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We study the large-scale dynamics and prediction of hydrodynamic transport in random
fracture networks. The flow and transport behaviour is characterized by first passage
times and displacement statistics, which show heavy tails and anomalous dispersion
with a strong dependence on the injection condition. The origin of these behaviours
is investigated in terms of Lagrangian velocities sampled equidistantly along particle
trajectories, unlike classical sampling strategies at a constant rate. The velocity series
are analysed by their copula density, the joint distribution of the velocity unit scores,
which reveals a simple, albeit hidden, correlation structure that can be described by a
Gaussian copula. Based on this insight, we derive a Langevin equation for the evolution of
equidistant particle speeds. In this framework, particle motion is quantified by a stochastic
time-domain random walk, the joint density of particle position, and speed satisfies a
Klein–Kramers equation. The upscaled theory quantifies particle motion in terms of
the characteristic fracture length scale and the distribution of Eulerian flow velocities.
That is, it is predictive in the sense that it does not require the a priori knowledge
of transport attributes. The upscaled model captures non-Fickian transport features, and
their dependence on the injection conditions in terms of the velocity point statistics and
average fracture length. It shows that the first passage times and displacement moments
are dominated by extremes occurring at the first step. The presented approach integrates
the interaction of flow and structure into a predictive model for large-scale transport in
random fracture networks.
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1. Introduction

The dispersion of solutes and particles transported within laminar flow through random
fracture networks is due to the complex network structure, which induces a strongly
heterogeneous flow field. Dispersion in fracture networks is similar in nature to
hydrodynamic dispersion in porous media (de Josselin de Jong 1958; Saffman 1959).
From a Lagrangian view point, dispersion can be seen as the result of the correlated
random motion of idealized solute particles moving with the flow. The spatial organization
of the flow field reflects the topology and geometry of the fracture network, where the
mean fracture length determines a characteristic scale of spatial variability. A result of this
feature is that particle residence times in low-velocity regions can be orders of magnitude
larger than residence times in high-velocity ones, which is one possible explanation for
the observations of broad spectra of travel times in field studies (Becker & Shapiro 2000;
Meigs & Beauheim 2001; Kang et al. 2015) and numerical simulations (Berkowitz &
Scher 1997; Hyman et al. 2015). A quantitative understanding of these processes leading to
the prediction of solute dispersion and travel time distributions through fracture networks
is a key issue for diverse applications throughout engineering and science, including
groundwater management (Viswanathan et al. 2022), geological sequestration of carbon
dioxide (Hyman et al. 2019c), restoration of contaminated aquifers (Neuman 2005), the
underground storage of radioactive waste (Hadgu et al. 2017), the understanding of
speleogenesis (Dreybrodt, Gabrovšek & Romanov 2005; Maqueda, Renard & Filipponi
2023), and the prediction of flow and transport in karst aquifers (Goeppert, Goldscheider
& Berkowitz 2020).

Experimental and numerical data show that first passage time distributions in fractured
media almost invariably display heavy tails with power-law scalings as t−1−β with
0 < β < 2 (Becker & Shapiro 2000; Haggerty et al. 2001; Painter, Cvetkovic & Selroos
2002). Such phenomena cannot be modelled analytically using classical Fickian transport
models because the fundamental assumptions of a stable homogenization volume and fast
relaxation times are violated in many natural systems. Thus different approaches have been
proposed to interpret and analyse the observations. Continuous time random walk (CTRW)
(Berkowitz & Scher 1997; Kang et al. 2011) and time-domain random walk (TDRW)
(Delay & Bodin 2001; Benke & Painter 2003; Bodin, Porel & Delay 2003; Painter &
Cvetkovic 2005) approaches model advective particle transport through spatial transitions
of variable duration; see also the review paper by Noetinger et al. (2016). The transition
times are calculated kinematically from characteristic travel distances and the flow velocity
(Berkowitz & Scher 1997; Benke & Painter 2003; Kang et al. 2011), which reflects the
fact that the flow field is organized on fixed length scales. Other CTRW approaches
obtain the transition time distributions by calibration of parametric models to observed
solute breakthrough curves (Berkowitz et al. 2006; Geiger, Cortis & Birkholzer 2010).
Matrix-diffusion (Małoszewski & Zuber 1985) and multirate mass transfer approaches
(Haggerty & Gorelick 1995; Carrera et al. 1998) model transport under diffusive mass
transfer between flowing regions, the fracture domain, and stagnant regions, the rock
matrix. Strong tailing of solute breakthrough curves is traced back to broad distributions
of retention times. The impact of spatially variable flow velocity and matrix retention has
been modelled by coupled TDRW and trapping models (Hyman et al. 2019d; Hyman &
Dentz 2021).

The ubiquity of power-law tails in solute breakthrough curves suggests that there may
be a universal behaviour (Berkowitz & Scher 1997; Becker & Shapiro 2000; Haggerty
et al. 2001; Hyman et al. 2019a). However, the dependence of the power exponents on
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The hidden structure of transport in fracture networks

the network properties (Hyman et al. 2019b) and on the injection conditions (Hyman
et al. 2015; Kang et al. 2017; Hyman & Dentz 2021) seems to suggest otherwise. For
a uniform solute injection over the inlet, the tailing of observed breakthrough curves is
more pronounced than for flux-weighted injections, that is, if the solute mass injected
is proportional to the local volumetric flow rate. This juxtaposition indicates that it is
possible to formulate an approach that quantifies the evolution of large-scale transport
in random fracture networks from arbitrary initial conditions. Moreover, we hypothesize
that the origin of these behaviours can be found in the structure that is imprinted into
Lagrangian velocity series.

In this study, we address these fundamental questions through detailed numerical
simulations of flow and transport in a three-dimensional random fracture network.
In order to identify the stochastic nature of particle motion through the network,
we perform a Lagrangian analysis of particle velocities sampled equidistantly along
streamlines (Dentz et al. 2016). Unlike sampling at constant frequency in time, this
strategy reflects the fact that particle velocities and trajectories fluctuate on the spatial
scales imprinted in the fracture network rather than a constant fluctuation time scale. In
fact, velocity series sampled at constant frequency in porous media display intermittent
behaviour characterized by long periods of low-velocity and short periods of high-velocity
fluctuations (De Anna et al. 2013; Morales et al. 2017). Spatial sampling removes this
intermittency and renders velocity series that can be represented as Markov processes.
Here, we analyse the correlation structure of the spatial velocity series in terms of the
copula density (Nelsen 2013; Haslauer, Bárdossy & Sudicky 2017; Massoudieh, Dentz
& Alikhani 2017) of subsequent particle velocities. Based on this analysis, we identify
the structure of Lagrangian velocity series, and formulate a stochastic transport model, as
well as the evolution equation for the distribution of particle position and speed in form
of a Klein–Kramers equation. This approach addresses the dependence of transport on
both the flow distribution and network structure, and the initial conditions. It captures the
large-scale physics of hydrodynamic transport in the network, and explains the propagation
of transport from an arbitrary initial condition.

The article is organized as follows. Section 2 describes the random fracture networks
under consideration, the fundamental flow and transport equations, and the numerical
simulations to solve them. Also, it defines the target observations. Section 3 presents
the stochastic analysis of particle trajectories and speed series, and their formulation in
a large-scale transport model. Section 4 uses the derived model to shed light on the
behaviour of the travel time distributions and displacement moments obtained from the
detailed numerical simulations.

2. Flow and transport in fracture networks

In the following, we describe the network generation, the governing equations of flow
and advective particle motion. Furthermore, we define the observables of interest and the
set-up of the numerical simulations.

2.1. Random fracture networks
We consider a generic network composed of uniformly sized square fractures with edge
length 2 m. The network is generic in the sense that it is not based on a particular
field site; rather, it is designed to mimic a densely fractured disordered medium (Bonnet
et al. 2001; Hyman & Jiménez-Martínez 2017; Mourzenko, Thovert & Adler 2011;

977 A38-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.973


M. Dentz and J.D. Hyman

2 1

10 m

10
 m

Pressure (MPa)

Primary direction of flow

100 m

Figure 1. Three-dimensional discrete fracture network composed of 5660 fractures. Fractures are coloured by
pressure.

Viswanathan et al. 2022). The network is generated as follows. Initially, 12 000 fractures
are placed randomly into a cuboid domain of dimensions 100 m × 10 m × 10 m. Fracture
centres are distributed uniformly throughout the domain, and orientations are uniformly
random, that is, normal vectors are distributed uniformly on the surface of the unit sphere.
The hydraulic aperture of each fracture is constant within each fracture and is the same
for all fractures, 10−5 m. Isolated fractures and clusters of fractures are removed from the
domain as they do not participate in the flow. The final network, illustrated in figure 1,
contains 5660 fractures. The model medium is sufficiently large to quantify the impact
of network heterogeneity in longitudinal large-scale transport. Due to computational
limitations, the longitudinal extension of the domain is much larger than the transverse.
Additional details of network generation are provided in the supplementary material
available at https://doi.org/10.1017/jfm.2023.973.

2.2. Fracture flow

2.2.1. Flow within a single fracture
We begin by considering flow through a single fracture. The laminar flow of an
incompressible isothermal Newtonian fluid within a fracture is described by the Stokes
equations

μ∇2u − ∇P = 0, ∇ · u = 0. (2.1a,b)

Here, u is the velocity vector, μ is the dynamic viscosity, and ∇P is the fluid pressure
gradient.

The fracture aperture is assumed to be constant and equal to b, which is small compared
to the horizontal fracture extension. Moreover, we assume that the matrix surrounding
the fractures is impervious, and there is no interaction between flow within the fractures
and the solid matrix. Under these conditions, fracture flow is equivalent to flow through a
Hele-Shaw cell, and the flow velocities can be approximated locally as quadratic functions
of the vertical coordinates (Batchelor 2000). Thus integration of the flow field across the
aperture yields for the volumetric flow rate per unit length of fracture Q the Darcy-type
equation

Q = −T ∇P, (2.2)

where T = b3/12μ is the fracture transmissivity, which is known as the cubic law.
Thus we are representing the fractures as two-dimensional planes with resistance to flow
proportional to the cube of the hydraulic aperture. Because flow is incompressible, volume
is conserved such that ∇ · Q = 0. Volume conservation together with (2.2) gives the
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The hidden structure of transport in fracture networks

Reynolds equation
∇ · (T ∇P) = 0 (2.3)

for the pressure distribution in the fracture. The assumptions concerning surface
roughness, Reynolds number and fluid properties required to arrive at (2.3) are detailed in
Zimmerman & Bodvarsson (1996). The flux in each fracture is given by q = Q/b, which
satisfies

q = − k
μ

∇P, (2.4)

where the fracture permeability is defined by k = b2/12.

2.2.2. Flow within a fracture network
Once fractures are placed into a network with other fractures, local boundary conditions
modify the structure of the internal flow field within a single fracture, even in the case of
a uniform hydraulic aperture. Specifically, the geometry of fractures, their boundaries and
location of intersections within, along with network connectivity, leads to the formation
of spatially variable velocity fields within a fracture plane even when flow is resolved
using (2.3) on two-dimensional planar fractures. Neumann no-flow boundary conditions
are imposed on the perimeter of all fractures and normal to the fracture plane; that is, there
is no flow into the matrix. Within the network, pressure is a continuous and differentiable
field that requires that pressure continuity along fracture intersections is imposed (Berre,
Doster & Keilegavlen 2019). Likewise, the flow volumetric rate needs to be divergence-free
along intersections for an incompressible fluid. Note that the flux need not be continuous
across the line of intersection. This discontinuity occurs if the values of apertures on the
two intersecting fractures differ. The governing equations return values for the volumetric
flow rate Q, flux q and pressure P throughout the network. To resolve transport, we need
the spatially variable Eulerian velocity field u = q/φ, where φ is the fracture porosity.
Here, porosity is set to 1, that is, the fractures are fully open.

The probability density function (p.d.f.) of the Eulerian flow speed ve(x) = |u(x)| is a
key quantity, as detailed below. It is defined through volumetric sampling as

pe(v) = 1
V

∫
Ω

dx δ[v − ve(x)], (2.5)

where V is the volume of the flow domain Ω .

2.3. Particle motion
In this study, particle motion within the fracture network is due to advection only. We use
a Lagrangian point of view and describe the transport of a solute particle starting at the
point a by the kinematic equation

dx(t; a)
dt

= u[x(t; a)]. (2.6)

Molecular diffusion and mass exchange between fracture and matrix are not taken into
account. It does impact the mean transport behaviour in the network. Furthermore,
longitudinal dispersion is dominated by the network heterogeneity.

The distribution of a solute entering the fracture network is described typically
using one of two conceptualizations, namely resident-based and flux-weighted injection
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(Kreft & Zuber 1978). Physically, resident-based injection corresponds to a source that
introduces a solute uniformly throughout an input area. For this reason, it is also
referred to as uniform injection. In contrast, flux-weighted injection corresponds to a
solute released in proportion to the inflowing volumetric flow rate at a location of
insertion. These two injection modes are known to result in different transport behaviours
through both fractured and heterogeneous porous media (Vanderborght, Mallants & Feyen
1998; Demmy, Berglund & Graham 1999; Frampton & Cvetkovic 2009, 2011; Gotovac,
Cvetkovic & Andricevic 2009, 2010; Janković & Fiori 2010; Hyman et al. 2015; Kang
et al. 2017, 2020; Comolli, Hakoun & Dentz 2019; Puyguiraud, Gouze & Dentz 2019). In
this work, we study the transport behaviours emerging from both injection modes.

For the uniform injection, the initial particle positions are distributed uniformly across
the fractures in the injection plane such that the initial particle density is ρ(a) = 1. For the
flux-weighted injection, the initial particle density is

ρ(a) = Q(a)
〈Q〉 , (2.7)

where Q(a) = |Q(a)| is the magnitude of Q, and 〈Q〉 is its average across the injection
plane.

2.4. Observables
Macroscale transport through the fracture network is characterized by the distribution
of particle arrival times, or breakthrough curves at different control planes within the
network, as well as the longitudinal displacement mean and variance. The first passage
or arrival time τ(x′; a) of a particle at a control plane located a linear distance x′ in the
primary direction of flow is defined by

τ(x′; a) = inf{t | x(t; a) ≥ x′}. (2.8)

Its distribution is given by

f (τ, x′) = 〈ρ(a) δ[τ − τ(x′; a)]〉, (2.9)

where the angular brackets denote the average over all particles. We refer to (2.9) as the
first passage time distribution or breakthrough curve. The displacement mean and variance
are defined by

m1(t) = 〈ρ(a) x(t; a)〉, σ 2(t) = 〈ρ(a) x(t; a)2〉 − μ(t)2. (2.10a,b)

2.5. Numerical simulations
Once the network is generated, a conforming Delaunay triangulation of the network is
created using the methods presented in Hyman et al. (2014) and Krotz et al. (2022).
An unstructured two-point flux finite-volume scheme is used to discretize the governing
equations for flow (2.3). We apply Dirichlet boundary conditions for pressure to create a
pressure difference 	P = 1 MPa to drive flow from the x = 0 m face of the domain to
the x = 100 m face. The particular value of the pressure difference is arbitrary because
the governing equations are linear in ∇P. Therefore, the structure of the steady flow field,
which is our primary interest, does not change with different pressure differences. Only its
magnitude changes, which can be rescaled arbitrarily for our purposes. The model set-up
creates a single principal flow direction, from which the flow within fractures can deviate.
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Figure 2. Eulerian velocity p.d.f.s for the entire network (black squares) and the inlet plane (blue squares).
Speeds are rescaled by the Eulerian mean velocity vc.

We use the massively parallel flow and reactive code PFLOTRAN (Lichtner et al. 2015)
to integrate numerically the governing equations and obtain pressure and volumetric flow
rates throughout the network, which are then used to reconstruct the Eulerian velocity
field. Comprehensive details concerning the numerical simulations are provided in the
supplementary material.

Figure 2 shows the Eulerian velocity distributions for the entire network and the
inlet plane. The two distributions match well at the low-velocity end, but differ at high
velocities. Thus the size of the injection plane is large enough to be representative of the
global speed distribution at values smaller than the average speed. The undersampling of
high speeds can be explained by the smaller probability to encounter speeds higher than
the mean compared to speed smaller than the mean.

For the particle tracking simulations, we distinguish two sets of particles. In the first set,
we follow 104 particles and record all Lagrangian information. That is, spatial location,
velocity and time are retained at every time step. In the second set, we follow 106 particles
and record their pathline length and travel time to reach uniformly spaced control planes
placed at 	x = 10 m spacing through the domain. The use of different sets is a matter of
computational limitations.

3. Stochastic particle dynamics

In this section, we analyse the stochastic dynamics of particle transitions and particle
speeds. We first formulate the kinematic equations particle motion in terms of distance
along streamlines, which honours the fact that particle speeds evolve on characteristic
length rather than time scales. Then we analyse the correlation structure of subsequent
particle velocities in terms of their copula density, with the aim of identifying an
analytical model for speed transitions as an alternative to empirical transition matrices
and to corroborate analytical modelling approaches. We find that speed series can be
characterized by a stationary Gaussian copula. These insights are used to derive a
stochastic TDRW model and the stochastic differential equations that govern the evolution
of particle positions and speeds. Finally, we derive the corresponding CTRW model for
displacements that are much larger than the characteristic length scale for the evolution of
the particle speeds. The resulting CTRW model is conditioned on the distribution of initial
velocities.
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Figure 3. Evolution of particle speeds with (a) time and (b) distance along a trajectory.

3.1. Kinematics
Rather than evolving on a characteristic time scale, particle motion in disordered media
evolves on the length scales imprinted in the medium structure (Dentz et al. 2016). For
random fracture networks, the evolution scales are imposed by the network geometry and
its hydraulic properties. This is illustrated in figure 3, which shows the series of particle
speeds as a function of time and as a function of distance along a trajectory. Plotted against
time, the speed series shows an intermittent pattern with long periods of low speeds and
islands of high speeds. Flow speeds are organized on a characteristic length scale, which
is of the order of the mean fracture length 
c. Therefore, low velocities persist over much
longer times than high velocities. In fact, plotted against distance, the speed series displays
a regular random pattern that evolves on the scale of the mean fracture length 
c. Thus in
order to gain insight into the structure and organization of flow and transport, we analyse
the particle dynamics as a function of distance along trajectories.

To this end, we note that the kinematic equation (2.6) can be formulated equivalently in
terms of the distance s(t; a) travelled by a particle along a streamline. The length s(t; a)
of the trajectory at a time t is given by

ds(t; a)
dt

= ve[x(t; a)]. (3.1)

We use ds = v(s; a) dt, where v(s; a) = ve[x(s; a)]. For the kinematic equation (2.6), this
gives

dx(s; a)
ds

= u[x(s; a)]
v(s; a)

,
dt(s; a)

ds
= 1
v(s; a)

. (3.2a,b)

We aim to quantify the stochastic dynamics of particle motion in the streamwise direction.
We first focus on the motion along s, and specifically at the stochastic quantification of the
series {v(s; a)} of particle speeds.

3.2. Stochastic dynamics of particle speeds: Markov model and transition probabilities
In the following, we formulate the speed series {v(s; a)} as a stationary Markov process
and define its key statistics, the transition probability and the stationary speed distribution.
We then analyse the structure of speed transitions using the copula densities that
correspond to the empirical transition probabilities. Based on this analysis, we derive
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the resulting stochastic speed process that can be used to replace approaches based on
empirical transition probabilities.

3.2.1. Speed statistics and Markov model
We represent the series {v(s; a)} of particle speeds along a trajectory by the stochastic
process {v(s)}, and replace the average over all particles by the ensemble average over
all realizations of v(s). Based on the random structure of the fracture networks under
consideration, we pose v(s) as a stationary Markov process continuous in s. This implies
that the conditional probability p(v,	s|v′) of two speeds separated by the lag distance	s,
the transition probability, obeys the Chapman–Kolmogorov equation (Risken 1996)

p(v, s|v′) =
∫ ∞

0
dv′′ p(v,	s|v′′) p(v′′, s −	s|v′), (3.3)

where s ≥ 	s. The distribution p(v, s) of particle speeds then evolves from any initial
distribution p0(v) according to

p(v, s) =
∫ ∞

0
dv′ p(v, s|v′) p0(v

′). (3.4)

The steady-state distribution ps(v) is an eigenfunction of p(v, s|v′). In the following, we
refer to p(v, s|v′) also as the transition probability from v′ to v. The Markov process
is defined by two key quantities, the steady-state distribution ps(v) and the transition
probability p(v, s|v′). Using Lagrangian ergodicity and the Reynolds theorem, it can be
shown (Dentz et al. 2016) that ps(v, s) is given by the flux-weighted Eulerian speed
distribution

ps(v) = v pe(v)

vc
, (3.5)

where vc = 〈ve〉 is the mean Eulerian speed. Equation (3.5) relates a Eulerian quantity
and a Lagrangian quantity, that is, a flow attribute and a transport attribute. It is a key step
for the prediction of transport based on transport-independent quantities such as medium
structure and Eulerian flow distribution.

Equations (3.3) and (3.4) describe a spatial Markov model for particle velocities, in the
sense that v(s) is a velocity that evolves in distance along a trajectory. Spatial Markov
models for the evolution of particle velocities and transition times have been used in
the literature for the modelling of non-Fickian transport features in porous and fractured
media (Sherman et al. 2021). The transition probabilities, which are at the head of these
modelling approaches, are based typically on empirical transition matrices, which are
obtained from particle tracking data. In the next subsubsection, we investigate the structure
of spatial velocity transitions and their representation in terms of an analytical model.

3.2.2. Structure of speed process: copulas
The structure of the speed process v(s), and thus the structure of hydrodynamic transport,
is contained in the transition probability p(v, s|v′). In order to characterize p(v, s|v′),
we focus on its copula density (Nelsen 2013), which encodes the information on the
correlation properties of {v(s)} without bias from the marginal distribution. The copula
density is equal to the transition probability of the unit score transforms u(s) of v(s),
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Figure 4. Empirical copulas for lag distances 	s = 0.5, 1, 2 m. The solid lines denote iso-probability lines of
the stationary Gaussian copula with correlation length 
c = 2.2.

which are defined by

u(s) = Ps[v(s)], Ps(v) =
∫ v

0
dv′ ps(v

′), (3.6a,b)

where Ps(v) is the cumulative distribution of ps(v). The transition probability from u(s) =
u′ at s to u(s +	s) = u at s +	s is given by

c(u,	s|u′) = p[P−1
s (u),	s|P−1

s (u′)]
ps[P−1

s (u)]
. (3.7)

Analogously, the speed transition probability can be written in terms of the copula density
as

p(v,	s|v′) = c[Ps(v),	s|Ps(v
′)] ps(v). (3.8)

Figure 4 shows the empirical copula density at different lag distances 	s, which are
obtained from the trajectory data as outlined in Appendix A. The data can be represented
by a stationary Gaussian copula, which is characterized by the exponential correlation
function C(	s) = exp(−	s/
c) and the correlation length 
c; see Appendix B. The value

c = 2.2 m fits the empirical data and is copacetic with the average fracture length.

As an immediate consequence of this finding, we note that the Gaussian copula provides
an analytical model for the transition matrix in stochastic Markov models. The transition
matrix can be constructed from the copula and the stationary speed distribution according
to (3.8). In the following, we explore the implications of this observation further to identify
the stochastic process for v(s) and to derive the corresponding stochastic differential
equation.

3.2.3. Stochastic speed process
First, we note that the fact that {v(s)} can be described by a Gaussian copula implies that
the normal score transform w(s) of v(s) is characterized by a multi-Gaussian distribution.
The normal score transform is defined by

w(s) = F−1[v(s)] ≡ Φ−1( ps[v(s)]), v(s) = F[w(s)] = p−1
s (Φ[w(s)]), (3.9a,b)

where Φ(w) is the cumulative unit normal distribution. The transition probability
pw(w, ds|w′) from w′ = w(s) to w = w(s + ds) – that is, the distribution of w(s + ds)
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The hidden structure of transport in fracture networks

given that w(s) = w′ – is a Gaussian distribution with mean w′ C(ds) ≈ w′(1 − 
−1
c ds)

and variance 1 − C(s)2 ≈ 2
−1
c ds. This implies that we can write w(s + ds) as

w(s + ds) = w(s)
(

1 − 
−1
c ds

)
+

√
2
−1

c ds ζ(s), (3.10)

where ζ(s) is a Gaussian random variable of zero mean and unit variance. Taking the limit
ds → 0 in (3.10), we obtain the following stochastic differential equation for w(s):

dw(s)
ds

= −
−1
c w(s)+

√
2
−1

c ξ(s), (3.11)

where ξ(s) denotes a Gaussian white noise. Equation (3.11) describes an Ornstein–
Uhlenbeck process, which has been used as a parsimonious model for speed series in
pore-scale and Darcy-scale porous and fractured media (Morales et al. 2017; Hakoun,
Comolli & Dentz 2019; Hyman & Dentz 2021). This indicates that the Gaussian copula
structure may represent a general principle of organization of speed series in disordered
media. In the following, we explore the consequences for v(s) and v(t) that follow from the
representation of w(s) as an Ornstein–Uhlenbeck process. Note that we use the same letter
v for spatial and temporally variable speed. We distinguish them through their argument.

By using the Ito lemma, we obtain for v(s) = F[w(s)] from (3.11) the Langevin equation

dv(s)
ds

= −
−1
c A[v(s)] +

√
2 B[v(s)] 
−1

c ξ(s), (3.12)

where

A(v) =
[
−w

dF(w)
dw

+ d2F(w)
dw2

]
w=F−1(v)

, (3.13)

B(v) =
[

dF(w)
dw

]2

w=F−1(v)

. (3.14)

The drift and diffusion coefficients A(v) and B(v) are fully defined by the Eulerian speed
distribution pe(v). The initial particle velocities v0 = v(s = 0) are distributed according to
p0(v), which depends on the injection condition. For uniform injection p0(v) = pe(v), for
flux-weighted injection, it is given by p0(v) = ps(v). Thus (3.12) describes the evolution
of the particle velocities for arbitrary injection conditions.

Equation (3.12) implies that the velocity distribution p(v, s) evolves along a particle
trajectory according to the Fokker–Planck equation

∂p(v, s)
∂s

= − ∂

∂v
A(v) p(v, s)+ ∂2

∂v2 B(v) p(v, s). (3.15)

The stationary distribution ps(v) is given in terms of A(v) and B(v) as

ps(v) = 1
B(v)

exp
[∫ v

v0

dv′ A(v′)
B(v′)

]
. (3.16)

The integral limit v0 is chosen such that the integral of the right-hand side is normalized
to 1.
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3.3. Stochastic particle motion
We focus on the streamwise particle motion, that is, along the direction of the mean
flow velocity, which is aligned with the x-axis of the coordinate system. We project the
displacement ds along the trajectory onto the streamwise displacement dx by using the
advective tortuosity χ , which compares the average trajectory length to linear distance.
Thus we write

dx(s)
ds

= 1
χ
. (3.17)

The evolution of the particle time t(s) in this framework is given by
dt(s)

ds
= 1
v(s)

, (3.18)

where the velocity process v(s) has been defined in the previous subsection. The advective
tortuosity is given by (Koponen, Kataja & Timonen 1996)

χ = 〈ve〉
ux
, (3.19)

that is, the ratio between the average velocity magnitude and the average velocity in the
primary direction of flow.

Equations (3.12)–(3.18) describe a stochastic TDRW. Particle motion is determined as
a function of distance s, and time t(s) is a dependent variable. The presented framework
allows us to derive the equations of motion for [x(t), v(t)] through the variable change
ds → dt in (3.17) and (3.12), which gives

dx(t)
dt

= v(t)
χ
, (3.20)

dv(t)
dt

= v(t)A[v(t)] +
√

2 v(t)B[v(t)] ξ(t). (3.21)

The joint p.d.f. p(x, v, t) then satisfies the Klein–Kramers equation (Risken 1996)

∂p(x, v, t)
∂t

+ ∂

∂x

[
v

χ
p(x, v, t)

]
= − ∂

∂v
v A(v) p(x, v, t)+ ∂2

∂v2 v B(v) p(x, v, t). (3.22)

This implies that the large-scale evolution of the joint p.d.f. of streamwise particle position
and speed is fully defined by the Eulerian speed distribution, correlation length and
tortuosity.

3.4. Continuous time random walk
As mentioned in the previous subsection, (3.17)–(3.18) represent a stochastic TDRW. For
particle displacements s � 
c much larger than the correlation length 
c, the velocity
process v(s) can be considered as uncorrelated. Using 
c as the coarse graining scale,
we define sn = n
c, x(sn) = xn and v(sn) = vn. With these definitions, we can discretize
(3.17) and (3.18) as

xn+1 = xn + 
c

χ
, tn+1 = tn + 
c

vn
. (3.23a,b)

The recursion relations (3.23a,b) describe a CTRW (Dentz et al. 2004; Berkowitz et al.
2006) for the turning point xn, that is, the positions at which particles change speed. Unlike
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for other CTRW formulations (Berkowitz et al. 2006), here the distribution of transition
times τn is in general not stationary because the distribution of τ0, the transition time for
the first step, depends on the distribution of initial particle speeds, which varies according
to the injection condition. This is an important feature, because large retention times in the
injection region may have a strong impact on the overall plume evolution. In the following,
we refer to the coarse-grained model (3.23a,b) as a CTRW, and the full model given by
(3.17)–(3.18) as a stochastic TDRW.

The speed distributions p0(v) and pe(v) define the transition time distributions ψ0(t) for
the first step and ψ(t) for all following steps:

ψ0(t) = 
c

t2
p0(
c/t), ψ(t) = 
c

t2
ps(v) = 
2

c

t3vc
pe(
c/t), (3.24a,b)

where we used the relation (3.5) between the steady-state speed distribution ps(v) and the
Eulerian speed distribution pe(v). Unlike other CTRW formulations that assume a single
transition time distribution that is fitted based on a suitable parametric function, (3.23a,b)
provide a direct link to the underlying medium and Eulerian flow properties through the
correlation length 
c and the Eulerian speed distribution pe(v).

The particle distribution p(x, t) satisfies

p(x, t) =
∫ t

0
dt′ R0(x, t′)

∫ ∞

t−t′
dt′′ ψ0(t′′)+

∫ t

0
dt′ R(x, t′)

∫ ∞

t−t′
dt′′ ψ(t′′), (3.25)

where R0(x, t) is the distribution of initial particle position and time. Here, R(x, t) denotes
the frequency that a particle arrives at x at time t. This equation reads as follows. The
probability that a particle is at position x at time t is given by the probability that it remains
at the initial position for a time larger than the current time (first term) plus the probability
that it has just arrived at position x and remains there for a time larger than t (second term).
Then R(x, t) satisfies the equation

R(x, t) =
∫ t

0
dt′ ψ0(t − t′)R0(x − 
c/χ, t′)+

∫ t

0
dt′ ψ(t − t′)R(x − 
c/χ, t′). (3.26)

The first term on the right-hand side denotes the probability that the particle makes a
transition from the initial position and time to (x, t), while the second term denotes the
probability that the particle makes a transition from any other possible position and time
to (x, t).

Combination of the Laplace transforms of (3.25) and (3.26) to eliminate R∗(x, λ) gives
for p∗(x, λ) the equation

λp∗(x, λ) = R0(x, λ)− ψ∗(λ)− ψ∗
0 (λ)

1 − ψ∗(λ)
[
R∗

0(x − 
c/χ, λ)− R∗
0(x, λ)

]

+ λψ∗(λ)
1 − ψ∗(λ)

[
p∗(x − 
c/χ, λ)− p∗(x, λ)

]
. (3.27)

The Laplace transform is defined in Abramowitz & Stegun (1972). Laplace transformed
quantities are marked by an asterisk, and the Laplace variable is denoted by λ. For
ψ0(t) ≡ ψ(t), (3.27) is equal to the generalized master equation (Berkowitz et al. 2006).
Note that (3.27) represents the coarse-grained projection of the Klein–Kramers equation
(3.22) from (x, v)-space to x-space. The coarse-grained formulation of the stochastic
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TDRW as a CTRW allows us to obtain relatively compact Laplace-space expressions for
the distribution of first passage times and the displacement moments, and facilitates the
analytical prediction of their long-time scaling. The emphasis here is on the dependence
of the long-time behaviour on the initial velocity distribution and thus the injection
conditions, which have not been studied with other CTRW formulations.

3.4.1. First passage time distributions
The first passage times at linear distance xn are given by tn, where n = inf(n|xn ≥ x), that
is,

tn =
n−1∑
j=0


c

vj
. (3.28)

The distribution fn(t) of first passage times is given by fn(t) = 〈δ[t − tn]〉. It can be written
in Laplace space as

f ∗
n (λ) = ψ∗

0 (λ) ψ
∗(λ)nc−1 = exp

(
ln[ψ∗

0 (λ)] + (nc − 1) ln[ψ∗(λ)]
)
. (3.29)

3.4.2. Displacement mean and variance
In order to determine the displacement mean and variance, we use the Fourier transform
p̃∗(k, λ) of p∗(x, λ). It satisfies

λp̃∗(k, λ) = 1 − ψ∗(λ)− ψ∗
0 (λ)

1 − ψ∗(λ)
[exp(ik
c/χ)− 1]

+ λψ∗(λ)
1 − ψ∗(λ)

p̃∗(k, λ) [exp(ik
c/χ)− 1], (3.30)

where we set R∗
0(x, λ) = δ(x). The Fourier transform pair of a function ϕ(x) is here defined

by

ϕ̃(k) =
∫ ∞

−∞
dx exp(ikx) ϕ(x), ϕ(x) =

∫ ∞

−∞
dk
2π

exp(−ikx) ϕ̃(k), (3.31a,b)

with wavenumber denoted by k. We obtain from (3.30) for p̃∗(k, λ) that

p̃∗(k, λ) = 1
λ

1 + 	ψ∗(λ)
1 − ψ∗(λ)

F(k)

1 − ψ∗(λ)
1 − ψ∗(λ)

F(k)
, (3.32)

where we defined

F(k) = exp(ik
c/χ)− 1, 	ψ∗(λ) = ψ∗
0 (λ)− ψ∗(λ). (3.33a,b)

The Laplace transform of the nth displacement moment is given in terms of p̃∗(k, λ) as

m∗
n(λ) = (−i)n

∂ p̃∗(k, λ)
∂k

∣∣∣∣
k=0

. (3.34)

977 A38-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.973


The hidden structure of transport in fracture networks

10–8

10–6

10–4

10–2

100

102

104

10–6 10–5 10–4 10–3 10–2 10–1 100 101 102 103

v
c p

(v
)

v/vc

Eulerian
Lagrangian

Flux Eulerian

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

102

10–2 10–1 100 101 102 103 104 105 106

τ c
 ψ

(t)

t/τc

(a) (b)

Figure 5. (a) Eulerian speed distribution pe(v), flux-weighted speed distribution and stationary Lagrangian
speed distribution ps(v). The solid lines denote the scalings vβ−1 and vβ with β = 0.1. (b) Corresponding
transition time distributions. The solid lines denote the scalings t−1−β and t−2−β .

The zeroth moment is 1 by definition because of the normalization of the particle
distribution. The first and second moments are given by

m∗
1(λ) = 1

λ


c

χ

ψ∗
0 (λ)

1 − ψ∗(λ)
, (3.35)

m∗
2(λ) = 1

λ


2
c

χ2

[
ψ∗

0 (λ)

1 − ψ∗(λ)
+ 2

ψ∗(λ) ψ∗
0 (λ)

[1 − ψ∗(λ)]2

]
. (3.36)

The displacement variance is given by

σ 2(t) = m2(t)− m1(t)2. (3.37)

4. Transport behaviours

In this section, we use the stochastic theory developed in the previous section to analyse the
flow and transport behaviours obtained from the detailed numerical simulations described
in § 2.5 and gain insight into the mechanisms of large-scale solute transport in fractured
media. We first analyse the predicted speed statistics. Then we focus on arrival time
distributions and displacement moments.

4.1. Speed statistics and transition times
Figure 5 shows the distribution pe(v) of Eulerian flow speeds and the Lagrangian speed
distribution ps(v). The mean flow speed is vc = 357 m yr−1. According to the theory, they
are related by (3.5) through flux-weighting. This relation is confirmed by the numerical
data presented in the figure. Furthermore, we observe that the behaviour of pe(v) at low
flow speeds v < 10−3vc can be approximated by the power law pe(v) ∼ vβ−1 with β =
0.1. The high frequency of small flow speeds is remarkable given the relative regularity of
the fracture network, which is characterized by constant fracture aperture, constant fracture
length, but variable orientation; see § 2.1. Thus this broad distribution of flow speeds is due
to the geometrical disorder of the fracture network. Current approaches to link flow speed
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and network characteristics are based on the Poiseuille law to link aperture distribution
and speed. Such approaches do not apply here because the aperture is constant.

The transition time distributions ψ0(t) and ψ(t) corresponding to pe(v) and ps(v) are
shown in figure 5(b). The characteristic transition time is τc = 
c/vc. The transition time
distribution ψ(t) scales as t−2−β for t � τc. This implies for its Laplace transform ψ∗(λ)
the behaviour

ψ∗(λ) = 1 − λτc + a(λτc)
β+1, (4.1)

for λτc � 1, where a is a constant, and the characteristic time τc is equal to the mean
transition time. The transition time ψ0(t) for the initial step scales as t−1−β for tτc. This
implies for its Laplace transform that

ψ∗
0 (λ) = 1 − a0(λτc)

β, (4.2)

where a0 is a constant.

4.2. First passage time distributions
Figure 6 shows the first passage time distribution ( fptd) at different distances x = 10, 40,
100 and 1000 m from the inlet plane. We observe tailing for both injection conditions. For
the uniform injection, tailing is much stronger, i.e. slower decay, than for flux-weighted.
Recall that the difference between the uniform and flux-weighted injection is the relative
increase of particles in low-flow regions for uniform compared to flux-weighted injection.
Thus stronger retention of particles at the inlet plane for uniform injection causes the
broadening of the first passage time distribution towards long times. The stochastic TDRW
model predicts accurately both the peak and tail behaviours for uniform and flux-weighted
injection, and thus seems to capture the correct large-scale propagator of the complex flow
and transport system. The late-time behaviour for the uniform injection is characterized
by the power-law scaling t−1−β . For the flux-weighted injection, the tails scale as t−2−β .
This latter scaling is a consequence of the generalized central limit theorem. In fact, the
arrival time distribution converges towards a stable distribution with distance from the
inlet (Hyman et al. 2019a).

For the convenience of the reader, we summarize the main arguments in the following.
We start from (2.9) for the Laplace transform of the arrival time distribution in the
equivalent CTRW. For the flux-weighted injection, we can write for λτc � 1 that

f ∗
n (λ) = exp (−〈tn〉λ) g∗

n[λ〈tn〉1/(1+β)], (4.3)

where we defined

g∗
n(λ) = exp

[
a
τc
(λτc)

1+β + · · ·
]
. (4.4)

Note that 〈tn〉 = nτc. To arrive at (4.3), we used (4.1) for the Laplace transform ψ∗(λ) of
ψ(t), and Taylor expanded the logarithm in (2.9). The dots in (4.4) denote contributions
that go to zero in the limit n → ∞ (Hyman et al. 2019a). Thus limn→∞ gn(λ) = g∗

β(λ),
where g∗

β(λ) = exp[a(λτc)/τc] is a stable density that is totally skewed to the right. This
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Figure 6. Arrival time distributions at distances (top left to bottom right) x = 10, 40, 100, 1000 m from the
inlet. Symbols correspond to the numerical simulations, and solid lines to the stochastic TDRW model for
(orange) flux-weighted and (black) uniform injection. The dash-dotted lines indicate the scaling t−1−β , and the
dashed lines indicate the scaling t−2−β , with β = 0.1.

implies that for large n, fn(t) tends towards the scaling form:

fn(t) → gβ[(t − 〈tn〉)/〈tn〉1/(1+β)]
〈tn〉1/(1+β) . (4.5)

Figure 7 illustrates the tail behaviours for flux-weighted injection at different distances.
They collapse on the same curve when rescaled appropriately, according to their stable
limit.

This is different for the uniform injection. We see from figure 6 that the peak behaviours
of the flux-weighted and uniform injections converge with increasing distance from
the inlet. The tail behaviour, however, is distinctly different, characterized by different
exponents. Moreover, the tails collapse on the same curve. This is emphasized in figure 7,
in which the arrival time distributions for uniform injection are rescaled according to (4.5).
The peak behaviours are similar to those for the flux-weighted injection, and seem to
converge to the stable form. The tails of the rescaled arrival time distributions do not
collapse onto a single curve. Thus there seems to be convergence in the bulk, but not in
the tails of the distribution. This behaviour can be explained by inspecting again (2.9),
which now can be written as

f ∗
n (λ) = ψ∗

0 (λ) exp (−〈tn−1〉λ) gn−1[λ〈tn−1〉1/(1+β)], (4.6)
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Figure 7. Arrival time distributions for (a) flux-weighted and (b) uniform injection at distances x =
10, 40, 100, 1000 m from the inlet from (symbols) numerical simulations and (solid lines) the stochastic TDRW
model. The black solid line denotes the prediction of the stochastic TDRW model for x = 1000 m. (b,d) The
same data as in corresponding panels (a,c) rescaled according to (4.3). The red lines denote the scaling form
given by (4.5). Note that we display only the data from the stochastic TDRW model, which are sufficient due
to the agreement with the data from the numerical simulations shown in (a,c).

where 〈tn−1〉 = (n − 1)τc. Thus, in the limit of n � 1, the arrival time distribution can be
written as

fn(t) =
∫ t

0
dt′ ψ0(t − t′)

gβ[(t′ − 〈tn〉)/〈tn〉1/(1+β)]
〈tn〉1/(1+β) . (4.7)

It is the convolution of the initial transition time distribution with the stable distribution.
The long-time tail is due to the first time step, which all arrival time distributions have
in common. Therefore, the tails collapse on the same curve. The peak behaviour, on the
other hand, stems from the summation of transition times that are distributed according to
ψ(t). This explains the convergence of the peak behaviour to the peak of the stable law.
In summary, the bulk of the arrival time distribution converges to a stable law, and the tail
retains the memory of the velocity at the injection plane.

4.3. Displacement mean and variance
Figure 8 shows the displacement mean and variance for uniform and flux-weighted
injections. The observation times are smaller than the time when the first particles leave the
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Figure 8. Displacement (a) mean and (b) variance from (symbols) numerical simulations and (solid lines) the
stochastic TDRW model for (orange) flux-weighted and (black) uniform injection. The dashed lines show the
long-time predictions of the CTRW model described in § 3.4. The dotted line indicates the power-law behaviour
(4.11).

domain. Due to the occurrence of fast pathways, this time is relatively short. The upscaled
theory reproduces the evolution of the displacement mean for both injection conditions.

The early-time behaviour of the mean displacement is given by

m1(t) = 〈v0〉t/χ, (4.8)

where 〈v0〉 is the mean initial speed. Its asymptotic long-time behaviour is

m1(t) = vct/χ, (4.9)

because the temporal speed statistics asymptote towards pe(v). The displacement variance
at early times shows ballistic behaviour, which is due to the persistence of the initial
velocities,

σ 2(t) = σ 2
v0

χ2 t2, (4.10)

where σ 2
v0

is the variance of the initial speed distribution p0(v). After the ballistic
early-time regime, the variances cross over to a power-law regime that is determined by
the exponent β that determines the behaviour of pe(v) at v � vc; see figure 5. From
the explicit Laplace space expressions (3.35) and (3.36), we can derive the following
asymptotic expressions for the uniform and flux-weighted initial conditions:

σ 2(t) = v2
c

χ2 t2−α 2αa + 2a0(1 − α)

Γ (3 − α)
, (4.11)

σ 2(t) = v2
c

χ2 t2−α 2αa
Γ (3 − α)

, (4.12)

respectively. We used expressions (4.1) and (4.2).
For the uniform injection, the temporal velocity statistics are stationary; see § 3.2.

Therefore, as shown in figure 8, the mean transport speed is equal to the Eulerian mean
speed vc = 〈ve〉, and the displacement mean evolves linearly with time according to (4.9).
The numerical early-time data are slightly below the model prediction. This is due to
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the fact that the initial speed distribution p0(v) deviates from pe(v) at high speeds, as
shown in figure 2, which implies that the initial mean speed is smaller than 〈ve〉. A similar
behaviour is observed for the flux-weighted injection, for which the theory predicts the
early-time behaviour m1(t) = vf t/χ , where vf denotes the mean of ps(v). It is given by
vf = 〈v2

e 〉/〈ve〉, where 〈v2
e 〉 is the mean squared Eulerian flow speed. Here as well, the

numerical data are slightly below the model prediction. For both injection modes, the
mean displacements converge for times t � τc because the temporal velocity statistics
asymptote towards pe(v).

As outlined above, the early-time behaviour of the displacement variance is ballistic,
characterized by the initial speed variance. Also here, the model prediction slightly
overestimates the numerical data; see figure 8. The variance for the flux-weighted injection
is initially larger than for the uniform injection because of the higher initial speed variance.
Then for times larger than the mean advection time τc, it slows down and remains at smaller
values than for the uniform injection. The long-time evolution for both injection conditions
is characterized by the power-law behaviour predicted in (4.11). At times t � τc, the
variance for the uniform injection grows faster than for the flux-weighted injection because
there is a a stronger temporal persistence of lower velocities. The persisting contrast
between slow particles and fast particles leads to faster growth.

The theoretical model captures the early-time behaviour of tracer displacement and
dispersion, and predicts anomalous dispersion at large times caused by the broad
distribution of flow speeds. The asymptotic dispersion behavior and the difference between
injection conditions is also captured by the proposed CTRW model that accounts for
arbitrary initial transition time distributions.

5. Summary and conclusions

We study the upscaling and prediction of large-scale transport in three-dimensional
random fracture networks. To this end, we analyse particle trajectories and speed data from
detailed numerical flow and particle tracking simulations. Unlike classical approaches,
Lagrangian statistics are sampled equidistantly along trajectories, instead of at constant
rate. This sampling strategy accounts for the fact that Lagrangian velocities vary on the
spatial scales imprinted in the fracture network. The statistics of the resulting speed series
are quantified in terms of the transition probability of subsequent speeds at different lag
distances and the stationary speed distribution. In order to characterize their correlation
structure, we determine the copula densities corresponding to the transition probabilities.
The correlation structure can be described by a stationary Gaussian copula. This renders
an analytical model for the transition probabilities, which can be constructed as the
product of the copula and the stationary speed distribution. Moreover, this result implies
directly that the normal score transforms of equidistant particle speeds evolve as an
Ornstein–Uhlenbeck process. The speed series then describes a stationary Markov process
that is defined uniquely by its stationary distribution and the correlation length. The former
is given by the flux-weighted Eulerian speed distribution; the latter is determined by the
average fracture length, which sets the characteristic distance for speed transitions. The
resulting upscaled transport model can be contextualized as a stochastic time-domain
random walk (TDRW) because it describes particle motion through equidistant transitions
in space combined with a kinematic transition time that is inversely proportional to the
evolving particle speed. It is predictive in the sense that it can be parametrized in terms of
transport-independent attributes.

977 A38-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.973


The hidden structure of transport in fracture networks

Based on this formulation, we derive the stochastic evolution equation for Lagrangian
particle speeds both in space and in time, and show that the stochastic particle dynamics
are equivalent to a Klein–Kramers equation for the temporal evolution of the joint
distribution of particle position and speed. For transition lengths of the order of the
correlation length of particle speeds – that is, if subsequent speeds are statistically
independent – particle motion can be coarse-grained as a continuous time random walk
(CTRW). These upscaled stochastic models allow for the prediction of longitudinal
dispersion based only on medium and flow properties, that is, the average fracture length,
the Eulerian speed distribution, and advective tortuosity. The prediction of transport, in
terms of the spatial network structure and flow boundary conditions only, remains an open
question. However, in the proposed framework, this question is reduced to finding a map
between medium structure and Eulerian flow distribution.

The resulting models are used to interpret the transport behaviours obtained from
detailed numerical simulations in a single realization of a random fracture network. We
focus on first passage time distributions at control planes at different distances from the
inlet plane, and the temporal evolution of displacement mean and variance, for both
flux-weighted and uniform particle injections. The presented theory predicts that the
spatial speed statistics are stationary under flux-weighted injection, and the temporal
statistics under uniform injection. This is confirmed by the numerical data. The first
passage time distributions show distinctly different long-time scalings for uniform and
flux-weighted injections. Both are characterized by power-law decay, albeit at different
exponents, which differ by 1. The theory links the observed behaviours directly to the
Eulerian speed distribution and injection conditions. It shows that the first passage time
distribution for the flux-weighted injection evolves towards a stable law, while for the
uniform injection, it is given by the convolution of the initial transit time and the stable
distribution for flux-weighted injection. That is, it converges in the bulk towards a stable
distribution, while the memory of the initial condition persists in the tail. Similarly, for the
displacement mean and variance, we observe different behaviours depending on the initial
conditions. Unlike for the arrival time distributions, here, the asymptotic scalings are the
same for both injection modes. Through their explicit dependence on the initial speed
distribution, the presented TDRW and CTRW models allow us to link observed tracer data
to the injection or source conditions.

Note that the model medium represents a generic disordered fracture network composed
of a single family of monodisperse fractures, which gives rise to a single characteristic
length scale, the mean fracture length. In geological media, also networks with multiple
fracture families whose lengths follow truncated power-law distributions are commonly
observed Bonnet et al. (2001). For broad distributions of fracture lengths, one does not
expect the spatially sampled velocity process to be Markovian. In this case, a different
sampling strategy needs to be employed that renders the velocity process of short memory.
A possible sampling variable could be the number of fractures passed by a particle. The
generalization of the proposed framework for this type of networks is currently under
investigation.

Considering the impact of different fracture orientations on large-scale transport, they
are important only in regard to their arrangement relative to the primary driving force.
Fracture orientations impact on the correlation length and Eulerian velocity distributions,
which are the only inputs for the proposed models. Thus this network characteristic can be
represented implicitly in the framework of the presented TDRW and CTRW models.

In conclusion, the proposed theory is able to capture and predict the evolution of the
observed non-Fickian transport behaviours for arbitrary initial speed distributions. We
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have seen that this is a key feature for the prediction of the early-time but also late-time
behaviours if the initial conditions impart a long memory. The coarse graining of the
stochastic TDRW model using the mean fracture length gives a CTRW. However, unlike
current CTRW formulations, the derived model is conditioned on the initial transition time
distribution, which in general is different from the steady-state distribution. These models
can be fully parametrized by the pointwise Eulerian flow statistics and the characteristic
fracture length, both of which are not transport attributes. Thus they overcome a common
criticism of CTRW-based approaches, which are often descriptive with a parametrization
that is based on transport data. These findings enable a predictive theory for large-scale
transport in random fracture networks.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.973.
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Appendix A. Speed copula

To characterize empirically the conditional p.d.f. p(v,	s|v′) of subsequent particle speeds
separated by 	s, the velocity space is discretized into N bins B1, . . . ,BN with Bj =
(vj, vj+1]. The probability Pj of v(s) being in bin Bj is

Pj ≡ Prob[v(s) ∈ Bj]

= Ps(vj+1)− Ps(vj) =
∫ vj+1

vj

dv ps(v), (A1)

where Ps(v) ∈ [0, 1] is the cumulative speed distribution. In order to characterize velocity
transitions, we employ the joint distribution Pij of v(s +	s) being in bin Bi and v(s) in
bin Bj:

Pij =
∫ vi+1

vi

dv
∫ vj+1

vj

dv′ p(v,	s, v′), (A2)

where p(v,	s, v′) is the joint p.d.f. of v(s) and v(s +	s). Velocity transitions are
quantified by the transition matrix

Tij = Pij

Pj
, (A3)
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where the joint and marginal distributions Pij and Pj are obtained by sampling speeds
along and between trajectories as

Pij = 1
nt

nt∑
k=1

1
Lk

∫ Lk

0
ds I

[
vk(s +	s) ∈ Bi ∧ vk(s) ∈ Bj

]
, (A4)

Pj = 1
nt

nt∑
k=1

1
Lk

∫ Lk

0
ds I

[
vk(s) ∈ Bj

]
, (A5)

where nt is the number of trajectories, and Lk is the length of the kth trajectory. The
numerical single point and conditional speed p.d.f.s are approximated by

p(vi) = Pi

Bi
, p(vi,	s|vj) = Tij

Bi
. (A6a,b)

In order to determine the empirical copula density, we use equiprobable bins, i.e. Pj =
1/N, and define

uj =
j∑

k=1

Pk = j
N
, 	u = 1

N
. (A7a,b)

The joint distribution density of ui and uj is then

c(ui,	s, uj) = Pij

	u2 = N2Pij. (A8)

According to (A4), c(ui,	s, uj) can be sampled directly from {v(s)} as

c(ui,	s|uj) = N2

nt

nt∑
k=1

1
Lk

∫ Lk

0
ds I

[
vk(s +	s) ∈ Bi ∧ vk(s) ∈ Bj

]
. (A9)

Appendix B. Gaussian copula

The stationary Gaussian copula is defined by

c(u, s; u′) =
exp

[
−Φ

−1(u)2 C(s)2 +Φ−1(u′)2 C(s)2 − 2Φ−1(u)Φ−1(u′) C(s)
2(1 − C(s)2)

]
√

1 − C(s)2
, (B1)

where

Φ(w) = 1
2

[
erf

(
w√

2

)
+ 1

]
, (B2)

Φ−1(u) =
√

2 erf−1(2u − 1), (B3)

with erf−1(u) the inverse error function. Stationarity implies that the correlation function
C(s) is exponential,

C(s) = exp(−s/
c). (B4)
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