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TOPOLOGICAL LEFT AMENABILITY
OF SEMIDIRECT PRODUCTS

BY

H. D. JUNGHENN

ABSTRACT. Let S and T be locally compact topological semi-
groups and S@T a semidirect product. Conditions are determined
under which topological left amenability of S and T implies that of
S@T, and conversely. The results are used to show that for a large
class of semigroups which are neither compact nor groups, various
notions of topological left amenability coincide.

1. Introduction. Let S and T be locally compact topological semigroups
with identities (each denoted by 1) and 7:TXS— S a jointly continuous
mapping such that 7(¢, ss’) = 7(t, s)7(t, s"), 7(¢t', s) = 7(t, 7(¢, s)), 7(t, 1)=1, and
7(1,s)=s(s,s'€S; t, t'e T). If multiplication on SX T is defined by

(s, )(s', t)=(s7(t, s"), tt"),

then SX T, with the usual product topology, becomes a locally compact
topological semigroup with identity (1, 1), called the semidirect product of S
and T and denoted by S @ T. The purpose of this paper is to determine when
topological left amenability of S and T implies that of S@ T. Positive results
are obtained if, for example, T is a group and S is either compact or a group.
More general results can be gotten by using a stronger amenability condition.
The converse problem of determining topological left amenability of S and T
from that of S@ T is also considered, and an application to topological wreath
products is given in the final section.

2. Preliminaries. Let S be a locally compact topological semigroup (jointly
continuous multiplication), C(S) the Banach algebra of all bounded real-valued
continuous functions on S (with the usual supremum norm), Cy(S) the sub-
algebra of functions which vanish at infinity, and M = M(S) the dual of Cy(S).
We shall, as usual, identify M with the space of bounded regular Borel
measures on S (see, for example, [6]). M is a Banach algebra under convolu-
tion defined by

(w0 = |

| 50 auto) vt (re S mvem
s Js
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The subset P = P(S) of probability measures is a multiplicative subsemigroup
of M, and the set P, of probability measures with compact support is norm
dense in P and spans a dense subspace of M.

A mean on M*, the dual of M, is a positive linear functional I' such that
I'(1)=1, where 1€ M* is defined by 1(n) = u(S) (n € M). The set Q(P.), where
Q: M — M** denotes the canonical isometry, can be shown to be weak* dense
in the set of all means on M. A topological left invariant mean (abbreviated
TLIM) is a mean I on M* such that I'(F * w) =T'(F) for all Fe M™* and u € P,
where F * u € M* is defined by (F * w)(v) = F(w * v). If a TLIM exists then S
is said to be topologically left amenable.

Wong [13] noted that if S is a (locally compact topological) group with left
Haar measure A, then S is topologically left amenable if and only if L™(S, A)
has a TLIM (as defined, for example, in [S]). This is also a consequence of the
following more general result (recalling that L'(S, A) may be identified with the
ideal in M of measures absolutely continuous with respect to A):

ProrosiTioN 2.1. Let S be a locally compact topological semigroup, M; any
closed ideal of M which contains non-zero positive members. Then M* has a
TLIM if and only if MT has a TLIM. (The notions of mean and TLIM on M¥
are defined as for M*))

Proof. Assume I'; e M¥* is a TLIM. Let R : M* — M* denote the restriction
operator and I' the mean T;°ReM*. Choose any veM;NP. Then
R(F)*(uw=*v)=R(F+*u)*v for all ueP, Fe M*, and therefore I'(F * u)=
Fy(R(F * u)) =T{(R(F * u) * v) = (R(F) * (u * v)) =T, (R(F)) =T'(F).

Conversely, let T be a TLIM on M™*, and let (u,) be a net in P such that
I'=weak™*—lim, Q(u,). We may assume that (u,) = M, (otherwise choose any
ve M; NP and replace u, by v * y,, noting that I'(F)=TI(F * v) =1lim, Q(u,)
F*v)=lim, Qv * u,)(F)}(Fe M*)). Let Q,: M, — M** denote the canonical
injection, and let (u,,) be a subnet such that Q,(u,,) weak™® converges to some
mean I'; on M*. Given F, e M¥, choose F e M* such that R(F)= F,. Then for
any ve MNP, I'\(F,*v)=1lim,, F;(v* pu,)=0(F *v)=0(F)=Ilim,, F(w,,)=
I'(F,), so Ty is a TLIM on M%¥.

Using standard results from the theory of topological vector spaces it can be
shown that S is topologically left amenable if and only if the following
condition holds: (A) There exists a net (u,) in P, (or, equivalently, in P) such
that ||v * w, — u.[|— 0 for each v e P.. (See [3] or [5], where the proof is given
for the case S a group.) A related condition is the following: (B) There exists a
net (w,) in P, such that ||§(s) * w, — .|| — 0 uniformly in s on each compact
subset of S. Here 8(s) € P. denotes Dirac measure at s. Clearly (B) implies (A),
and if S is a group then the two conditions are equivalent [3]. Furthermore, if S
is compact then (A) and (B) are each equivalent to the existence of a right zero
in the semigroup P(S). It is not known to the author if properties (A) and (B)
are equivalent in general.
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The space LUC(S) of left uniformly continuous functions on S is defined by
LUC(S) ={f e C(S):s — L(s)f is norm continuous}, where L(s) denotes the left
translation operator on C(S). LUC(S) is easily seen to be a closed translation
invariant subalgebra of C(S) which contains the constant function 1 and which
coincides with C(S) if S is compact or discrete. (See [1, 9] for other properties
of LUC(S).) A mean on LUC(S) is a positive linear functional w on LUC(S)
such that u(1)= 1. If for each fe LUC(S) and s€ S, w(L(s)f) = u(f), then u is
a left invariant mean (LIM) and LUC(S) is said to be left amenable. If S is a
group then LUC(S) is the space UC/(S) defined in [S]. In this case S is
topologically left amenable if and only if LUC(S) is left amenable [5; Theorem
2.3.2]. The same is true if S is compact.

3. Main results. Throughout this section S and T denote locally compact
topological semigroups with identities and X =S @ T a semi-direct product of
S and T, as defined in section 1.

Tueorem 3.1. If S and T have property (B) and T is a group, then X has
property (B).

Proof. Let (A;) < P.(S) and (v,) < P.(T) be nets such that ||5(s) * A, — ;|| and
|6(t) * v, — y|| tend to zero uniformly on compact subsets of S and T respec-
tively. For each i and j define w; € P(X) by

() = f j AL, 1)(s, 1) du (1) dAi(s), (Fe Co(X)).

ST

Let R(x) and L(x) denote, respectively, the right and left translation operators
~(by xe X) on C(X), and define W: C(X)— C(T) by (Wf)(t)=f(1, t). For any
s'eS, t'eT, and fe Cy(X) we have

8(s', 1) * o () = ” F((s", (1, 1)(s, 1)) dv, (1) dAi(s)

ST

_ J [WL(s', DR(s, DIt £) d,(1) dA(s)

ST

_ J [WL(s', DR(s, DF1(1) dy(1) dA(s) + iy, ', 1", )

ST

_( j £(s'7(t, 5), 1) dNi(s) duy () + @i, J, s', 1, f) 1)
TS

where |a(i, j, s, ', f)| =<[|8(t) * v; — || ||f||. Let K; denote the support of v, and
for each te T define g € C(S) by g,(s)=f(7(t, s), t). The double integral in (1)
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may then be written

H g(r(7", s)s) dA(s) dv, (1) = J

K,

[8(r(t7",s") * A, )(g) dw;(1)

TS

=J [8(r(t7", s7) * A — X1(g) dV;(t)+j Ai(g) dyy(1). (2)

Note that the second integral on the right in (2) is w;(f).

Now let C and K be compact subsets of S and T respectively. Given £ >0,
choose j such that [|5(t") * v, — »;|[<e for all '€ K. Since 7(K;'xC) is compact
in S we may choose i such that [[8(r(:7",s") * A, —A|<e for all te K, and
s'e C. It follows from (1) and (2) that |8(s’, t') * w;(f) — py(f)|=2¢|/f| for all
s'eC, t'e K and fe Cy(X).

Let the linear space E = M(X)**T have the topology of uniform convergence
on compact subsets of Sx T, where M(X) carries the norm topology. For each
i and j define V,; € E by V,(s, 1) =8(s, t) * p; — n;;. The above argument shows
that 0 is in the closure in E of the set A={V, i, j}, hence there exists a net
(V,) in A which converges to 0. The corresponding net of measures (u,) then
has the required properties.

Remarks. Theorem 3.1 holds for the direct product case even if T is not a
group, as an examination of the proof (which simplifies) reveals. In general,
however, the theorem fails if T is not a group. As an example, let S and G be
compact topological groups and let T= G U{0}, where 0 is an isolated zero of
T. Define 7:TXS— S as follows: 7(G,s)={s}, 7(0,s)=1. Then if S is
non-trivial, S (@ T has at least two left zeros and therefore cannot be topologi-
cally left amenable.

It is not known to the author if the property (A)-analog of Theorem 3.1 holds
(except, of course, in the trivial cases S compact or S a group). However, one
can show the following: If S and T have property (A) and T is a group, then
there exists a net (w,)< P.(X) such that |[(A®v)* u,—u,||—0 for every
A€ P(S) and ve P(T) (where A®v denotes the product measure).

The converse of Theorem 3.1 holds even if T is not a group. In fact, we have
the following result:

ProposITION 3.2. Let X satisfy condition (A) (respectively, (B)). Then S and T
satisfy condition (A) (respectively, (B)).

Proof. We prove only that if X satisfies (A) then so does S. Let (u,,) be a net
in P.(X) such that || * w, — u,||— 0 for all u € P(X). Define a net A,) in P.(S)
by A, (g) =fsx1 &(s) du, (s, 1), (g € Cy(S)), or, equivalently, A, (A)=pnu,(AXT)
(A a Borel subset of S). Given AeP.(S) define peP,(X) by wu(f)=
§,f(s, 1) dA(s), (fe Co(X)). Let ge Cy(S) and define fe C(X) by f(s, t) = g(s).
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Then,
Lgmqm@hLLM%Dm&DMB)
=er«Jm@nwuo
_ LXT f(s(t, s, ) du(s, 1),
s0

(A *X,)(g)

1l
@ >

I f(st(t, s"), t) du(s, t) dA,(s")
SxT

Il
[ —

[ fsrte ), 0 dwts, 0 s, 1)

I
w

j Fsr(t, ), i) du(s, 1) dian(s', 1)
xT JYSXT
=j fduw* p,.

SxT

Since A, (g) =fsxrfdum, it follows that A * A, — A, ||<|ln * 1, — .|| and hence
A * A, —A,]l— 0. The proofs of the remaining statements are similar.

If S and T are both groups then Theorem 3.1 follows from the remark at the
end of section 2, and the next result, which is of some independent interest.

Tueorem 3.3. (a) If LUC(S) and LUC(T) are left amenable and if the set
D={teT:7(t, S) is dense in S} is dense in T (which is trivially the case if T is a
group), then LUC(X) is left amenable. (b) If LUC(X) is left amenable and S is
compact then LUC(S) and LUC(T) are left amenable.

Proof. Let A and » be LIM’s on LUC(S) and LUC(T), respectively, and
define bounded linear operators V:LUC(X)—LUC(S) and W:LUC(X)—
LUC(T) by (Vf)(s)=f(s,1); (W)(t)=A(VL(Q, t)f,(se S, te T, fe LUC(X)).
We shall show that the mean w=v oW is a LIM on LUC(X).

Note first the following identities: VL(s, 1)=L(s)V, WL(1, t)= L(t)W, and
WL(s, 1) = W. The first two are easily established. To verify the third, let te D,
seS and felLUC(X). Then A(VL(7(s,5s),t)f)=A(VL(s, 1)L(1, t)f)=
A(L(s)VL(1, t)f) = A(VL(1, t)f). From the definition of D and the fact that D
is dense in T it follows that A(VL(s, t)f) = A(VL(1, t)f) for all s€ S, te T, and
this establishes the identity.

The proof that u is a LIM follows easily from the above identities: For each
seS,teT and felLUC(X) we have u(L(s, t)f)=v(WL(1,t)L(s, 1)f)=
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v(L(t) WL(s, 1)f) = v(Wf) = u(f).

For the converse, assume S is compact and w is a LIM on LUC(X). Given
fe LUC(S) = C(S) define f'e C(X) by f'(s, t) = f(s). The compactness of S and
the joint continuity of 7 imply that f'€e LUC(X). Define A(f) = w(f'). Then the
identity (L(s)f) = L(s, 1)f’ implies that A is a lim. A similar argument shows
that LUC(T) is left amenable.

Remarks. Theorem 3.3(a) is valid if S and T are merely topological semi-
groups, not necessarily locally compact, and LUC(X) is replaced by any
translation invariant left introverted (see [2, p. 540] for definition) subspace F
of C(X) containing the constant functions, provided LUC(S) and LUC(T) are
replaced by the spaces {f(-, 1):fe F} and {f(1, -):f e F}, respectively.

If S and T are discrete then part (a) of Theorem 3.3 reduces to a result of M.
Klawe [7, Prop. 3.4], whose proof, quite different from ours, is based on Day’s
fixed point theorem.

The example given after Theorem 3.1 shows that Theorem 3.3(a) fails in
general if D is not dense in T. Note that if T is a group then D=T.

4. Wreath Products. The wreath product construction may be used to
produce non-trivial examples of locally compact topological semigroups which
are neither compact nor groups but for which conditions (A) and (B) of section

2 are equivalent.
Let T be a discrete group which acts on the right on the phase space Y. For

example, we could take Y = T, and right multiplication as the action. Let U be
a compact topological semigroup with identity and S the product space U¥
with the product topology and coordinate multiplication. Define 7: TXS— S
by 7(t, s)(y) = s(yt), where yt denotes the action of t on y. The semidirect
product S@ T is called the (abstract) wreath product of U and T and is
denoted by UwrT. (A survey of the algebraic theory of wreath products of
semigroups and their applications may be found in [12]. See also [4, 8], where
topological questions are considered.) Note that if U is not a group and T is
not finite, then UwrT is neither compact nor a group.

Tueorem 4.1. The following are equivalent:

(a) UwrT has property (A).

(b) UwrT has property (B).

(c) LUC(UwrT) is left amenable.

(d) LUC(U) (= C(U)) and LUC(T) (= C(T)) are left amenable.

Proof. Since S is compact and T is a group, properties (A) and (B) are
equivalent for each of these semigroups (see section 2). It follows from
Theorem 3.1 and Proposition 3.2 that (a) and (b) are equivalent. A similar
application of Theorem 3.3 shows that (a) and (c) are equivalent.
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To show that (c) and (d) are equivalent it suffices, by Theorem 3.3, to prove
that C(U) is left amenable if and only if C(S) is left amenable. Since U is a
continuous homomorphic image of S, the sufficiency follows from a result of
Day [2, p. 540]. An interesting proof of the necessity uses the structure theory
of compact topological semigroups, according to which each such semigroup R
has minimal right ideals and a smallest two-ideal K(R), and the minimal right
ideals are precisely of the form eR, where e*>= e € K(R) [10]. A result of Rosen
relates this structure theory to the existence of a LIM on C(R):C(R) has a
LIM if and only if R has exactly one minimal right ideal [11]. Applying this to
the present setting it thus suffices to show that if U has exactly one minimal
right ideal then the same is true for S. For each y € Y let P, : S — U denote the
projection mapping s — s(y). Since P,(S)=U it follows easily that P, (K(S))=
K(U). In particular, if e*= e K(S) then e(y) is an idempotent in K(U) and
hence e(y)U is a minimal right ideal of U. Therefore, for any pair of
idempotents e,, e, € K(S), e;(y)U=e,(y)U for all yeY, and so e,S = e,S.

Remark. Using similar techniques one can show that properties (A) and (B)
are equivalent to a third amenability property: There exists a net (u,) in
P.(UwrT) such that ||8(x) * , — | = 0 for each x € UwrT.
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