]36,/4]36,/8]9=l,

(6) {{(x1V8)uVV08)112}*[*54,J'54]!}18 = 1.
where k = 49 or 112, / = 18 or 81.

THEOREM 3.4.

(A) The following set of laws forms a basis for the laws of war PSL(2, 7):

0) x84 = 1,
(2) {(x2V1)52(*2V63)4[*2\:»,42]9}21 = 1,
(3) {(x2V8)57[x28,/8]14}28 = 1,
(4) [x3 , / 2 ] 1 2 = l,
(5) {[[y-24x2V24,7"12^21/2]37^21]13>'"48^21>J48]V8}21 = i,
(6) { ^ 2 8 , 7 1 2 , ^ 8 ] 6 [ X 2 8 , J 3 6 ] 2 } 2 8 = 1 ,

(7) { (xV) 1 2 ^ 4 9 ) 1 2 ^ 3 5 , / * 9 ] 1 1 } 4 2 = 1»
(8) { { ^ V 7 ) 7 2 ^ 7 ^ 7 ] 1 5 ^ 7 ^ 7 7 ] 3 } 3 6 ^ 4 2 ^ 4 2 ] 5 } 7 = 1,
(9) {(x2V63)72(^2V1)24[[[^7

>>'7]21,>'21]7,J14]}7 = 1,
(10) u169 = 1.

(B) The following set of laws forms a basis for the laws o/var PSL(2, 9):

(1) x60 = 1,
(2) { ( x 1 5 / 5 ) 1 6 ^ 1 5 / 5 ) 1 6 ^ 1 5 . / 0 ] 3 7 } 1 5 = 1,
(3) {(x2V°)2 1[*2 0, j ' 2 0]2 9}2 0 = l,
(4) { { ( X 1 2 J 1 2 ) 5 ( X 1 2 J ; 4 8 ) 5 } 1 9 [ X 1 2 , / 2 ] 1 6 } 3 6 = 1,

(5) { [ [ x 2 0 , / 2 r , x 2 0 ] [ x 2 0 , ^ 8 ] 4 0 } 2 0 = 1,

(6) {[y40,x12]15[x36,>>20,x12]5 [>40,x36]4}12 = I-
(7) {x4 8[x1 2, j ;1 5 ,x2 4]5x1 2[x1 2, /0]1 8}1 2 = 1,

(8) {{[x3 0 , j 3 6]4 5(x1 5 /2)2 1(^1 53 ' 4 8)5 7}1 0^1 5>/2]4 5}1 5 = !>
(9) {(^T[,s,/f»}5 = l,

(10) {(*V)u[x»^T}1! = l,
(11) {(xV)1 2[[[x5,J5]1 5 , /5]2 5 , /0]2 5}5 = 1,
(12) "361 = I-
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(C) The following set of laws forms a basis for the laws ofvarPSL(2, 11):

(1) x330 = 1,

(2) { (x 1 1 0 / 1 0 ) 1 1 1 ^ 1 1 0 * / 1 0 ] 2 7 5 } 1 1 0 = 1,

(3) { ( x 6 6 / 6 ) 1 8 ^ ^ 6 6 ^ 2 6 4 ] 6 6 ^ 6 6 ] 6 7 ^ 6 6 ^ 6 6 ) 1 5 0 ^ 6 6 ^ 6 6 ] } 6 6 = 1,
(4) [x30,y5]30 = \,

(5) {[x1 6 5, j9 0 ,x1 6 5]tx1 6 5,^3 0]4 1}1 5 = 1,

(6) { [ x 1 1 0 , / 0 , * 1 1 0 ] 1 1 1 ^ 1 1 0 , / 0 ] 5 } 1 1 0 = 1,
(7) {((^30)55^30^300)55)220^^o-pe^ee = 1 ;

(8) {[[x66,}>264]165,x66]6[x66,/i6]}165 = 1,

(9) { [ x 1 1 0 ^ 6 6 , / 2 0 ] 1 7 7 ^ 1 1 0 , / 6 4 ] 1 1 0 ] 1 0 = 1,

(io) {(x1 1 0 / 1 0 ) 1 V 1 0 , / 1 0 ] 1 3 2 } 6 6 = i,

(11) «661 = 1.

THEOREM 3.5. Let w(xt, • • •, xr) = I be a basis for the laws o/var PSL{1, p").
Then, for n odd and p" = Sh+l, h odd, or p" = 8A+3, or for p" = 9, a basis for
the laws o/var SL(2,p") is:

(1) [w(xlt-'-,xr),y] = 1,

(2) ( w ( x 1 ; - - - , x r ) ) 2 = l .

THEOREM 3.6. The following set of laws forms a basis for the laws o/var 55 :

(1) x60 = 1,

(2) { ( x 1 5 / 5 ) 4 ^ 1 5 , / 0 ] 1 5 } 1 5 ^ ,

(3) { ( x 2 0 / 0 ) 6 ^ 2 0 , / 0 ] 2 } ^ ! ,

(4) { { ( X 3 6 J ; 1 2 ) 5 ( X 3 6 J 4 8 ) 5 } 3 [ X 3 6 , J 3 6 ] 6 } 6 = 1,

(5) [* 6 , / ] 1 5 = l,

(6) {[>>20,x48,/°]b'20
)x

12]}10 = l>
(7) {[^j40^48]^^12]2}^!,

(8) [x,^3^!,

(9) {((xV)3 6(*V5)3 6)3 6[*3 0,}'3 0]}5 = 1,

(10) {{(x25/5)36((x35/5)50(x25/5)50)36}36[[[^25.>'25]15>/5]25
>>;50]}5 = 1.

(11) { ( ( ^ V 4 5 ) 4 0 ^ 2 1 / 5 ) 2 0 ) 4 0 ! ! ^ 1 , / 1 ] 4 5 , / 5 ] 2 1 , / 2 ] } 1 2 = 1,
(12) ui21 = 1.

THEOREM 3.7.

(A) The following set of laws forms a basis for the laws of the variety generated
by the proper subgroups ofPSL(2, 7):

(1) x 8 4 = 1,

(2) { ( X 2 1 J 2 1 ) 4 [ * 2 \ > > 4 2 ] 3 } 3 = 1,
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(3) [ x 2 , / ] 1 4 = l ,

(4) [x\yl2) = l,

(5) [x,y]*2 = l,

(6) [x6,y6] = l,

(7) [[x,y]63,y\y2] = l.

(B) The following set of laws forms a basis for the laws of the variety generated
by the soluble subgroups ofPSL(2, 2"):

(1) XW"-V = 1,

(2) [x2,y2]2 = \,

(3) [x2,y2(2"-1>] = l.

4. The proof of Theorem 3.1

4.1 PRELIMINARIES

In this section, we collect a number of results which we will need in the proof
of Theorem 3.1.

The following result is due to W. Gaschiitz [7] theorem 8: we will use it and
its corollary often, usually without explicit reference.

4.1.1. LEMMA. Let G be a finite group all of whose Sylow subgroups are elementary
abelian. Then every normal subgroup of G is complemented in G.

4.1.2. COROLLARY. Let G be a finite group all of whose Sylow subgroups are
elementary abelian. Then G = G1xZ(G), with Z(Gy) = 1.

4.1.3. LEMMA. 2t22I3 u 2I32l2 u & ^ var SA.

PROOF. This follows immediately from the fact that 2X29l3, 2l3$2, O are
generated by A+, S3, DA respectively (2.2.4 and 2.2.1.).

4.1.4. LEMMA. Let G e 2t39I2. IfN is a normal 2-subgroup, N ^ Z(G).

PROOF. Let S be a Sylow 3-subgroup of G, T a Sylow 2-subgroup. Then
N ^ T, 5 < G , and G = ST. But [S, N] g S n N = 1, and so [G, N] = 1.
That is, N ^ Z(G).

The next result can be extracted from Kochendorffer [14].

4.1.5. LEMMA. Let G be a finite soluble group, and let K be a field of characteristic p.
Then G has a faithful irreducible representation over K if and only if i\oG\, p) = 1,
and aG is the normal closure of a single element.

4.1.6. LEMMA. Let I # G 6 2t39t2> and suppose that the order of a Sylow 2-subgroup
of G is at most 2, and that G has a faithful irreducible representation over GF(2).
Then G is isomorphic to one of the following 3 groups: C3, S3, S3xC3.
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PROOF. It follows from Lemma 4.1.5 that oG is the Sylow 3-subgroup of G,
and \GjaG\ :£ 2. Since oG is the normal closure of a single element, if G is abelian,
G = C3. If G is non-abelian, then \GjoG\ = 2, and we may regard aG as a quotient
of the regular GF(3)C2-module. From this the result follows easily.

4.1.7. COROLLARY. If G satisfies the conditions of the lemma, and in addition, G
contains no elements of order 6, then G is isomorphic to either C3 or S3.

4.1.8. LEMMA. Let G be isomorphic to a subgroup of S3 x S3, and suppose that G
contains no normal 2-subgroup. Let M be an indecomposable quotient of the regular
GF(2)G-module. Then if M is faithful, M is irreducible.

The proof of this lemma involves a case by case examination of the regular
representations of the possible choices for G, and we shall leave it for an appendix
(§10).

4.2 A BASIS FOR THE LAWS OF 2t22t32t2

The main result of this section is

4.2.1. LEMMA. The following subset of the laws given in Theorem 3.1. {A) forms a
basis for the laws o/2t29C32l2.

(1) x12 = 1,

(3) [x 2 , j 2 ] 2 = l,

(4) [x , j ] 6 = l,

(5) [x6,y6] = l.

PROOF. Let 23 be the variety defined by these laws. A quick check shows that
%W3% satisfies these, and so 2l29t32t2 ^ 93.

In the other direction, we first show that 93 is locally finite. Let G be a finitely
generated group in S3. The laws (1) and (5) tell us that the subgroup NofG generat-
ed by sixth powers of the elements of G is an abelian normal subgroup of G of
exponent 2. Then G/N is a finitely generated group of exponent 6, and so is finite
([9] Theorem 3.1.]. It follows that N is also finitely generated, and hence finite,
giving that G is finite.

Observe that the law (3) ensures that the Sylow 3-subgroups of any finite
group in S3 are abelian.

Now, let G be a finite group in 93, and let N be the subgroup of G generated
by sixth powers of the elements of G. Put GIN = H. Since H has exponent 6, it is
soluble ([10] Theorem 16.8.7), and has abelian Sylow 2-subgroups. Since it also
has abelian Sylow 3-subgroups, H is an ^4-group, and so, by [21] Theorem 8.3,
H is metabelian. It follows from [2] Theorem 4.2.2 and Lemma 4.3.1 that

All the Sylow subgroups of H are elementary abelian, and so by Corollary
4.1.2, H = LxZ(H), where Z(L) = 1. Also oL = i V j X ^ , where Ny is an
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elementary abelian 2-group, and N2 is an elementary abelian 3-group. Note that
aL = y2L. Let K be a complement for oL in L. Then K = Kt x K2, where Kt is
an elementary abelian 3-group, and K2 is an elementary abelian 2-group. Since all
Sylow subgroups of L are abelian, we have [Kt, N2] = [K2, N^ = 1, and so we
may conclude that L = N^K^xNi^, and that Z{NlKl) = Z(N2K2) = 1.
Suppose Nt = SjN; then S is a normal subgroup of G, and has exponent 2 or 4.
If S has exponent 2, it is elementary abelian, and since G/S e2I39I2> we get
G e 212 $3 312 • We will prove S cannot have exponent 4. Suppose S has exponent 4.
Then so does S/y3S, and y3S < N, y3S~a G. Thus it is enough to prove it for
the case y3S = 1.

The proof divides into two cases. Firstly, suppose that Sjy2 S has exponent 4.
Now the centraliser of S/y2 S in G has index a power of 3, and so by Lemma 6.4
of D. R. Taunt [21], S[y2 S can be written as a direct product of indecomposable
homocyclic normal subgroups of G/y2 S. Since S/y2 S has exponent 4, at least one
of these subgroups will have exponent 4; let M/y2 S be such a subgroup. By the
way S was chosen, the centraliser of Mjy2 S is not the whole of G. Now let
xy2 S 6 M\y2 S, and y e G, and >> not in the centraliser of Mjy2 S. Then x # X*1,
and x2 7̂  x2y, whence x~ixy has order 4 modulo y2^; contradicting the fact that
x~1 xy has order dividing 6, by the law (4). Hence, suppose Sjy2 S has exponent 2.

Then S/y3S has exponent 4, and also S/y3Se£i1. Then there is an element
v of order 3 in G such that x # x*, and also xxyxy2 e y2 S. Put z = xxy. Then

— 1 v 2 — 2 v 2

z zy = z zzy

= z~2xxyxy x,

and since z~2xxyxyl e y2S g Z(S), we get z~izyl has order 4, again giving a
contradiction.

Thus every finite group in 33 is in 2l2 2I3 3t2 > and so, since 23 is generated by its
finite groups, we have S3 ^ 2l2^3 2l2> completing the proof of the lemma.

4.3 AN IMPORTANT LEMMA

4.3.1. LEMMA. Let G be a non-nilpotent monolithic group in 9I2^3^2- Suppose
further that the Sylow 2-subgroups of G are in £}, and that G satisfies the law
[IX j]3> y3, y2]- Then G is isomorphic to one of S4, AA, S3.

The proof is broken up into a number of steps.
If G contains no non-trivial normal 2-subgroup, then Ge3l32t2> a n ( l t n e

assertion is easily checked. Hence we may suppose that oG is a 2-group.

4.3.2. Gja*G contains no elements of order 6.

Put a*G = K. Then G/Ke 2132I2> and is faithfully and irreducibly repre-
sented on aG. If G]K contains elements of order 6, from Lemmas 5.2.1 and 5.2.5
of [2] and Lemma 4.1.6, we may concude that G/K^ HJKxH2/K where
HJK^ C2, H2/K^ C3 and H2jK~z\ GjK. Regarding aG as an irreducible
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GF(2)G-module, it follows from Clifford's theorem ([5] Theorem 49.2] that if
jA'is a non-trivial element of H2jK, and x is any non-trivial element of crG, we have
xy j= x. Also if zA'is a non-trivial element of HJK such that z has order a power
of 2, then there is a non-trivial x in aG such that [x, z] # 1. Note that XX)'JC)'2 is
fixed by y, and so xxyxy = 1. Also, x, xy, z all lie in the same Sylow 2-subgroup,
which, by assumption, has class at most 2, and aG has exponent 2. Now

[[xy, yz]3, (yz)3, (yz)2] = [[xy, z][xy, yf, (yz)3, (yz)2]

= [[xy, z](xyxy2)z, (yz)3, (yz)2]

= [[xy,z]x*,z,y2]

= [[[xy,z][x,z],x,z],y2]

= [[[**, z][x,z],zr[x,z],j2]

= [x,z,y2]

Thus if G/<r*G contains elements of order 6, G does not satisfy the hypotheses of
Lemma 4.3.1, a contradiction.

Since G e 2l2 213 ̂ 2 > <? has a series 1 ̂  N ^ H ^ G, where ./Visa maximal
elementary abelian normal 2-subgroup of G, H/N is an elementary abelian normal
3-subgroup of GfN, and GJH is an elementary abelian 2-group.

If either H is abelian, or G = H, it follows from the fact that G is a non-
nilpotent critical group that G e 9t3 2I2 or G € 9l2 2t3 >

 a nd so G e var £4, by Lemma
4.1.3. Thus we may suppose G ^ H, and y2H # 1.

4.3.3. Z (# ) = 1.

For 7fe9t22l3, and so H = HtxZ(H). Since 1 5̂  y2H £ Ht, and G is
monolithic, we must have Z(H) = 1.

4.3.4. Let F be the Fitting subgroup ofG. Then F = N.

Since G/7Ve 2t32t2, we may conclude from Lemma 4.1.4. that F/N is the
Sylow 2-subgroup of Z(G/N). Suppose that F > N.

ifN^ Z(F), and x e F, x $ N, x has order 4, by the choice of N, and x2 e N.
Let y e £ Since x/V 6 Z(GjN), we have xy = xz, where zeiV. But then (x2f = x2,
and since y was arbitrary, we have x2 e Z(H), a contradiction to 4.3.3.

If iV # Z(F), then W n Z(F) 5* 1 ([17] Theorem 31.26), and N n Z(F) -o G.
If iVis regarded as a GF(2)#-module, A7 n Z(F) has a non-trivial complement by
Maschke's theorem. Let M be an irreducible component of this complement.
Since Z(H) = 1, there is an element z in H of order 3 such that if 1 jt x e M,
x* =£ x, and so x"1*2 = xx2 - xz\ Also, since M n Z(F) = 1, there is an element
j e F such that [x, .y] # 1 (note that y $ N). Now, consider the elements x and yz.
We have, since [x, yz] e N,
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[x,yz]3 = [x,yz]

= [x,z][x,y]\

Also [x, y]z ey2F ^Z(F) , since Fe£h, and so

= 0, z, y]

since j> e Z(G[N), and therefore [y, z~2] e N.

[[x, yz]3 , (yz)3, (yz)2] = [x, y, z2]*2 = [z2, JC,

Hence G does not satisfy the hypotheses of the lemma.
In either case, the assumption that F > N leads to a contradiction, and so

F = N.

4.3.5. Regarded as a GF(2)(G/N)-module, N is faithful and indecomposable.

The indecomposability of N comes from the fact that G is critical, while the
faithfulness comes from 4.3.3 and 4.3.4.

4.3.6. IfKis a Sylow 3-subgroup ofH, and No ^ N, No <a G such that N0K<i G,
then No = N.

From the fact that Z(H) = 1, it is readily deduced that the normal closure of
AT in / / i s precisely H, and 4.3.6 follows immediately.

By 4.3.6 and [12] Theorem 1, we have:

4.3.7. N is complemented in G, by L say.

4.3.8. oG = N.

If K is a Sylow 3-subgroup of L, N, regarded as a GF(2)AT-module, contains
no trivial submodules (since Z(H) = 1).

Now, suppose that oG < N. Let MjoG be an irreducible submodule of
N/aG. Since M~=3 G, CL(M) <i L, and hence it has a complement, T say. Then
T is faithfully and indecomposably represented on M.

Let D t = CT{GG), D2 = CT(MlaG). Then Dx n D2 is a normal 2-subgroup
of T, and so is a direct factor of T. Put Dt n D2 = P : then T = RxP. Now
<jG(TjDy) is critical ([16] Theorem 1.6), and satisfies the hypotheses of Lemma
4.3.1, and since a*{aG{TjDi)) = oG, TjDx contains no elements of order 6. Also

is faithfully and irreducibly represented on oG, and so, by Corollary 4.1.4,
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T/Dt is isomorphic to S3 or C3. Similarly, TjD2 is isomorphic to S3 or C3. Thus
R(= TIP) is isomorphic to a subgroup of S3 x S3. Also, i? contains no normal
2-subgroups: if it did, it is not difficult to see, using Clifford's theorem ([5]
Theorem 49.2), that such a normal subgroup is contained in P, and R n P = 1,
a contradiction. We must first show that P = 1. Note that \&G\ = 4 = \MjaG\.
If AT is the Sylow 3-subgroup of T, then Af, as a GF(2)^T-module, is completely
reducible, by Maschke's theorem, and so M = aG x Mo. Now, there exists an
element y e K such that no non-trivial element of M is left fixed by y. Also, if
1 # x e Mo, we have x = xyxy2. Since P centralises oG and M/aG, but not M,
then for 1 # x e Af0, we have an element zeP such that [x, z] # 1 and [x, z] e o-G.
Now consider the elements xy, yz.

[x>,yz]3 = [x»,yz]

= W,yfW,z]

= xz[x>, z]

* 1.

Thus M2" and so G does not satisfy the requirements of Lemma 4.3.1, a contradic-
tion. Thus we must have P = 1.

Hence T is isomorphic to a subgroup of 53 x S^ and T contains no normal
2-subgroups. But any faithful indecomposable Gi7(2)T'-module is irreducible
(Lemma 4.1.8), contradicting the assumption that M was indecomposable. But
this means that the assumption that N > aG leads to a contradiction, and so
N = aG.

To complete the proof of Lemma 4.3.1., note that since N= aG, and G/N
contains no non-trivial normal 2-subgroups, aG — a*G. Thus by Corollary 4.1.7,
G/oG is isomorphic to S3 or C3. In the first case, G ^ S4, in the second G = A4,
and so G 6 var S4.

4.4 THE PROOF OF THEOREM 3.1 (A)

Let 33 be the variety defined by the laws ( l ) - (6) of Theorem 3.1(yl). By
Lemma 4.2.1, the laws (1), (3), (4), (5) form a basis for the laws of 2t22t32l2,
and so SS ^ 9l2 ̂ 3 ̂ 2 • Thus SB is locally finite, and so is generated by its critical
groups ([17] Theorem 51.41).

Let G be a nilpotent group in 33. Then either G e 9t3 or G satisfies x4 = 1,
[x,y2] = 1 and so GeD,.
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Thus any critical group in 33 satisfies the requirements of Lemma 4.3.1, and
so is in var S4.

In the other direction, note that S4 has a chief series 1 < N < A4 < S4,
where ./Vis an elementary abelian normal 2-subgroup, and G/N s S3. In particular
then, S4.e'>X.2W.3W.2, and so satisfies the laws (1), (3), (4), (5) by Lemma 4.2.1.
Note also that S4 contains no elements of order 6.

Let x, y e S4; then they satisfy law (2) trivially unless x has order 2 or 4 and
y has order 4. If xN = N, or xN = yN then x and y belong to the same Sylow
2-subgroup of S4 and so certainly satisfy (2). Thus we may assume that xN and
yN are distinct elements of order 2 in SJN and hence (x3Ny3N)3 = 1 and thus
(x3y3)3 = 1. Also, since y2 e N, [x3,y6] has order 2 or 1 and thus the product
(x3y3) [x3, y6] has order 3 (being the product of an element of order 3 and one
of order 2 or 1 both belonging to A4).

Finally, it follows from the fact that if x j e ^ , [x, y]3 e N, and either
y3 e N or y2 e N, that S4 satisfies (6). Hence S4 e 93, and the proof is finished.

Since SL{2, 3) does not satisfy [x2,y2]2 = 1 we have:

4.4.2. COROLLARY. SL{2, 3) $ var S4.

4.5 THE PROOF OF THEOREM 3.1(B)

Let 23 denote the variety defined by the laws ( 1 ) - (7). It is easy to check that
S4 and C(3, 4) satisfy the laws ( l ) - ( 7 ) , and so 2 t 3 $ 4 u var S 4 ^ 33.

We shall prove:

4.5.1. LEMMA. Let G be a finite critical group satisfying the laws (1) and (4) —(6)
of Theorem 3.1(B) and suppose that Sylow 3-subgroups of G are abelian, and
Sylow 2-subgroups of G are in D. Then G e 2l39l4 u var S4.

PROOF. The law (1) and Theorem 16.8.7 of [10] ensure that G is soluble. If G
is nilpotent, then G e 9t3 u £} ^ var £4 (Lemma 4.1.3).

Since G is soluble, and has abelian Sylow 3-subgroups, G has 3-length 1
(2.2.5). That is, G has a series 1 ^ No ^ A^ ^ G such that iV0 is a maximal
normal 2-subgroup of G, N1/No is a normal 3-subgroup of GjN0, and G/Nl is
a 2-group.

Suppose first that No = 1. Then, regarding Nt as a GF(3)(G/A^1)-module,
we get from Maschke's theorem and the criticality of G that oG = o*G = Nt.
Also, by the Schur-Zassenhaus theorem, oG is complemented in G, by L say.
Suppose if possible that L is nonabelian. Then by Lemma 4.1.5, L has cyclic centre;
also L is in jQ. Thus y2L is cyclic of order 2, and by Clifford's theorem ([5] Theorem
49.2), GG, regarded as GF(3) y2£-module, contains no trivial submodules. Now
let x be an element of order 4, x $ Z(L), and y eL any element such that [x, y] # 1.
Then [x, y] = x2 ey2L and cGy2L does not contain any elements of order 6.
Also, since y does not centralise oG, there is an element zsaG such that [y, z] ^ 1 •
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Consider the elements [y, z]y, x.

U_y, z]y, x]3 = [ 0 , z], y, x]

= [y, z, x]"[y, x]

Put d = [[x, z, x]y, x3fy-x\ Then 1 ^ deaG.

* 1.

Thus G does not satisfy the law (6), a contradiction. Thus L is abelian, and
Ge2t32l4.

Hence suppose that iV0 # 1. Note that JV0 is the Fitting subgroup of G.
Suppose that G/No has elements of order 4; let xA^ be one. Since a Sylow

2-subgroup of G is in G,, it follows that x also has order 4, and x2 centralises
JV0 . But then so does the normal closure of x2 in G, and so, since G/No contains
no non-trivial normal 2-subgroups, there is a normal 3-subgroup M/No of G/No

which centralises NQ. Then M = Nox Mo, where Mo £ M/No, contradicting the
criticality of G. Hence G/No e 2l32l2.

Now let M be a maximal elementary abelian normal 2-subgroup of G. Then
suppose G/M contains elements of order 4. Let xM be of order 4. Since a Sylow
2-subgroup of G is in £h, x2y centralises M for all y eG. Also, from the previous
paragraph, x2 e No. Let Mt = gp{x2y : y e G). Then Mj ^ A^, and if Mt is
abelian, we obtain ffp(Mt, M) is an elementary abelian normal 2-subgroup of G,
and since x2 $ M, we get a contradiction to the maximality of M. Thus, for some
yeG, [x2,x2y] =£ 1. But then [x6, (xy)6]3 = [x2, x2y]3 # 1, since Mt ^ No.
Thus G does not satisfy the law (3), a contradiction.

Thus G/Me9I32l2 u 2l29l3- However, as we saw in the proof of Lemma 4.2.1,
a group G in 2I2(2t39t2 u 2122(3) which satisfies [x,y]6 lies in 2t22T32t2. There-
fore, (? is in 2l22t32l2, and so satisfies the requirements of Lemma 4.3.1, giving
G e v a r S 4 .

From laws (1) and (7) and Theorem D of P. Hall and G. Higman [11], we
have that 33 is locally finite, and so is generated by its finite critical groups. From
law (4) we deduce that 3-groups in S3 are abelian, and from the laws (2) and (5)
we deduce 2-groups lie in £}. Thus finite critical groups in 33 satisfy the require-
ments of Lemma 4.5.1, and so S3 ^ 2K32l4 u var ,!?4, and Theorem 3.1 (B) is
proved.
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4.6 THE PROOF OF THEOREM 3.1 (C)

We have already proved the first part of the statement (Lemma 4.5.1) so let G
be a critical group satisfying the hypothesis of the second part. Then G e 9132I4 u
var S4. Since all the proper subvarieties of 2I32l4 lie in var 5 4 , it is enough to
show that G is not isomorphk to C(3,4). Suppose G ^ C(3,4). Then let y be an
element of order 4 in G, x an element of order 3. Note that G has a normal Sylow
3-subgroup, and that y2 does not leave any element of order 3 fixed. Also note that
yx has order 4. Hence [y6, (y*)6] = [y2, y2x] = [y2, [y2, x]] # 1 (since \y2, x] / 1
is an element of order 3), and so G does not satisfy the hypotheses of Theorem
3.1(C), a contradiction. Hence G s var S4.

5. Laws in PSL(2, p')

In this section we prove Theorems 3.2 and 3.3.

5.1 ELEMENTARY PROPERTIES OF PSL(2,p")

The following properties can be deduced either from the definition of
PSL(2,p") or from the list of subgroups given in 2.2.7.

5.1.1. The exponent is Ip(p2n-l),p odd, 2(22n-l),p = 2; (= ps, say).

5.1.2. The Sylow ̂ -subgroups are elementary abelian.

5.1.3. Every element has order/? or/?'.

5.1.4. The elements of order p have canonical form

~ V 1/
These are all conjugate for p — 2, and fall into two conjugacy classes for

p;odd/?;

is conjugate to
n ON
lv 1/

if and only if fiv is a square in GF(p").

5.1.5. (1) x has order/? or 1 if and only if t rx = +2;
(2) for /? # 2 x has order 2 if and only if tr x = 0;
(3) for p ¥= 3 x has order 3 if and only if tr x = ± 1.

5.2 PROPERTIES OF THE TRACE FUNCTION

Throughout this section, F will denote an arbitrary field.
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5.2.1. LEMMA. Ifx, y e SL{2, F) then tr xy + tr xy'1 = tr x try.

PROOF.

la. y\ (A r\
Let x = r), y = I

\B 5 \B A
where txd-fiy = 1 = ^ J -

Then trxy = a

trxy'1 =

Thus tr^j + trxy"1 = aA + 5A + ocA+5A = t rxtr j .

5.2.2. THEOREM. Ifx,ye SL(2, F) and tr x = s, tr y = t, tr xy = w, then the trace
of any word in x and y is a polynomial in s, t and u with integer coefficients. This
polynomial belongs to one of four classes of polynomials in 3 variables defined as
follows:

f(s, t, u)eE0o f(-s, -t,u)= f(s, -t, -u) = f(-s, t, -u) = f(s, t, u);

f(s, t, u)eEso -f(-s, -t,u)= f(s, -t, -u) = -f(-s, t, -u) = f{s, t, u);

f(s, t, u)eEto -f{-s, -t,u)= -f(s, -t, -u) = f(-s, t, -u) = f(s, t, u);

f(s, t, u)eEuo f(-s, -t,u)= -f(s, -t,-u)= -f(-s, t, -u) =f(s, t, u).

The words in x and y also may be divided into four classes, where, if w =
x"yfl • • • x*k/k then

w e Wo o I a( is even, I /?,- is even;

w e Ws o X af is odd, I pt is even;

w e Wt o I a, is even, Z j?f is odd;

w e Wu o I at is odd, I f}t is odd.

Moreover, w 6 Wk if and only if tr w e Ek.

PROOF. We define binary operations on {£A} and {WK} as follows:

£A£„ = {fg\j e Ex, g e £„},

It is easy to see that these operations are well-defined and that under them the sets
form groups each isomorphic to C2xC2, with Eo and Wo as identity elements
and that the correspondence W\ «-> Ek is an isomorphism. The theorem implies
that this isomorphism is induced by w —• tr w. We note also that the sum of two
polynomials in Ex is also in Ex and that s e Es, t e Et, ue Eu and tr 1 = 2 e Eo.

We prove by induction on word length that weWx implies that tr weEx.
The converse implication follows by reductio ad absurdum. We have already seen
the statement to be true for words of lengths 0 and 1, so let w = xfly^1 • • • x°lkyPk
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be a word of length n > 1, and assume true for all words of length less than n.
There are several cases to consider:

1) Some |af| or \pt\ > 1. Since tr w = tr w"1, and tr w1w2 —- tr w2wl3 we can
assume that w ends in a term yfk or x"k with jik > 1 or ak > 1. We will consider in
detail the former case, the argument in the latter being analogous. Thus w =

x*iyP* • • • x*kyek with Pk > 1 and so both wt = wy~l and w2 = wxy~v have
length less than «. Moreover, if w e WA, then wx e fFA fft and w2e Wx, and so,
by the induction hypothesis

trwte E;E,, t r w 2 e £ A .

By the previous lemma:

tr w1y + trw1y~1 = tr wl tr y

i.e. tr w = tr w± tr j — tr w2.

Now tr Wi tr _y e ExEtEt = £^ and so tr w e E}, as required.

2) |a;| = |/?;| = I/or a// /. Since w is not of length 1 we can assume that it ends in
a term y"x*y where P = 0, 1, - 1 ; a = ± 1 .

(a) /? = 1. Then ŵ  = wj^'x"", vv2 = wly~lx~" and x ' j all have length
less than n, and, if w e Wk then wl e Wx Wt Ws,w2eWx, x"y e Wu. Again

tr w = tr wx tr x"y — tr vv2 e EXE,ESEU — EX = Ex.

(b) yS = —1. Then n> = wy~xx~* and xa^ both have length less than n, but
w2 = Wjy~1x~"has length n. However, it ends in j~ 2 x~ a and so by (l) tr w2 e Ex.
Thus again we have tr w e Ex.

(c) fi = 0. Then H> = x" 1 ^ or xy and

tr x"1 j = tr y~lx = tr xy"1 = st — ueEu

and tr xy = ue Eu.
The truth of the theorem follows.

5.2.3. COROLLARY. / / x,yePSL(2,F) (charF^ 2) and trx = ±5, try = +/,
tr xy = ±M, then tr x j " 1 takes at most two values, namely ±(st±u) and selection
of one of these uniquely determines the trace of any word in x and y.

PROOF. Let X and Y be elements of SL(2, F) which are mapped onto x and y
in the natural homomorphism. Then tr X = +s, tr Y = +/, tr XY = +u and,
from the theorem we see that tr X" 7"1 • • • X"" 7"" takes (up to sign) at most two
values, and thus, since tr x" • • • y^k is determined only up to sign, this takes at
most two values. In particular

trxj""1 = ±(st + u)

and selection of +(st — u) or ±(st + u) determines the parity of the number of
sign changes and hence tr x" • • • y^k.
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(Note that if one of s, t, u is zero all sign changes have the same effect, and
the traces are then determined uniquely.)

5.2.4. LEMMA. Let x andy be elements ofSL(2,p") with tr x = s, try = t, tr xy = u
then

(1) tr [x, y] = s2 + t2 + u2-stu-2,

(2) tvxyxy'1 = stu-u2-t2 + 2,

(3) trxyxy~1[x,y]~1 = (su-t)(u2t-st2u+s2t + t3-4t)+s2-2,

(4) tr[x,j>,;c] = tr2[x, y] + 2 tr2x-tr2x tr [x, y]-2,

(5) tr [x,y, *r1[x,.}>] = tr [x, y, x]tr[x, y]-tr[x, y].

PROOF. We use Lemma 5.2.1.

(1) tr x~1y~1xy = tr xy tr xy — tr x2y2

= u2-(s(tu-s)-t2 + 2)

= s2 + t2 + u2-stu-2.

(2) trxyxy'1 = tr xy tr xy~i—try2 = u(st-u)-t2+2

= stu-u2-t2 + 2.

(3) tr xy xy~l[x, y]~x = tr xyxy~1y~1x~1yx = tr x2y xy~2x~1y

= tr x2y tr xy~2x~1y — tr x2y2

= (su-t)(trxy~2 tTx~iy-tTXzy~3)-stu+s2 + t2-2

= (su-t)(((st-u)t-s)(st-u)-(s(st-u)-t)(t-2) + su-t)

-t(su-t) + s2-2

= (su-t)(-ut(st-u)+s(st-u) + t3-2t + su-t-t)+s2-2

= (su-t)(u2t-ut2s + s2 t + t3 -4t) + s2 -2.

(4) and (5) are immediate consequences of(l) and Lemma 5.2.1 once it is observed
that tr x [x, y] = tr x.

5.2.5. LEMMA. The following identities hold in PSL(2, 2").

(1) trjc* + trjc*-2 = t rxtrx*"1 ,

(2) tr [x, y] = tr2 x + tr2 j + tr2 xy + tr x tr y tr xy,

(3) tr [x,y, x] = tr [x,y]{tr [x, y] + tr2 x},

(4) tr x2" = tr2"*,

(5) t r x ^ - ' + t r x 2 ^ 1 = tr2 k + 1x,

(6) trx2""1 = tr x + tr2"-1 + 1 x + tr2l t-1+2"-2+1 x + • • • +tr2 k-1 x,

(7) trx2"+ 1 = t 1 t 2

https://doi.org/10.1017/S1446788700007928 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007928


460 John Cossey, Sheila Oates Macdonald and Anne Penfold Street [20]

(8) trflx, y,xf\y,x-\}

= tr [x, ̂ { l + t r 2 - 1 [x, y, x] + tr2k-1+2"-2 [x, y, x] + • • •

+ tr2k[x, y, x]},

(9) t r f lx .y.x]2*"^^]} = tr [x, ^{1 + tr2"-'[x, j , x]
+tr2--i

(10) t r [x ,

PROOF. (1), (2) and (3) follow from Lemmas 5.2.1 and 5.2.4.

(4) we prove by induction. Certainly tr x2 = tr2 x, so assume

trx^^tr^'x,

then tr x2" = tr(x2k"')2 = .tr2 x2""1 = tr2"x.

(5) This is an immediate consequence of Lemma 5.2.1 and (4).

(6) tr x3 = tr3 x + t r x, so assume

t rx 2 "" 1 = t r x + t r 2 k - ' + 1 x + tr2k-1 + 2 f c - 2 + 1 x+ ••• + t r 2 k - 1 x .

Then t rx 2 """ 1 = t r 2 k x t r x 2 k " 1 + t r x

= tr x + tr2k+1 x + tr2k+2k-1 + 1 x+ • • • +tr2k+1-1 x.

(7) This is an immediate consequence of (5) and (6).

(8) From 5.2.4 (5)

tr {[x, y, x][y, x]} = tr [x, y] tr [x, y, x] + tr [x, y]

so assume

tr {[x, y, xfk[y, x]} = tr [x, y]{l + tr2k"1 [x, y, x]

+ tr2"[x,><,x]}.

Then

= tr [x, y, xf tr {[x, y, xf[y, x]} + tr [_y, x]

= tr [x, y]{l+tr2k [x, y, xl + tr2"^""1 [x, y, x]+
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(9) Again tr {[x,y, x][y, x]} = tr [x,y] tr [x,y, x] + tr [x,y] so assume

tr {[x, y, xf"'1 [y, x]} = tr [x, y^l+tr2"'1 [x, y, x]

Then tr{[x,y x]2"* ' - 1 [y, x]}

= tr {[x, >>, x ] 2 " - 1 ^ , x]} tr [x, y, x]2" + tr [x, y, x ] " 1 ^ , x]

= tr [x, y]{l+tr2tx, y, xl + tr2^2""1 [x, y, x]+ • • •

(since tr [x,y, x ] " 1 ^ , x] = tr [x,y][x,y, x] = tr [x, y]).

(10) tr [x,y2] = trjc" 1y~2xy2

= tr x j 2 tr x>>2 +tr x 2 j 4

= {tr xj>tr j + trx}2+tr>'2 trx2^2+tr x2

= tr2xjtr2>' + tr2x + tr2>'{tr [x, 2

= tr2y tr [x, y\

Now assume

tr[x,y2k] = tr2(2k-1>ytr[x,3;]

Then tr [x, y2k+'] = tr2 y2" tr [x, y2"]

5.2.6. COROLLARY.

(1) x2""1 = 1, x i= 1 implies that

(2) x2"+1 = l , x ^ 1 imp/ies
2 2 2 2 + 2 3 ' 2 " l x = 0.

5.3 THE p-LAW IN PSL{2, p"), p # 2

Let x and j be a pair of elements of order p. Without loss of generality we may
assume them to have the form:

x = ± ( i o\ / a -vWi ow« 7\

(where ad — fty = 1).

-p

<x2v 1 + ay v.
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5.3.1. LEMMA. (xy)p = 1 if and only if either

(i) [ivy2 = 0 (which implies x andy belong to the same Sylow subgroup); or
(ii) [ivy2 — 4 (which implies x and y are conjugate).

PROOF, tr xv = ±(1 — otyv — y2/iv+l + ocyv) = + (2 — y2vfi) = ±2 if and only
if either

(i) y2 fiv = 0 or
(ii) y2fiv = 4.

But (i) implies y = 0 and so x and y belong to the same Sylow /^-subgroup, and
(ii) implies /iv is a square and so x and y are conjugate.

5.3.2. LEMMA, [X, y]p = 1 if and only if

either (i) fi2v2y4 = 0 (when [x, y] = 1)
or (ii) fi2v2y4 = — 4.

PROOF.

[XVI = + ( i o\/i+yV(i-«yv) - A V \

~ \-/i 1/1 (l-ayvffi l-y\u(l-ocyv)J

and so

tr[x,y] = ± ( l + y 2 v ^ ( l - a y v ) + y 4 vV 2 + l-) ' 2vM1-0 ! ) 'v))

= ±(2 + 7 4 vV 2 ) = ± 2

if and only if

either (i) y V / i 2 = 0
or (ii) y4v2 fi2 = — 4.

But, as in 5.3.1, (1) implies that x and y are in the same Sylow subgroup and so

[x,y] = 1.

5.3.3. PROOF OF THEOREM 3.2 (A), p ^ 5.

From 5.3.2 we see that [x, y] can have order p only if —1 is a square in
GF(p"), hence, if/?" = 3(4), [x, y] always has order prime top and we have the law

{A /]' = 1.

Ifp" s 1(4), xy and [x,y] can have order/? simultaneously only if

42 = -4 in GF(pn)
i.e. only if/? = 5.

Hence, for p ^ 5 we have the law

where <f> = 0(/?) and !(*), i/̂  = - l(/?j) or - \(p) and 0(5).
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5.3.4. PROOF OF THEOREM 3.2 (A), p = 5.

We have tr x = + 2 = tr y

tr xy = ±(2 — y2fiv), tr xy~l = ±(2 + y2fiv).

From 5.3.2, [x, y] has order 5 only if y*v 2 ^ 2 = - 4 = 1 , i.e. y2vn = ± 1 .

Now y2v(i = 1 implies tr xy = ± 1 , t r j c j " 1 = ±2 and y2v/i = —1 implies

tr xy = ±2, tr xy'1 = ± 1. Consider the word

where # = 0(V) and 4(5).
This is clearly 1 if [x, y] does not have order 5. Now tr z = ±1 implies

z3 = 1 so if y2v/x = 1 it reduces to

and if y2v\i = — 1 it becomes

Writing s = t = 2, u = 3 we have t r x j " 1 = ±1 = ±(st — u). Hence applying
5.2.4.(2)

tr(xyxy'i)= ± ( 2 - 4 - 4 + 2 ) = +1.

Thus xyxy'1 also has order 3 and the above expression becomes

(xyxy-^yT1)'.

Now, from 5.2.4. (3)

trdxyxy'1)^^]-1) = + {4(3-4 + 3 + 3-3) + 4-2}
= 0.

Thus xy xy'1 [x, y]~l has order 2, and the above expression vanishes. Hence, we
have the law

{((xy)(xy)lo)loiy> /]*}• = 1

where % = 0(s) and 4(5).

5.4 THE LAW FORBIDDING C(p, r), p # 2

Letr=(p"+l) /2 ,
? = / ' ( / '"-I)/2 (so t h a t ^ = Ps)-

From 2.2.7 we see that r does not divide the order of the normaliser of a Sylow
/j-subgroup. Thus if

~ \p sJ
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has order dividing r, y # 0. Let

x = ±
\n v

5.4.1 LEMMA. Ifp" = 3(4), [x, y] does not have order p.

PROOF, [X, y] = x~xxy and x'1 and xy do not belong to the same Sylow
/^-subgroup. Hence, for [x,y] to have order/?, we require x~l conjugate to JC
(from 5.3.1). But, since p" = 3(4), —1 is not a square in GF(p") and so this is
impossible.

5.4.2. LEMMA. If p" = 1(4) and [x, y] has order p, then [x, y, x]~x [x, y] has order
p only if p = 3.

PROOF, tv X = ±2, tr>> = ±(« + 8), t rxy = ±(oc + d+yn),
tr xy'1 = +(oc + <5 — ypi), so let s = 2, t = a + 5, u = x + d + yfi. Then

tr [x,y] = ±(4 + (x + S

= ±(2 + y2ii2)

= +2 only if y2\i2 = —4 (since y # 0).

tr [x,y,x] = +(8 + (2+

tr[x,y,x]-llx,y] = ±
= ±34wheny2yu2 = —4.

Hence [x, j , JC]"1!*, y] has order/» when [x, y] has order/7 only if ±34 = ±2
in GF(p"), i.e./? = 3.

5.4.3. LEMMA. Ifp = 3 am/ n is even then [x, y, x][x, y~y] has order prime to 3
when [x, y] has order 3.

PROOF.

\fitx2 —

and from the previous lemma we see that this has order 3 only if (fiy)2 = — 1. In
this case

-fiyz\
-fiyd/

and

—fi nay
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Then

r -ir - n , / — l+o~2 + ad — uixd — uyd —ay —yd \
\x, y, x\[x, y J = + I I .

\ * — l+ad + a /
If this has order 3 then

—2 + a.2+ 82+ 2a5 — nay—nyd = +1

i.e. (a + d)2 — /iy(a + <5) = 0 or 1.

In the former case we have try = 0 or ±ny. Now tr y = 0 implies that y has order
2, which is impossible since r is odd, and try = +fiy implies that tr2j> = — 1.
But try2 = ± ( t r 2 y - 2 ) = ± ( - 1 - 2 ) = 0, giving that y2 has order 2, which
again is impossible. In the latter case we have

(± try + ny)2 = 0 (since (ny)2 = - 1 )

and so again we have a contradiction and the truth of the lemma follows.

5.4.4. THE PROOF OF THEOREM 3.2(B).
From Lemma 5.4.1 we have

[ x s , / ] s = l if p"=3(4) .

If p" = 1(4) consider the word

where <j>s = l(p). This certainly vanishes if [Xs, / ] has order prime to p, and if
[Xs, f] has order p, it reduces to

which, by Lemma 5.4.2 has order prime to p ifp ¥= 3. Hence we have the law

{[[y,/]*f,xT1[y,/]*y = i-
Similarly, from 5.4.3 we obtain the law

where x$ = 1(3), when p = 3 and n is even.

5.5 A CHARACTERISATION OF VAR PSL(2, 2")

5.5.1 THEOREM. A finite soluble group belongs to var PSL(2, 2") if and only if it
satisfies the following conditions:
(1) the exponent divides 2(22n — 1);
(2) (7C! u n2)-subgroups are abelian, where n1 and n2 denote the sets of prime
divisors of2"—\ and 2" +1 respectively;
(3) a n2-element which belongs to the normaliser of a 2-subgroup belongs to its
centraliser.
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PROOF. The only if follows immediately from the list of subgroups of
PSL(2, 2") given in 2.2.7.

Let G be a critical soluble group satisfying the above conditions. Then, by
2.2.5, G has 7t2-length one, and so has the structure

1 ^ N ^ P ^ G,

where N and GjP are 7r2-groups and PjN is a 7i2-group. Let S be the Hall n2-
subgroup of P. Then by (2) and (3) S stabilises any chief series of N and so cen-
tralises N. Thus P ^ Sx N and each factor is normal in G. It follows that S = 1
or N = I.

(i) If N = 1, then, since CG(P) ^ P, by (2) GjP is a 2-group. Moreover, since P
is abelian and G is critical, P must be a homocyclic A-group of exponent )?
where A'|2" + 1 , and A is prime, and hence G = C(X", 2) e var PSL (2, 2").

(ii) If P = 1, G is a (nl u {2})-group and has Ttj-length one and 2-length one.
It follows that G has the structure

where either P is a 2-group and GjP a 7^-group
or P is a T^-group and G/P a 2-group.

Again the criticality of G gives us that G = C(A", 2) or C(2, w) where A"
and m divide 2" - 1 and A is a prime. Thus G e var PSL{2, 2").

5.5.2. REMARK. Similar theorems could be stated for PSL(2, p") where/? is odd, but
the enunciation is made difficult by the proliferation of cases which occur, so it
seems preferable to treat each case on its own merits. Examples of this occur in § 6.

5.5.3. LEMMA. A simple group belongs to var PSL(2, 2") if and only if it satisfies
the law u2n(22n-1)+1 = 1 and conditions (1), (2) and (3) of Theorem 5.5.1.

PROOF. Again, the only if part follows immediately from the list of subgroups
of PSL(2, 2"), since the only non-soluble subgroups are the PSL(2, 2m) for m\n,
and these clearly satisfy the given conditions. The converse follows from J. H.
Walter's classification of simple groups with abelian Sylow 2-subgroups [22].

5.5.4 THEOREM. VarPSL(2,2n) is characterised by the law w2n(22n_1)+1 = 1
together with conditions (1), (2) and (3) of theorem 5.5.1.

PROOF. The class of groups satisfying the given conditions clearly forms a
variety, and it is contained in C(e, em, 1) where e = 2(22"-1), m = 2" (2 2 n -1)+1 ,
and so (by 2.2.3) is a Cross variety. Thus it is sufficient to prove that a finite group
satisfying these conditions has the structure:

Bt x • • • xBkxS

where B, ^ PSL(2, 2m), m{\n and 5 is soluble, since, by Theorem 5.5.1 and
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Lemma 3.2. of Sheila Oates [18] we know that the set of all groups of the above
type is precisely the set of finite groups in var PSL{2, 2").

If G is a minimal counterexample, then G is critical. We have two cases to
consider:

(i) aG non-abelian. Then aG is a direct product of groups all isomorphic to
PSL(2, 2m), for m\n (by Lemma 5.5.3). Now the automorphism group of
PSL(2,2m)isPrL(2,2m) (the projective semi-linear group), Huppert [13] II§8.
Thus G has a normal subgroup N which is a direct product of groups each
isomorphic to a subgroup of PFL(2, 2m) containing PSL(2, 2m) and G/N acts
transitively on the factors. We show first that no subgroup of PFL(2, 2m)
properly containing PSL(2, 2m) can occur. Such a group would consist of
PSL(2, 2m) extended by a cyclic group of automorphisms induced by a field
automorphism x -» x2", and the order, /?, of this, must divide m. We consider
the effect of these automorphisms on two particular subgroups of PSL(2, 2m).

This is a Sylow 2-subgroup of PSL{2, 2m) and is clearly invariant under the
given automorphism, but is not centralised by it. It follows from (1) and (3)
that (/J, 2(2"+ 1)) = 1.

a # 0

This is a cyclic subgroup of PSL(2,2m) of order 2m—1 and is invariant
under the given automorphism. Since 2m—1|2"— 1 we see from (2) that
0 ? , 2 " - l ) = 1. Hence i? = 1.

It follows that TV = aG. If G/N ^ 1 there is an element of prime order
acting non-trivially on aG implying that the corresponding Sylow subgroups
of G are non-abelian. Hence G £ PSL(2, 2m).

(ii) aG abelian. By the minimality of G, G/oG is a direct product in which at least
one factor is isomorphic to PSL(2, 2m) (since G is not soluble). Suppose
G S HJaGxH2laG, where HJaG S PSL(2,2m) and H2>aG. Then
Hi< G and so is of the form Kt x aG where Kt s PSL(2, 2m). Thus Kt

stabilises the series H2 2: aG 2: 1 and so its factor group by the centraliser
of H2 is abelian. Since Kt is simple we have that KY centralises H2. Hence
G = K1xH2is not critical. Hence G/aG s PSL(2, 2m). Since aG is a/?-group
where p e 7^ u n2 u {2} it will be centralised by the 7t2-subgroups of
PSL(2, 2m) by (2) and (3). Since these generate G, we have aG ^ Z{G). But
aG ^ y2G (since y2G =£ 1) and so aG is a subgroup of the multiplicator of
PSL(2, 2m). But, by Huppert [13] V Satz 25.7, this is trivial, and we have
G S PSL(2, 2m).
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5.5.5. COROLLARY. A group satisfying the laws given in Theorem 3.3(1?) belongs to
var PSL(2, 23).

5.6 THE LAWS OF PSL{2, 2")

5.6.1. LEMMA. If x, y e PSL(2, 2") and [x,yf = 1, then [JC*,>>']2 = 1 for all k
and I. Moreover [x, y] and [x*, y1] belong to the same Sylow 2-subgroup.

PROOF. Note that tr z = 0 if and only if z2 = 1. We define [x, ky] by

[x, ly] = [x, y]

[x,ky)= [x,(k-l)y,y] (k > 1).

We prove by induction on k that

[x,y], [x, 2y], • • •, [x, ky]

all belong to the same Sylow 2-subgroup.
This is certainly true for k — 1, so assume true for A:—1, then

tr [x, ky] = tr [x, (k-l)y, y] = tr [y, [x, (k-2)y], y]

= tr2[*, (A;-l>]{tr [x, (k-l)y] + tr2y} = 0.

Hence [x, ky]2 = 1.
Also {[x,{k-l)y][x,ky]}2 = {[*, (k-l)yf}2 = 1.
Hence [x, (k— l)y] and [x, ky] belong to the same Sylow 2-subgroup, and

thus, since these are disjoint, [x, ky] belongs to the same Sylow 2-subgroup as
[x, y],-'-, [x, (k-l)y]. It follows that, if

is any word in the above commutators then

[f,y\=f{[x,y,yl---,[x,{k+\)y])

is also a word in these. We now prove by induction that [x, yk] is a word in these
commutators. This is certainly true for [x, y] so suppose

then [x,yk] = [*,>>][*,/-'][*,/"'.jO

= [x, y]f{[x, y],---, [x, (k- l)y])f([x, y, y], • • •, [x, ky]).

Thus [x, / ] belongs to the same Sylow 2-subgroups as [x, y].
Since [x, y*] = [yk,x]~i = [yk, x], we may repeat the above process to

obtain that [**, yl] belongs to the same Sylow 2-subgroup as does [x, y].
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5.6.2. LEMMA. PSL{2, 2") satisfies the law
rx(22»-l) 2(2"-in(22"-l) _ j

PROOF. Let

x'l J ' y'(-p J l v i)[p s)

(1 —ayv — 72v\

a2v 1+ayv/

be two elements of order 2. Then trxy = 1 — ocyv—y2vn + l+ cxyv = y2v(i. Hence
xy has order two only if y — 0, i.e. only if JC and y belong to the same Sylow
2-subgroup. It follows that if z is an element of order dividing 2" + l (so that z
belongs to the normaliser of no Sylow 2-subgroup) then [x, z]2 ^ 1. Hence we
have the law

rx(22"-l) 2(2»-l)-i(22»-l) _ i

as required.

5.6.3. LEMMA. Let yePSL(2,2") have order dividing 2"+l . Then for any ze
PSL{2, 2") there exists an element x of order 2 such that

z~lyz = xyx.

PROOF. It suffices to prove that the number of distinct conjugates of y in
PSL{2, 2") is equal to the number of distinct conjugates under elements of order
2, where y has order 2" + 1 . Now the cyclic subgroup generated by y is self-centrali-
sing (by 2.2.7) and hence y has 2"(2" — 1) distinct conjugates. Since y and y~l are
conjugate, these occur in pairs, two in each of the (2B—1)2"~1 cyclic groups of
order 2" + 1 . Now the normaliser of gp{y) in PSL(2, 2") is dihedral of order 2(2" +1)
and so contains 2" + l involutions, one in each of the 2" + l Sylow 2-subgroups.
Let Zj be such an involution and S the Sylow 2-subgroup to which it belongs.

Let z,, Zj, and zk, z, be two distinct pairs of elements of S such that

Then

Suppose now that

yzk = yziz' =

then yz'Zk = yZk = y

which implies that ztzk (an involution) centralises y, a contradiction.
Thus yZi / yz" and similarly
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Now let zm be an involution not in S and suppose

y" = f~.

Then yZJ = y~Znt and so yZJZm = y~l. Thus z,zm belongs to the normaliser of y,
but not to the centraliser. Hence (zjZm)2 = 1 and Zj,zm belong to the same
Sylow 2-subgroup, a contradiction. Now, there are £(2" — 2) distinct pairs zt, Zj
in S, and there are 2" +1 Sylow 2-subgroups so, under involutions, y has (besides
itself and y~l)

distinct pairs of conjugates, and hence has altogether 2"(2" — 1) distinct conjugates,
as required.

5.6.4. COROLLARY. PSL(2, 2") satisfies the law [x,y2<-2"-1)]{22"'1'> = 1.

PROOF. Let y be an element of order dividing 2" + 1 , and let z be an arbitrary
element of PSL{2, 2"). Then by 5.6.3 there is an element x of order two such that
y1 = yx. Hence [y, z] = [y, x] = [x, y]'1 and, from 5.6.2,

[y .z ] 2 2 " - 1 = 1
so we have the law

[ x , ^ 2 " - 1 ) ] 2 2 " - 1 = 1 .

5.6.5. LEMMA. The following law holds in PSL(2, 2"):

{[x2(2"-1\/,x2(2"-1>]22"-1-V>*2(2'1~1):i}2 = I-

PROOF. Let x be an element of order r, and y any element of odd order. If
yeN(gp(x)) then [x,y, x] = 1 = [x, y]. Otherwise [x, y, x] ^ 1 and, by the
previous lemma, it has order dividing either 2" +1 or 2" — 1.

(a) Suppose its order is 2" + 1 , then, since

[x, y, x ] 2 2 " " " 1 = [x, y, x ] 2 " " .

Now, by 5.2.5 (8)

tr [x, y, x]2"~'|>, x] = tr [x, y]{l + tr2"'2 [x, y, x]

- • + 2 + 1 [x, y, x] + tr2"-'[x, y, x]}

which, by 5.2.6 (2) is zero.
Hence {[x,y, x]2""[y, x]}2 = 1.
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(b) Suppose [x, y, x] has order 2"—1 then

x, y, x]z = [x, y, x]
and, by 5.2.5 (9)

tr [x, y, x]2""'-'[y, x] = tr [x, j]{l + tr2""2 [x, y, x]
2 " - ' - 1 [x, j , , x]}

which, by 5.2.6 (1) is zero.
Hence {[x,y, x]2""-1^, x]}2 = 1.
Combining these results we have the law

= 1.

We have now completed the proof of Theorem 3.3(A) (since laws (1) and (4)
are trivial to verify). To complete the characterisation of var PSL(2, 2") given in
5.5.4 we require laws that make 7t1-subgroups abelian, and forbid C(q, r) where
q\2n — 1, r |2"+l. So far we have been unable to get general laws of this type,
though we have the laws in the special case n — 3 given in Theorem 3.3(B). The
derivation of these is given in the following section together with an indication of
the difficulties involved in generalising them. One major hazard seems to be the
lack of a general formula for irreducible polynomials over an arbitrary finite
field.

5.7 LAWS IN PSL(2, 8)

In this section we consider how the laws 5 and 5' given in Theorem 3.3(B)
were obtained. Law 6 was found by the sort of process indicated in § 6.4.

5.7.1. THEOREM.

{ [ [ x ^ / 1 2 ] ^ x 3 6 ] 6 3 [ [ x 1 8 , / 4 ] ^ x 1 8 ] 9 4 [ / 4 , x 1 8 ] } 1 8 = 1

is a law in PSL(2, 8).

PROOF. If [x18, j 1 1 2 ] has order dividing 18 the law is trivial, so we have only
to consider the case where this has order 7, when the left hand side reduces to

{ [ x 1 8 , / 1 2 , x 3 6 ] 6 3 t x 1 8 , / 4 , x 1 8 ] 9 4 [ / 4 , x 1 8 ] } 1 8 .

From now on we use x and y instead of x18 and >>14. Now

tr [x,y,x] = tr [x,y]{tr [x, j ] + tr2*}

= tr [x,y~\x],

and so, by Lemma 5.6.1, [x, y~l, x2] and [x, y, x] either both have order dividing
63 or both have order 2.
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In the former case the left hand side becomes

{[x,y,x]3i[y,x]}18

which, by the same argument as that used in Lemma 5.6.5, is 1.
Hence we may assume both have even order, when the expression becomes

{[x,y-\x2][y,x]y*.
Now, since

0 = tr [x,y, x] = tr [x, y]{tr [x,y] + tr2x]

and tr [x, y] # 0, we have
tr [x, y] = tr2x.

Also tr xy~lxy = tr x~x xy + tr x tr xy

= tr [x,y] + tr2x

= 0.

Now tr [x, y~l, x2][y, x] = tr [x, y"1, x2][x, y] and using the fact that

(xy'^xy)2 = (y~1xyx)2 = 1

and 5.2.5 (10), we may reduce this to

{trx{l+tTxtry}}2.

The proof is now completed by computing the last expression for all possible
pairs of values chosen from

trx = a + 1, a2 + l,

tr y = a, a2, a2 + a, 1

(where a3 = a +1).
Unfortunately, both the obvious generalisations of the above law, viz:

{[[X34, J 4 8 ° ] 1 3 6 , X68]2S5[[X34, y 3 ° p 6 ; JC34]382[y30> ;c34]}34

and
{[[*34, J 4 8 0 ] 1 3 6 , X 1 3 6 ] 2 5 5 [[X34, /0 ] 136 ) X34]382[J3O) x34]}34

fail to hold in PSL(2, 16), so it seems unlikely that this type of law will yield
anything useful for PSL(2, 2") in general, so instead we turn our attention to
Engel type laws as exemplified in Theorem 3.3(B) 5'.

5.7.2. THEOREM, [ [ [ X 1 8 , / 4 ] 3 6 , J14]36,y28]9 = 1 is a law in PSL{2, 8).

PROOF. This is clearly satisfied unless [x18,^14] has order 7 (and thus trace
a +1, a2 +1 or a2 + a +1). In this case we obtain table A (again replacing x18 and
y14 by x and y).
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TABLE A

tr[x,y] try tr [x,y]+ti2y tr[x,y,y] tr [x, y, y, y] tr [x, y, y, y2]

a + 1

a + 1

1
a
a2

a2 + a
1
a
a2

a2 + a

1
a
a 2

a2+a

a
a2+a + l
a2 + l
1
a2

1
a + 1
a2+a + l

a2 + a
a+1
1
a2 + l

a2+a
a
a2

a+1
a
a2 + l
a2

a2+a

a2

a
a 2 +a + l
a2+a

a2 + a + l

From this table we see that there are only three cases in which [x, y, y] has order 7,
and that in these tr [x, ky] is a constant. Accordingly we evaluate tr [x, y, y, y2]
and find in these cases this has order 9 and the truth of the theorem follows.

This type of law does generalise to PSL(2, 16) yielding

but so far we have not been able to extend it further.

6. Bases for PSL(2, 7), PSL(2,9) and PSL{2,11)

In this section we prove Theorem 3.4. Let 337, 339, SSU be the varieties

determined by the sets of laws A, B and C listed in Theorem 3.4 and U7, t t 9 , Ut t the

varieties generated by PSL(2,1), PSL(2, 9) and PSL{2, 11) respectively; then our

aim is to prove that SSf = U;. In sections 6.1 — 6.3 we prove that S3S£ ^ Xl£; the

reverse inequality may be proved by checking that the appropriate set of laws

holds in each of the above groups. In section 6.4 we indicate the methods by which

the laws were obtained.

6.1 CONSEQUENCES OF THE LAWS

6.1.1. LEMMA, p-groups in SSj/or odd primes p are abelian, and so are 2-groups
in SSn.

PROOF. The second result follows from the exponent law in 58^, and the
first from the laws A 3, 4; C 2, 3, 4; together with the appropriate exponent law.
These laws are of two types; we consider an example of each.

A.3. {(x2sy28)57[x28,y28]14}28 = 1.

Let x and y be elements of order 3 belonging to a 3-group of exponent 3 which
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satisfies this law. Then the first term vanishes and we have [x, y]392 = 1. But
[x, y]3 = 1 and so [x, y] = 1.

C.3. {(x66y66)180[[x66,y264]66,x66]61(x66y66y50[x66,y66]}66 = 1.

Let G be a finite group of exponent 5 which satisfies this law, and let N be a
maximal abelian normal subgroup. If G ^ N then N 5g Z(G) and there exist
x e N, y e G such that [x, y] # 1, but, since N is abelian, [x, y, x] = I. Thus the
above law reduces to [y, x]66 = 1, and thus [x, y] = 1, giving a contradiction. It
follows that G is abelian.

6.1.2. LEMMA. 2-groups in SS7 and 3S9 belong to G.

PROOF. Laws A 1,2 and B 1,2 reduce in a 2-group to xA = 1 and [x, y2] = 1.
By 2.2.1 these determine £l.

Thus each 3J; satisfies the conditions of 2.2.3 (i) and so we have:

6.1.3. COROLLARY. S3; is a Cross variety.

6.1.4. LEMMA. The groups C(X*,m) do not belong to 23;/or the following pairs
(A*, m):

i = 7 : (7,2), (7,4), (2,7), (4,7), (3,7);

i = 9 : (3,5), (5,3), (5,4), (2,5), (4,5);

i = 11 : (11,2), (11,3), (2,11), (3,11), (5,11), (2,5), (3,5), (5,3).

PROOF. We note that, since var C(A ,̂ mx) ^ var C{X", m) for j8 ^ a, m^m,
forbidding C(>?, mx) automatically forbids C(X*, m).

Now, C(A", m) has exponent mAa and its derived group is abelian of exponent
/". Also it contains elements x of order X* and y and z of order m such that
[x, ymi] # 1, and [/"', rm2] # 1, for any proper divisors m1, m2 of m. Using these
facts together with the laws A 4,5,6, B 5,6,7,8 and C 4,5,6,7,8,9,10 we obtain
the required result.

6.1.5. COROLLARY. D.% n SS7 = Q u % = 2I7£> n

n « 9 = Q u 2(5;

6.2 FINITE SOLUBLE GROUPS IN SS;

As an immediate consequence of 2.2.5 and 6.1.1 and 6.1.2 we have:

6.2.1. LEMMA. A finite soluble group in 2?,- has p-length one for all odd primes p,
2-length one for i = 11, and 2-length 2 for i = 7, 9.

6.2.2. LEMMA. A finite group of exponent 12 in S37 or SS9 belongs to U7,119 respec-
tively.
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PROOF. In 237 the laws A 7,8,9 reduce, modulo x12 = 1 to [x, y]6 = 1,
[x6,y6] = 1 and [[x,y]3, y3, y2] = 1 and in 239 the laws B 9,10,11 reduce to
[x,y]6 = 1, [x6,y6]3 = 1 and [[x,y]3,y3,y2] = 1. Using Theorem 3.1 and
Lemmas 6.1.1 and 6.1.2 we have that groups of exponent 12 in 237 belong to
var 5 4 ^ lt7 and groups of exponent 12 in 239 belong to var 54 u 2I32l4 ^ lt9.

6.2.3. LEMMA. A critical soluble group in

(i) 237 has exponent 12 or belongs to 2I72l3,
(ii) 239 has exponent 12 or belongs to 2t5Sl2,

(iii) 23n ^ / o n ^ to 2 l 3 l 2 , 2I29l3, 9tuSCs or 2I52t2.

PROOF. Let G be a critical soluble group in 23*. Consider the upper p-series of
G where p = 7,5,11 for i = 7,9,11 respectively. By 6.2.1. this has the form

where No and N1/P1 are p'-groups and Pi/N0 is a p-group. Let S be the Sylow
p-subgroup of Pt, then Px = S'Afo. But Â o is a soluble p'-group, and S stabilises
the chief factors (by 6.1.3). Hence S centralises No and so Pt — SxN0. Since S
and No are both characteristic in Pt, and G is critical, we have 5* = 1 or No = 1.

(i) S = 1. In SS7 and 2S9 this means that G has exponent 12 and there is nothing
further to prove.

In 33U G has exponent 30, and we have to repeat the argument above,
considering now the upper 5-series to obtain that G either belongs to 2l22t3 o r

9t39t2
 o r n a s a normal Sylow 5-subgroup. In the latter case, since this is necessarily

centralised by elements of order 3, from 2.2.5 we see that the factor group has
exponent 2 and so G e 9l5 9l2.

(ii) JV0 = 1. Then G has a normal Sylow p-subgroup, S, and CG(S) ^ S (2.2.5).
It follows from 6.1.3 that \G\ cannot be divisible by 2 if i — 1, by 3 if i = 9, and
by 2 nor 3 if i = 11.

Hence Ge2T72l3 if i = 1,

G e 2I5Q if i = 9,

G e 8 t n 8 l s i f i = 11.

Since 215D n 939 = 2159I2 (6.1.4) the proof of the lemma is complete.

6.2.4. THEOREM. A soluble group in 25; belongs to U(.

PROOF. This follows immediately from 6.2.2, 6.2.3 and the list of subgroups of
PSL{2, i) (i = 7,9,11) given in 2.2.7.

6.3 FINITE NON-SOLUBLE GROUPS IN 2S;

Since 23; is by 6.1.3 a Cross variety, in order to complete the proof that
SS( ^ 11; we have only to prove that finite non-soluble groups in 23; are in IX;.
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6.3.1. LEMMA. The only simple groups in 23; are PSL(2, i), and, for i = 9 and 11,
PSL(2, 5).

PROOF. The laws u169, u361, u66l tell us that the maximal order of a simple
group in 33; is, respectively, 168, 360, 660. This, together with the exponent law
and a consideration of the list of simple groups of order less than 1000 (e.g.
Burnside [1 ] Note N) gives the required result.

6.3.2. THEOREM. A finite non-soluble group in Vi has the form

51 x 7\ x • • -xTk

where S is soluble and Tt is simple.

PROOF. Let G be a minimal counterexample. Since the set of all such groups
(for each i) is precisely the set of finite groups in Uf (by 6.2.4 and Oates [18]
Lemma3.2) G is necessarily critical. We consider separately the cases in which
oG is non-abelian and abelian.

(i) aG non-abelian. Then oG is a direct product of simple groups and \G\ —
\Gja*G\ ^ 168, 360, 660 for i = 7,9,11 respectively. In 237, G must be PSL{2,7);
in S39 and 23u we can have either G is PSL(2, 9), PSL{2, 11), or that aG is
PSL(2, 5). In the latter case G is a subgroup of Ss. As S5 itself does not satisfy B 7
or C 1, G can only be PSL(2, 5).

(ii) aG abelian. By the argument used in 5.5.4 (ii) we have that G/aG = T, a
simple group. Now, if T is PSL(2,7), PSL{2,9), PSL{2,11), or PSL(2, 5) in 339 it
is generated by its p-groups (where p has the same meaning as in 6.2.3), and these
must centralise aG (by 6.1.1 and 6.1.4), so in all these cases aG ^ Z(G). The one
remaining case is G e SS^ and G/aG = PSL(2, 5). If aG is not an 11-group, then
consideration of the 5-subgroups ofPSL(2, 5) gives aG ^ Z(G). If it is an 11-group
then we may obtain the same result by considering the 3-subgroups. Hence, in all
cases, aG ^ -Z(G). Since G is critical, aG ^ y2 G, and so aG is isomorphic to a
subgroup of the multiphcator of G/aG. This is C2, C6, C2, C2 for PSL{2,7),
PSL(2, 9), PSL(2, 11) and PSL(2, 5) respectively, and G has the possible values
PSL(2, 7), SL(2,1) (i = 7); PSL(2,9), SL(2,9), a group with centre C3 and factor
group isomorphic to PSL(2,9), PSL(2,5), 52,(2,5) (/ = 9); PSL (2,11), SL(2,11),
PSL(2, 5), SL(2, 5) (i = 11). The class of the Sylow 2-subgroups of SL(2, 7),
SL(2, 9) and SL(2, 11) prevents them from belonging to 3S7, 239, SS11; and also
prevents SL(2,5) from belonging to SS^. Similarly the Sylow 3-subgroup of the
group with centre C3 is not elementary abelian and so this group is not in SS9.
SL(2,5) has 51,(2,3) as a subgroup, and, by 4.4.2 this does not belong to SS9. We
are left with G being one of our simple groups, and the truth of the theorem follows.

6.4 DETERMINATION OF THE TWO VARIABLE LAWS IN PSL(2, 7)

In this section we indicate how the two-variable laws for PSL(2, 7) were
obtained. Similar methods were used for PSL(2, 9) and P5Z(2, 11).
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From § 6.1 it is clear that we require laws which imply that Sylow 2-subgroups
are in Q and Sylow 3- and 7-subgroups in 9l3 and 2I7 respectively; laws to forbid
C(7, 2), C(7, 4), C(2, 7), C(4, 7), and C(3, 7), and finally, laws which imply
that groups of exponent 12 are in var S4. From Theorem 3.2 we see that the
law [x3,y12]12 = 1 holds in PSL(2, 7), which deals with the Sylow 7-subgroups,
C(7,2) and C(7,4). Before determining the remaining laws we must find out how
many essentially distinct ways there are of choosing pairs of elements of prescribed
orders, and, to do this, we use Corollary 5.2.3 which tells us that the trace of any
word in x and y is determined by the traces of x, y, xy and xy "l. Now, the possible
traces are 0, +1, ±2, ±3, which correspond to elements of orders 2, 3, 7 or 1, and
4 respectively. Thus, except for tr x = ±2, the trace determines the order uniquely.

Using 5.2.3 we construct Table 1 (given in Appendix II). From this we obtain
immediately the Sylow 3-law, for the commutator of two elements of order 3 has
order 3 only when the order of the product is prime to 3. Thus (vide 5.3.3) we have
the law

{(x28y2s)51[x28,y2S]^}2s = 1.

For the remaining laws we have to work a little harder. Consider, for example,
the Sylow 2-law. Here we require a law that reduces to [JC, y2] = 1 in a group of
exponent 4, so we look at [x21, j>42]. This is clearly trivial unless x has order 2 or
4 and y has order 4. Calculating the trace of [x,y2]in these cases we obtain table B.

TABLE B

Tr. x y xy xy~l [x,y2]

0 ±3

±3 ±3

0
±1
±2
±3
0

±1

±2

±3

0
±1
±2
±3
±2
±1
±3
0

±3
±1
±2

±2
±3
±1
±2
±2
0

±1
±2
±3
±1
±3

From this table we see that we have four cases in which [x, y2] has order divisible
by 2, and that in one of these xy also has order 4, but that then xy~x has order 7
(it obviously cannot have order 1 since [x, y2] ^ 1). Hence we consider an ex-
pression of the form

{ ( x 2 1 / 1 ) 4 ^ 2 1 ^ 6 3 ) 4 " ^ 2 1 , / 2 ? } 2 1 (y odd)

and endeavour to choose a and ft so that this vanishes everywhere. A possible
selection is a = 13, P = 1, 7 = 9.
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All the necessary calculations can be performed working with traces, but, for
lengthy words, these become somewhat tedious, and it seems easier to select ele-
ments of PSL{2, 7) having the required orders for x, y, xy and jcy"1 and work
with these. Such elements are given in table 2 (Appendix II), expressed in the
permutation representation of PSL(2, 7) on seven letters, generated by (12)(36)
and (1234567).

Note that by Theorem 5.2.2 the trace of a word in x and y will be independent
of the choice of x and y (for each case) and so the orders of these words are uni-
quely determined up to the ambiguity between elements of orders 1 and 7. How-
ever, all our 2-variable laws in PSL(2, 7), save [x3, y12]12 = 1 (which was determin-
ed by other means) are raised to a power divisible by 7, so that this ambiguity is
irrelevant. (A little more care has to be exercised in PSL(2, 9) and PSL(2, 11)
where we have laws other than the standard ones which are not raised to a power
divisible by 3 or 11, respectively.)

7. Laws in SL{2, q)

7.1 INTRODUCTION

Let w(xt, • • •, xr) be a law defining var PSL(2, q), q = p", p an odd prime.
We denote by SS? the variety defined by the laws [w(xt, • • •, xr), y] = 1 and
w(x1, • • •, xr)

2 — 1, and by tls the variety generated by SL{2, q).
We want to show that, for q — 8/z+1, with ft odd, or q = 8/z±3, and n an

odd integer or for q = 9, S3€ = VLq. For arbitrary q, it is easy to see Uq ^ 25,, and
easy to show that SS, is a Cross variety. It is easy to show that the non-soluble
critical groups in 3S? are the same as the non-soluble critical groups in 11,, provided
GL(2, pm) does not occur as a subgroup of SL(2, q) (pm > 3), that is, whenever n
is odd, by 2.2.7, or q = 9. The other cases we cannot deal with at present. The
soluble critical groups of 2S9 can be shown to be the same as the soluble critical
groups of U4 if q = 8/? + 3 , or q = 8h± 1, with h odd. Combining these two results
gives Theorem 3.5. For q = 8A + 1, with h even, M. F. Newman has pointed out
that Q wr C2 is in S39, while 2-groups in II, are metabelian, giving il8 # SS8.

We start by proving:

7.1.1 LEMMA. SS4 is a Cross variety.

PROOF. Let G be a finitely generated group in 239. Then G[w(G) e var PSL(2, q)
and w(G) is central and of exponent 2. If PSL(2, q) e C(e, m, c), then
G e C(2e, m, c+1), and so 8S? is a Cross variety by 2.2.3.

7.2 NON-SOLUBLE CRITICAL GROUPS IN SS9, q = p", n ODD OR q = 9

For such q, we claim that a non-soluble critical group in SS9 is in var SL(2, q).
An examination of the subgroups of SL(2, q) will convince the reader that it
suffices to prove the following lemma.
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7.2.1. LEMMA, (a) If q = +1 mod 10, then a non-soluble critical group in 239 is
isomorphic to SL(2, pm) or PSL(2, pm), where m divides n.

(b) If q = ±1 mod 10, then a non-soluble critical group in SS9 is isomorphic
to SL(2, pm), PSL(2, pm), where m divides n, or SL (2,5), or PSL(2,5).

PROOF. Let G be a non-soluble critical group in SS?. If w(G) = 1, then
G e var PSL(2, q), and the result follows. If w(G) # 1, then w(G) is central in G,
and is an elementary abslian 2-group. Since G is critical, it follows that w{G) is
cyclic of order 2.

By Lemma 3.2 of Oates [18], G/w(G) = HJw(G) x H2/w(G) x • • • x HJw(G),
where each H;/w(G) is either non-abelian simple or soluble. If t > 1, G is not
critical, by Theorem 2.1 of Weichsel [23]. Hence t = 1, and since G is non-soluble,
Gjw{G) is non-abelian simple. The rtsult now follows from V Satz 25.7 of Huppert
[13].

7.3 THE SOLUBLE CRITICAL GROUPS OF S3?, q = Sh±3

Firstly, note that for q = 8A + 3, the Sylow 2-subgroup ofPSL(2, q) is elemen-
tary abelian of order 4, and the Sylow 2-subgroup of SL(2, q) is the quaternion
group Q. With this in mind, we prove:

7.3.1. LEMMA. A nilpotent critical group in 33? is in Viq.

PROOF. Let G be a critical 2-group in S34. If w(G) = 1, then G e var PSL{2, q)
< VLq. Hence suppose w(G) # 1: as before, we see that w(G) is cyclic of order 2.
Also, Gjw{G) is elementary abelian, and so G has class at most 2. It now follows
from Lemma 5.1 of Weichsel [24] that G is in the variety generated by the Sylow
2-subgroup of SL{2, q).

If G is a nilpotent critical group of order prime to 2, then w(G) = 1, and so
G e var PSL(2, q) < Uq, and the proof is complete.

We now turn to the soluble non-nilpotent critical groups in %$q which are not
in var PSL(2, q). If G is such a group, then as before w(G) is cyclic of order 2.
Since w(G) is central, and G is critical, G/w{G) cannot contain any normal sub-
groups of order prime to 2. Thus, putting H = G/w(G), we have that oH is a
2-group. It follows that # e 2 l 2 2 l 3 , and from Lemma 5.2.5 of Cossey [2], that
H = H1xH2, where Zffii) — 1, and H2 is an elementary abelian 2-group.
If Hl = 1, then G is nilpotent, and so we have that 77t # 1, for G was assumed
non-nilpotent. Also, if H2 # 1, G is not critical by Theorem 2.1 of Weichsel [23],
and so we have H = Hx.

Now let F be the Sylow 2-subgroup of G: we have F < G. Further, G/w(G)
is an elementary abelian 2-group and, regarded as a GF(2)G-module, is completely
reducible by Maschke's theorem. From Lemma 7.3.1, we may conclude that F
has class 2, and then from Lemma 2.4.3 of Sheila Oates and M. B. Powell [19] it
follows that there are at most 2 irreducible components in a decomposition of
F/w(G).
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Suppose that F/w(G) is irreducible. Since an abelian group with a faithful
irreducible representation is cyclic, |GjF\ = 3. Hence \F/w(G)\ = 4, and G/w(G) =
PSL(2, 3). From Satz V 25.7 of Huppert [13] it follows that G = SL(2, 3).

Suppose that F/w(G) has 2 irreducible components in a decomposition. Then
Fis either QcpQ or QcpD±. It is not difficult to see that a 3-group of automorphisms
of QcpD4 has a non-trivial fixed point modulo the derived group of QcpD4 (for
example, by using 5.4, p. 206 of D. Gorenstein [8]), and so F cannot be QcpD4.
If F is QcpQ, then it is not difficult to see that G must be isomorphic to a subgroup
of SL(2,3)cpSL(2,3), and that any such subgroup must contain a copy of
51,(2, 3). But then G is not critical.

Thus if G is a soluble critical group in 339, q = &h±3, G e II,.

7.4 THE SOLUBLE CRITICAL GROUPS IN SS9, q = Sh ± 1, h ODD

We start by proving:

7.4.1. LEMMA. A nilpotent critical group in SS9 is also in U4.

PROOF. Let G be a critical 2-group in %q. If w(G) = 1, then G e var PSL(2, q)
< Uq, and so we may suppose that w(G) # 1. As usual, w(G) is central and of
order 2. Also G/w(G) e D, for the Sylow 2-subgroup of PSL{2, q) is D 4 . Thus G
is a 2-group of class 3 such that G has exponent dividing 8, y2 G has exponent
dividing 4, and y3G has exponent dividing 2. It follows from Lemma 5.1 of
Weichsel [24] that G is in the variety generated by the Sylow 2-subgroup of 5Z(2, q).

If G has order prime to 2, then w(G) = 1, and G e var PSL{2, q) < VLq, and
the proof is complete.

Now, let G be a non-nilpotent soluble critical group in 3S4 which is not in
var PSL(2, q). As in 7.3, w{G) is cyclic of order 2, and, putting H = Gjw{G),
aH is a 2-group. It follows that H e var S^.

7.4.2. LEMMA. Let K e var S4, and let oK be a 2-group. IfF is the Fitting subgroup
of K, and F ^ K, then F = F1 x • • • x Fk x T, where each Ft is a minimal normal
subgroup of K, and is non-trivial, regarded as a GF{2)K-module, T<i K, and all
the chief factors of K contained in T are trivial, regarded as GF(2)K-modules.

PROOF. We first note that 5'4 e 2I22t32l2, and so A^has an elementary abelian
normal 2-subgroup N with K/N e 2l3 9l2. From this it follows that any non-trivial
chief factor of 2-power order lies in N, and from Lemma 4.3.1 that any non-trivial
chief factor of K is complemented in N. Thus N = F1 x • • • x Fk x To, where the
chief factors of K in To are all trivial.

Now, consider #F . Not all of F1, • • •, Fk lie in <&F, for if they did, every
element of order 3 would centralise all of F, and there would be no non-trivial chief
factors of 2-power order. Suppose that Ft n <PF = 1. Then F/<PF = F^F/QFx
TX/^F, where 7^ <a K, by Lemma 4.3.1. Thus F - F1xTl, and the result follows
by induction.
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From Lemma 7.4.2, we have that if F is the Fitting subgroup of H, then
F = F1x- • -xFkxT, with k 2; 1, each Ft a non-trivial minimal normal subgroup
of H, T < H, and each chief factor o f / / i n T trivial. It follows from Theorem 1 of
Higman [12] that F1 x • • • x Fk is complemented in H, and then from Lemma
2.4.3 of Oates and Powell [19] that G is not critical if k > 2. Suppose k = 2.
Let P/w(G) = F1xF2. Then P is either QcpQ or QcpD4. As in 7.3, we see that P
cannot be QcpD^. If P is QcpQ, and Pi/w(G) = F(, i = 1,2, then Pt ^ Q, i = 1, 2.
But there are only 2 subgroups of QcpQ isomorphic to Q, and so [Pi,P2] = 1-
Again by Lemma 2.4.3 of Oates and Powell [19], G is not critical. Thus k = 1, and
by Lemma 4.3.1 we conclude that HjF = 5 3 or C3 .

If # / F = C3, then H = A4xT, and by Theorem 2.1 of Weichsel [23], G
is not critical unless T = 1. But then it follows from V Satz 25.7 of Huppert [13]
that G is isomorphic to 51,(2,3).

Hence we suppose that H/F — S3. We have seen that Fx is complemented in
H; let B be such a complement. Then if S is a Sylow 2-subgroup of B, T ^ S, and
any subgroup of T normal in S is normal in H. Let ,4 = <PS: then Ao H, for
. 4 ^ 2 " . Suppose .4 ^ T. Then S/A = R\A x T\A. Put E = /?£), where D is a
Sylow 3-subgroup of B (note that D <a fi), F0/w(G) = / \ , T0/w(G) = T, £ 0 M G )
= £. Then we have G = ^ ( ^ o , r 0 , £0), G # ^ ( ^ o , ^0). G # ffP(T0,E0). Let
x e F o , x £ oG, and let z be an element of order 3 in G. Then Fo is generated by
[x, z] and its conjugates. Lety e To: it follows from the Witt identity that [x, z, y]
— 1. We conclude that [Fo, To] — 1, and so G is not critical. Thus A = T, and
since S/T is of order 2, we see that S is cyclic of order 2 or 4.

Now let S4 = ^ ( x , j | x 2 = y3 = (jcy)4 = 1), and C4 = #/>(z|z4 = 1). Then
H is isomorphic tc the subgroup of 5 4 x C4 generated by xz and y. From 2.2.7 we
have that the order of the Schur multiplicator of H is at most that of the Schur
multiplicator of y2H = AA. The Schur multiplicator of ^44 is C2, and, as we shall
see below, the Schur multiplicator of His non-trivial, and so is just C2. Hence G is
a representing group of H. Also, by Theorem I of I. Schur [20], there are at most
2 non-isomorphic representing groups for H. We show by construction that there
are in fact precisely 2 non-isomorphic representing groups for H.

Let GL(2,3) be generated by elements x (of order 4) and y (of order 3), and
let C4 be generated by u, C8 by v. The 2 representing groups are:

(1) the subgroup of GL{2, 3) x C4 generated by xu and y, and
(2) B/N, where B is the subgroup of GL(2, 3)x C8 generated by xv and y,

and TV = gp(w~l vA), with 1 # w e Z(GL(2, 3)).

Since both these groups are in VLq, we have that G eVLg.
Finally, suppose that T = 1. Then H = S4, and we see that G is isomorphic

to GL(2, 3) or ^4, where A is the splitting extension of SL(2, 3) by C2 = ffp(z),
with z acting on SL(2, 3) as the inner automorphism induced by x above. In either
case, G e Viq, and the proof is complete.
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8. Theorems 3.6 and 3.7

8.1 The proof of Theorem 3.6 follows so closely that of Theorem 3.4 (B) that
we give no details except to remark that the law (ii) is needed to eliminate
9t5Q, since var S 4 ^ 2152I4, but not 2I5£t.

8.2 The proof of 3.7 is also akin to that given in §§ 6.1 and 5.5 once it has been
established that a finitely generated group in the relevant variety is finite and
soluble, so we consider this point only.

8.2.1. THEOREM. A finitely generated group in the variety defined by the laws given
in Theorem 3.7 (A) is finite and soluble.

PROOF. By law 4 any two elements of order 7 commute, so if N = gp(g12\g e G)
then N is abelian of exponent 7 and G/N has exponent 12, and hence satisfies the
laws*1 2 = 1, { ( x V y V , ^ 4 ] 3 } 3 = 1, [x2,y2? = 1, [x,y]6 = 1. [x6,y6] = 1,
[[x, y]3,y3,y2] = 1 and so belongs to var S4 by Theorem 3.1. Hence G/N is
finite and soluble and so N is finitely-generated and thus finite (and abelian). It
follows that G is a finite soluble group as required.

8.2.2. THEOREM. A finitely generated group in

23 = varOc2*22""1), [x2,y2]2, [x2,y2(2"-l)])

is finite and soluble.

PROOF. Let r = 2" — 1, s = 2" +1; then r-subgroups are abelian and any two
elements of order s commute. Let G be a finitely generated group in 33, and let
N = gp{g2r\g e G); then ./Vis an abelian group of exponent dividing s and GjN e I I
= var (x2r, [x2,y2]2). Hence it is sufficient to prove that finitely generated groups
in U are finite and soluble. We do this by a sequence of lemmas akin to (but much
simpler than) those used in the proof of the Burnside problem for exponent
6 (M. Hall [9]).

8.2.3. LEMMA. IfGeU and

G = gp{a, x,y\a2 = xr = / = 1, x" = x~\f = y'1)

then [x, y] = 1.

PROOF. Since G has exponent dividing 2r

(axy)2r = 1,

i.e. (axyaxy)" = 1,

i.e. {x'ly~lxyY = 1.

But [x,y]2 = 1;

thus [x,y] = 1.

8.2.4. LEMMA. Let He U and H = gp(a, b, c\a2 = b2 = c2 = 1), then y2H is
abelian {and of exponent dividing r).
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PROOF. The following table shows that y2 H is generated by oct, • • •, as.

aa{ a bat b ca; c

a1 = abab a^1 aj"1 a2~1aj1a4a3

a2 = acac aj1 aj"1^ a2
l

a3 = bcbc a5 aj"1 aj1

a4 = abcacb a4
J af'a2 aj'aj'a^s

a5 = abcbca a3 af ' a j ^ i a j ' a ^ 1 ^

All of these, save possibly a4, have order dividing r and, by Lemma 8.2.3,
[(*!, <x2] = 1, [a2, a3] = 1, [o^, a3] = 1. Thus gp{a.l, a2) is abelian of exponent
dividing r, and hence so also is b'1 gp{a1, a2)b = gpfa1, a^1 a4). It follows that
<x4 = 1 and also [ax, a4] = 1, [a2, a4] = 1.

Now

1 = [ai,a3]" = C«r1,«5].

and
[a5, a4] = [otj a5 ixl, at a2] = 1,

1 = [ a ^ a ^ = [a2"1aj1a4,a3~1] = [a j 1 , a^"1].

Thus y2His abelian of exponent dividing r.

8.2.5. LEMMA. If HeU and H = gp(a, b, c, d\a2 = b2 = c2 = d2 = 1) then

PROOF. Let a = a6a/>, Ŝj = cdcd, fi2 = acdcda; then, since jSt and jS2 belong to the
derived group of gp(a, c, d) by the previous lemma we have fi\ = p2 = [pt, ft2 ] = 1.
Also oca = a-1(/i1p2

1)a = li2p;1 = (fi1l]2
i)~1 and so gp (a, pl P2

 1) is abelian of
exponent dividing/-. Hence (api

1p2
i)r=l and so (P2

iocP[)r= 1. Also 0?r''aj9i)a =
(Pi'xPiy1 and so K=gp(a,pl$2\ fa'afc, (/ = 1, • • -,r—1)) is abelian of
exponent dividing r. But it is clearly a normal subgroup of L = gp(oc, fjlf yS2)
and L/K is generated by Kfiy and so is cyclic of order dividing r. Thus L has
exponent dividing r and so, using the law [x2,y2]2 = 1, L is abelian; in particular
[(a*)2, (a/)2] = 1.

8.2.6. THEOREM. Let G be a finitely generated group in U. Then G is finite and soluble.

PROOF. If M = gp{g'\g e G), then G/M has exponent r, so G is abelian and
thus finite. Hence M is finitely generated, and so, since it is generated by elements
of order 2, is generated by finitely many such elements. Thus M/y2 M is finite, and
y2 M is generated by finitely many elements of the form abab where a2 = b2 = 1
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(since it is generated by the commutators in the generators of M and their con-
jugates). From the previous lemma any two such elements commute and so y2 M
is finite and abelian. It follows that G is finite and soluble.

9. Conclusion

The arguments in §§6.1-6.3 can be extended (along the lines of §5.5) to
larger PSL(2, q), but the calculations involved in actually finding the laws will
rapidly become impossibly lengthy unless a computer is employed or the results of
§ 5 can be extended to give all types of laws needed.

As the reader has undoubtedly observed, apart from un, the laws given in
Theorem 3.4 involve at most two variables, whereas un itself involves \n(n +1),
so is anomalous. In fact, using § 3.3 of Oates and Powell [19] and Theorem 3.7 we
can prove that the laws of PSL(2,7) (and PSL(2,8)) possess a basis involving at
most 5 variables. In these cases, too, it should be possible to avoid all uses of un

(as was done for PSL{2,5) in [3]) except in proving local finiteness, and this is the
stumbling block. What we need is a two-variable replacement for un.

Conjecture: For each n there is a two-variable law which holds in every
group of order not greater than n and which implies that a simple group satis-
fying it has order not greater than/(«).

10. Appendix I: The proof of Lemma 4.1.8

Let G be a non-trivial subgroup of S3xS3, such that G contains no non-trivial
normal 2-subgroups, and let M be a faithful indecomposable quotient of the
regular representation module of G over GF(2). Then we have to show that M is
irreducible.

We will use the notation of Curtis and Reiner [5] and will assume familiarity
with Chapters 4, 5, 6 of this book. In particular, § 43, and Theorem 61.16 will be
used extensively.

Also, from Theorems 56.6 and 58.14 of [5], we obtain immediately:

10.1 LEMMA. Let G be a finite group, K afield, P a principal indecomposable compo-
nent of KG. IfP is also irreducible, then any KG-module M which has a composition
factor isomorphic to P has the form M = Mx © M2, with M2 = P.

The following lemma is an easy consequence of the definition of blocks
([5] definition 55.1), and their elementary properties (Theorem 55.2).

10.2 LEMMA. Let G be a finite group, and K a field. If' M is a submodule of KG, then

KG/M s Bx M/M © • • • © BrM/M, when Bit---,Brare the blocks of KG.

We start the proof by observing that if G is a 3-group, the result follows from
Maschke's theorem. Thus we may suppose that G is not a 3-group. Note that the
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Sylow 3-subgroup N of G is normal. By regarding N as a GF(3)((j/./V")-module, for
example, it is easy to see that G is isomorphic to one of the following four groups.

0) s3,
(2) S3xC3,
(3) gp(a, b, c\a3 = b3 = [a, b] = c2 = 1, ac = a~\ bc = b~l),

(4) S 3 xS 3 .

We deal with each of these groups separately.

(1) Note that 5 3 S 51,(2,2) = GL(2,2). Hence S3 has a faithful irreducible
representation over GF{2), of degree 2. Let P be a principal indecomposable
component of GF(2)S3, let TV be its radical, and suppose P/N is a faithful irreduci-
ble GF(2)53-module. Then GF(2)S3 acts on P/N as the algebra of all linear
transformations of P/N: but then the only linear transformations which commute
with every element of GF(2)S3 are those which correspond to multiplication by an
element of GF{2). That is, HomGF(2)S3(7'/7V, P/N) = K s GF(2), and (AT: GF{2))
= 1. Now suppose N ^ 0. Then, by [5] Theorem 65.16, (P : GF(2)) ^ 4, and so
[5] Theorem 61.16 gives us that P/N occurs at least 4 times as composition factor
of GF(2)S3, which it clearly cannot. Hence N = 0. Also [5] Theorem 61.16 gives
that there are two principal indecomposable components of GF(2)S3 isomorphic
to P. It follows that there is just one other principal indecomposable component
of GF(2)S3, and that this one is isomorphic to GF(2)(S3/A3).

Now, suppose M is a faithful indecomposable quotient of GF(2)S3. Then
M contains a composition factor isomorphic to P, and from Lemma 10.1 we
conclude M is irreducible.

(2) Put E = GF(2)(S3 x C3), E1 = GF(2)S3, E2 = GF(2)C3. It is convenient
at this stage to identify E and El ®cf(2)^2 • Then E (qua ^-module) is isomorphic
to the outer tensor product of Ex and E2 (qua ^-module). Let Et =P1®P2®P3

be the decomposition of El into principal indecomposables, with P2, P3 irreducible,
and let E2 = Tt © T2 be the decomposition of E2 into principal indecomposables,
with T2 non-trivial. From Lemma 4.1.5, we have that 5 3 x C3 has a faithful irredu-
cible representation over GF(2). Clearly, such a representation must have degree
at least 4.

From this information, we may conclude that E has the following principal
indecomposable components: RtJ = Pt# T}, with i e {2, 3}, j e {1,2}, all of which
are irreducible, and Rlt ^ P1 #Tt. Using Theorem 61.16 of [5], we see that
Rl2 = Py # T2 is also a principal indecomposable, and so we have accounted
for all the principal indecomposable components of E.

Now, suppose that M is a faithful indecomposable quotient of E. If M
contains a composition factor isomorphic to Rtj for some / e {2, 3],Je {1,2}, then
we may conclude from Lemma 10.1 that M s -R,7, and so is irreducible. If M con-
tains no such composition factor, then 72^3 a c t s trivially on every composition
factor, and so M is not faithful.
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(3) Put G = gp(a, b, c), and let E = GF(2)G. It follows from Lemma 4.1.5
that G does not have any faithful irreducible representations over GF(2).

If 7V<i G such that G/N s S3, the techniques of (1) give us that there are
two principal indecomposable components of E which are irreducible of degree 2,
and which have kernel precisely N.

Now gp(a), gp(b), gp(ab), gp(ab2) are distinct normal subgroups of G
satisfying the conditions of the previous paragraph, and so each gives rise to two
irreducible principal indecomposable components of degree 2. We have one more
principal indecomposable component to account for, and this is clearly isomorphic
to the regular GF(2)(G/y2 G)-module.

Thus any faithful indecomposable module M will contain a non-trivial com-
position factor, and from Lemma 10.1, we get that M is irreducible.

(4) Put E = GF(2)(S3xS3), and let Et ^ E2 ^ GF(2)S3. As in (2) we
identify E and E1®GF(2)E2. Let EY - Pv ® P2 © P3, E2 = TiQ^QT^ be the
decompositions of E1 and E2 into principal indecomposable components, with
P2 = P3 and T2 s T3 all irreducible. Again from Lemma 4.1.5, we have that
S3 x S3 has a faithful irreducible representation over GF(2), and such a represen-
tation must clearly have degree at least 4.

This information, together with Theorem 61.16, allows us to conclude that
Ru = P{ # Tj, i,j e {1, 2, 3} are all the principal indecomposable components
of E. The blocks of E are Rtl, R2l®R3l, R12®R13, R22®R23@R32®R33.

If M is a faithful indecomposable quotient of E, by Lemma 10.2, M is iso-
morphic to a quotient of some block. It follows that either M is irreducible, or M
is not faithful.
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11. Appendix II

TABLE 1

Traces of elements in PSL(2, 7)

x y xy xy~1 [x, y] x y xy xy~1 [x, y]

±1 ±3

±1
±1 ±1 0
±2 ±2 ±3

±2 ±2

±2

±3
±2 ±3

±1 ±1

±2

0
±1
±2
±3

0
±1
±2
±3

0
±1
±2
±3

0

±1
±2
±3

0
±1

±2

±3

0
±1

±2

±3

0
±1
±2
±3

0

±1
±2
±3

0

±1
±2
±3

0

±1
±2
±3

±1
0

±2
±1
±3
±2
±3

±2
±1
±3
0

±3
±1
±2

±2
±1
±2
0

±1
0

±3
±1

±2
±3
±1
±3

0
±1
±3
±2

0
0

±2
±2
±1
±1
±2

±3
±2
±1
±3
±3
±1
±3

±3 ±3

0
±1

±2

±3

0
±1

±2

±3

0

±1

±2

±3

0
±1

±2

±3

±3
±2
±3
±1
±2
0

±1

±3
±2
±3
±2
±1
±1
0

±1
±2
0

±3
±1
±3
±2

±2
±1
±3
0

±3
±1
±2

±1
±1
±2
±1
±3
±1
±2

±1
±3
±3
±2
±3
±3
±1

±3
±1
±3
±3
±1
±2
±3

±2
±1
±2
±2
±3
4-2

±3
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TABLE 2

Typical pairs of elements in PSL(2, 7)

[48]

X

(12)(36)
(35)(67)
(12)(36)
(35)(67)

(12)(36)
(13)(45)
(12)(36)
(36)(57)

(12)(36)
(37)(56)
(36X57)
(35)(67)

(36)(57)
(35)(67)
(35)(67)
(37)(56)

(236)(475)
(236X475)

y

(36X57)
(13)(26)
(12X36)
(24)(37)

(124)(365)
(124)(365)
(137)(254)
(123)(457)

(1)
(1234567)
(1234567)
(1234567)

(24X3576)
(2645)(37)
(1263)(47)
(24)(3576)

(267)(345)
(276)(354)

X

(236X475)
(236) (475)
(236X475)
(236)(475)
(267)(345)

(172)(367)
(137)(254)
(236)(475)
(172)(364)
(164)(253)
(236)(475)
(164)(253)

(236X475)
(236)(475)
(236)(475)
(236)(475)
(236)(475)
(236)(475)
(236)(475)

y

(137)(456)
(173)(465)
(142X367)
(124)(376)
(126)(475)

(1234567)
(1234567)
(1234567)
(1765432)
(1765432)
(1765432)
(1234567)

(24)(3576)
(1345X67)
(14)(3756)
(1543)(67)
(12)(3567)
(24)(3675)
(14X3657)

X

(1546732)
(1365274)
(1753426)
(1234567)
(1365274)
(1753426)
(1546732)

(1234567)
(1234567)
(1234567)
(1234567)
(1234567)
(1)
(1234567)

(24)(3576)
(24)(3576)
(24)(3576)
(24)(3576)
(2645)(37)
(24)(3576)
(2645)(37)

y

(1234567)
(1234567)
(1234567)
(1234567)
(1765432)
(1765432)
(1765432)

(12X3765)
(24)(3576)
(12X3567)
(14)(3756)
(24)(3675)
(12)(3765)
(14)(3657)

(24)(3576)
(2645X37)
(1S43)(67)
(24)(3675)
(1345)(67)
(1345)(67)
(1543)(67)
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