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1. Introduction. The main object of this paper is to prove the following: 

THEOREM.! Let fi, . . . ,fk be linearly independent continuous functions on a 
compact space X. Then for 1 < 5 < k there exist real numbers a 13, 1 < i < s, 
1 < j < k, with {an, 1 < i, j < s} non-singular, and a discrete probability 
measure £* on 2£, such that 

(a) the functions gt = S ^ i ^ o j O 1 < i < s, are orthonormal (£*) and are* 
orthogonal (£*) to the fj for s < j < k; 

(b) max E fl(x) = LÈ f\(x)?{dx) = s. 

xe* 1 J * x 

The result in the case s = k was first proved in (2). The result when 
s < k, which because of the orthogonality condition of (a) is more general 
than that when s = k, was proved in (1) under a restriction which will be 
discussed in § 3. The present proof does not require this ad hoc restriction, 
and is more direct in approach than the method of (2) (although involving 
as much technical detail as the latter in the case when the latter applies). 
The latter proof involved showing the equivalence of two extremum problems 
encountered in the theory of optimum statistical designs, under the restriction 
mentioned. The analogous equivalence result when the restriction is not 
satisfied is more difficult to state and to prove, and cannot be used to obtain 
the result of the present paper without proving an additional fact, discussed 
in § 3, which the methods of (1) do not seem to yield. On the other hand, 
the present result implies that additional fact in the design setting, and 
yields a neater proof of a major part of the equivalence result when the 
mentioned restriction is not necessarily satisfied. With or without the re
striction, the remainder of the equivalence theorem can then be given a 
short proof. 

The idea of the present proof is to reduce the result to one of the ontoness 
of a certain natural mapping induced by the problem. This ontoness, which 
seems intuitively plausible, is not so easy to prove, and the author is indebted 
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fThe same conclusion obviously holds if dim j (fi(x), . . . , fk(x)) ; x Ç Ï ) = s + dim{ (/5+i(x), 
. . . ,fk(x)); x Ç ï j , and the necessary modification in the statement of the theorem in other 
cases is obvious. There is a choice of £* whose support consists of no more than s(2k — s + l)/2 
points (1 ). The at/, i > j , can be taken to be zero. 
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to his colleague Professor Namioka for supplying a proof of a much more 
general theorem (3) which yields this ontoness (as well as other interesting 
results), and for many helpful discussions. 

2. Proof of the theorem. The proof will be divided into three parts for 
convenience. 

I. Let 6 be the set of vectors c = (c^, 1 < i < s, i < j < k). Let 
A = {(Xi, . . . , X.) : Xi > 0, £ X , = 1}. For X G A, write 

K\(x,c) = ]C x j / i ( x ) - X) Cijjip) . 
4 *=1 L j>i J 

We consider the game {K\y 36, Ë} with 36 and S the spaces of pure strategies 
and K\ the payoff function. Writing i£\(£, c) = JK\(x, c)%(dx), we as usual 
define c* to be minimax if maxz K\(x, c*) = minc maxx K\(x, c), and J* to be 
maximin if minc K\(%*, c) = max^ minc K\(%, c). Since K\ is convex in c, it 
suffices to consider pure strategies c for player 2, but we must allow mixed 
strategies £ for player 1. The range of {fjy 1 < j < £} is a compact Euclidean 
set which could actually be regarded as 36, the associated class S of Borel 
measures being weakly compact, which will be used below. There are never 
any measure-theoretic difficulties, and in fact any £ can be replaced by a £' 
with finite support and such that i£\(£, c) = K\(i*', c) for all X and c. 

Let EJV- be the subset of vectors c satisfying ]£i=i+i*£<i2 < iV, 1 < i < s, 
and let 6 / = {(ci>i+ll . . . , cifJfc) : ]£^»*+i*£*/ = 1}. For each i, 1 < i < s> the 
quantity 

*<(£) = min / J [ 2 £</*(*) J 
{*„} e <£ " " j>i 

2 

is positive for some £ Ç S because the /* are linearly independent. Hence 
(averaging the £'s for different i's) there is a £' £ S and an e > 0 such that 
#*(£') > e for 1 < i < 5. Thus, there is a constant d such that 

min i£x(£', c)> Ne- d 
CÎ&N 

for all X 6 A. It follows that there is a value N' of iV such that, for any c $ E ^ , 

maxj JK"X(Ç, C) > minc> max^ i£\(£, c')> 

for all X. 
Hence, c*\ is minimax for the game {K\, 36, 6} if and only if it is minimax 

for {K\, 36, £# '} . The latter game, having compact strategy spaces and con
tinuous payoff, is determined. For N > N', if £*N is maximin for the game 
{KXi X, &N] and c\ is minimax (for all N > N'), and if £, = [(j - 1)£*, + £']// 
and iV^ > iV is such that K\(£j, c*\) < K\(£], c) for all c i d£Nj, we have (since 
K\(£*j, c\) = max^K(£, c*x) by the determinateness), 
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sup{ inf Kx(£, c) > inf Kx(^, c) 

0--S) - -inf Kx(SJf c) > I 1 - - J inf JSTX(€7, *) 

*) = ( l - i ) Xx(£*, ^ ) = ( l " j) s u p ^ x t t , ex* 

> ( l — - ) inf supçJSTxtt, c). 

Letting 7 —» 00, we see that the game {i£x, ï , S} is also determined. 
Moreover, the set C\ (say) of (pure) minimax strategies for this last game 

is a subset of fëjy, for all X. Since maxx K\(x, c) is convex in c (being a maximum 
of convex functions), we have that C\ is convex. Let Sx be the (mixed) maximin 
strategies for this game. Since K\(£, c) is linear in £, we similarly have that 
Sx is convex. 

Let {\n} be a sequence in A, converging to X0. If c*xn and £*xn are any elements 
of C\n and Sxn, we can, by the compactness of ©#' and S, select a subsequence 
{wm} of w such that {c*xn } and {£*xr } converge to limits c0 and £0 in S^/ and 
S. Since minc i£x(£, c) and ma,xx K\(x, c) are clearly continuous in (X, £) and 
(X, c), respectively (because theft are continuous), we see at once that CQ £ C\0 

and £0 G Sxo- We conclude that, if in the space A X SAT X E we let 
Vx = ({X} X Cx X Sx) and 

G = WxeA^X, 

then G is closed and each section V\ is a compact, convex subset of the com
pact space EJV' X S. 

II. Let &x denote the value minc max^ K\(x, c) = max^ minc K\(^f c) of the 
above game. Since 

minci£x(?, c) > m i n t m i n /<(*) - X) crf^x) \ d£ 
Idj} *> L ^>i J 

and the inner minimum is the square of the L2
(*} norm of (Jt — proj{/i+1 rk)fi), 

and since for each i there is (by linear independence) a £* for which this 
squared norm is > e > 0, we clearly have 

h > minci£x( 2 £«/*• c ) > €A > 0 

for all X. We hereafter write 

x ( O (* ,<0 - [ /« (* ) - E e«f,(*)T-
L £>* J 
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Let F be the following mapping from G into the (s — l)-dimensional 
simplex E = {(eh . . . , es) : et > 0, 1 < * < s, 2Ze< = 1} : 

F(\cx,&) = ^ - , . . . , - ) . 

Since k\ = 5ZX*K"(y)(£x, £\) when £x is maximin and Cx is minimax, the range 
of F is indeed in E. It is easy to see that F is continuous. 

We want to show that F is onto. Obviously, for X restricted to a vertex 
of A, F maps V\ onto the corresponding vertex of E, and similarly F maps 
the part ^J\€TV\ of G above any subsimplex (edge, face, etc.) T of A into the 
corresponding subsimplex of E. It follows from the theorem of Namioka (3) 
cited above that F is onto. (In general, F(V\) need not be a point, which is 
why we could not directly define a mapping F : A —» E; there need not exist 
a cross-section from A into G, so we need Namioka's result.) 

III . Since F is onto, there is a point (X, C\', £\') of G which F maps into 
(s_1, s -1, . . . , s~l). Let £* (of the statement of the theorem) = £x' and 

gi(x) = [/,(*) - E cf«M*)]/[*(1>(&ci()]I/2-

(The denominator, being [fe/X^]172 where X G Int A, is finite and not zero.) 
Clearly, fgi2d£\' = 1; and since the cja/ for each 2 are chosen to minimize 
K(i)(£\'>c)> w e s e e that the gt are orthonormal fe')» 1 < ^ < s, and are 
orthogonal (£x') to the fj} j > s. Finally, 

+ 2, . v K(i)(x,ci) 4r sXJZ^facj) K-X(x,c{) 
t=l i= l A (£ x , CX) i=l k\ Ax^\, C\) 

By the game-theoretic results, 

max*i£x(x, c{) = 2£*(& ci), 

proving the desired result. 

3. Relationship to previous method and results. Let / denote the 
column vector of / / s and M(£) the matrix Jf (x)f(x)'i;(dx). It was shown in (2) 
that £* maximizes det M(£) if and only if £* minimizes maxr/(x)'ikT~1(|)/(x) 
among £ for which M(£) is non-singular, and if and only if maxx 

f(x)'M~l(£)f(x) = k. This yields the theorem of the present paper when 
s = k.Iis < k, let / b e the last k - s functions of/ and M (£) = $f(x)f(x)f£(dx). 
It was shown in (1) that, if M (J*) is non-singular, then £* minimizes the deter
minant of the upper left-hand s X s submatrix of -M-1(£) (which can be 
denned in an obvious way even if M (£) is singular) if and only if £* minimizes 

d({) = maxx[f(x)'M-U?)/(*) - / C * ) ^ " 1 (É)/(*)L 

and if and only if d(£*) = 5. When s = k, non-singularity is no restriction, but 
when s < k the result of the present paper is now obtained in (1) only under 
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the artificial ad hoc assumption tha t there exists a minimizing £* for which 
Af(£*) is non-singular. The result of (1) in the general case is obtained only 
by replacing d(£) above by the quant i ty m a x ^ D ( ^ , £), where 

where / ( J ) = -4M(£) A' is of rank r + s with zero elements outside the first 
principal (r + j) X (/ + s) submatr ix J (J) and with A t r iangular (zeros 
below the main diagonal), Jz(£) is the lower r ight-hand r X r submatr ix of 
J(£)i J(£) and Jzi?) have the same meanings for the same A (for which 
/ ( £ ' ) need not have the same properties as / ( £ ) ) , and 

P(r, I) = trl/r1^) lim MS')[MZ') + W-W)*] 

where J i , JO, and J 4 are, respectively, the first principal s X s submatr ix of 
J, the last principal (k — s — r) X (k — s — r) submatr ix of / , and the 
corresponding s X {k — s — r) submatr ix of / . 

Although D is invariantly defined (does not depend on the choice of A), 
D and p are not. Clearly, the condition maxf fi(£', £) = 5 is sufficient for 
the result max^ -£>(£', £) = s, bu t it is not necessary (except under the ad 
hoc assumption, which implies t ha t p = 0 and max^ D(£', £*) = d(£*)). T h e 
result of the present paper is precisely that , for £* satisfying the above-
mentioned extremum criteria of (1), there is a choice of A for which 
max£' 5 ( J ' , £*) = 5. Conversely, this last result, combined with t ha t of (1), 
would yield the theorem of the present paper, bu t the methods of (1) do not 
yield this result on the choice of A. Thus , the present theorem states a some
wha t stronger result than t h a t of (1) in the general case. One can also t ry 
to obtain the present result by a passage to the limit from the case satisfying 
the extra assumption, bu t considerable delicacy is involved. 
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