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Asymmetry of motion: vortex rings crossing a
density gradient
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Vortex rings are critical for thrust production underwater. In the ocean, self-propelled
mesozooplankton generate vortices while swimming within a weakly stratified fluid. While
large-scale biogenic transport has been observed during vertical migration in the wild and
lab experiments, little focus has been given to the evolution of induced vortex rings as a
function of their propagation direction relative to the density gradient. In this study, the
evolution of an isolated vortex ring crossing the interface of a stable two-layer system is
examined as a function of its translation direction with respect to gravity. The vortex ring
size and position are visualized using planar laser-induced fluorescence (PLIF) and the
induced vorticity field derived from particle image velocimetry (PIV) is examined. It is
found that the production of baroclinic vorticity significantly affects the propagation of
vortex rings crossing the density interface. As a result, any expected symmetry between
vortex rings travelling from dense to light fluids and from light to dense fluids breaks down.
In turn, the maximum penetration depth of the vortex ring occurs in the case in which the
vortex propagates against the density gradient due to the misalignment of the pressure and
density gradients. Our results have far-reaching implications for the characterization of
local ecosystems in marine environments.

Key words: vortex dynamics, vortex instability

1. Introduction

Vortex rings are a key feature of underwater biological propulsion, particularly within
the moderate-Reynolds-number regime. Jellyfish, for example, have consistently been
observed to create vortices in their wakes during forward swimming, leading to so-called
biogenic transport (Katija & Dabiri 2008, 2009; Breitburg et al. 2010; Costello et al.
2021). While this process has been widely studied in the context of homogeneous fluids,
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less focus has been given to the more realistic case of vortex propagation in stratified
fluids. Even though the stratification in the upper ocean is weak, changes in density are
non-negligible for many species of mesozooplankton (Kirillin et al. 2012; Cullen 2015;
Briseño-Avena et al. 2020; Chen et al. 2022). Here, we study the fundamental problem of
vortex propagation across the interface between two miscible fluids and highlight the role
of baroclinic vorticity, which originates from the misalignment of density and pressure
surfaces, in impeding the penetration of vortices, depending on the direction of the ring,
with important consequences for feeding and transport in ocean ecosystems.

In the fluid mechanics literature, the motion of vortex rings in density stratified fluids has
been widely explored. The classical study by Linden (1973) experimentally analyses the
interaction of a vortex ring impinging normally on a density interface between two liquids,
where a vortex ring of light fluid crosses the interface into a heavy fluid. Linden reported
that the maximum penetration depth of the vortex ring was a function of the Froude
number, Fr = ρjU2

j /[(ρ0 − ρj)gD], where ρj and Uj are the jet density and velocity,
respectively; ρ0 is the ambient fluid density and D is the nozzle diameter of the vortex
ring generator. Similarly, Dahm, Scheil & Tryggvason (1989) performed experiments
with a vortex ring crossing the interface of a stable two-layer system. Experiments
were conducted varying the density across the interface and producing vortex rings
with different circulation values. The authors found that in the Boussinesque limit the
generation of baroclinic vorticity and the subsequent evolution of the vortex ring was
governed only by the product of two dimensionless parameters, Aγ , where A measures
the density difference across the interface, and γ measures the strength of the vortex ring.
This dimensionless parameter Aγ was observed to be linearly related to the square of the
Froude number, Aγ ∼ Fr2. For large Aγ values, the vortex ring can barely penetrate the
interface, which then acts like a solid wall. The authors also observed an inverse flow after
the vortex ring crossed the interface.

From a theoretical standpoint, Saffman (1992) studied the vertical translation of a vortex
ring moving against buoyancy. Consider the fluid inside the vortex core to be ρ1 and the
ambient fluid to be ρ0, where ρ0 /= ρ1. If the circulation around the ring is κ , then one
would expect Dκ/Dt = 0 according to Kelvin’s circulation theorem. The hydrodynamic
impulse of the vortex ring would then be given by

I = ρ1κR2, (1.1)

where R is the vortex ring radius. The buoyant force on the ring would be

Fb = (ρ0 − ρ1)2πgRa2, (1.2)

where a is the vortex core radius and g is the gravity constant. If a � R, it can be
considered that the entrainment is negligible, so ρ1 = const. As the momentum of the
vortex ring decreases due to the buoyant force, the time rate of change of momentum of
the vortex ring is always negative and is balanced by the buoyant force, which should also
be negative, therefore, we have

dI
dt

= ρ1κ2R
dR
dt

= −|ρ0 − ρ1|2πgRa2. (1.3)

As a result, the evolution of the vortex ring radius from its initial size R0 after time t is
given as

R = R0 − |ρ0 − ρ1|
ρ1

πg
κ

a2t. (1.4)

The second term on the right-hand side of (1.4) remains negative as long as there exists
a density difference. While this model captures how the diameter of the vortex ring
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Vortex rings crossing a density gradient

decreases as it moves through a fluid with different density, it assumes no fluid entrainment
into the vortex ring. Nevertheless, the analysis can be used to lead a qualitative discussion
regarding the evolution of the vortex ring size.

Marugán-Cruz, Rodríguez-Rodríguez & Martínez-Bazán (2009, 2013) studied the
formation of vortex rings in a negatively buoyant environment as a function of Froude
number. Specifically, a fluid was injected into a denser one using a vortex ring generator
at the top of a tank. The authors found that there exists a critical Froude number below
which the leading vortex ring is pushed back by the buoyant force before it develops
and detaches from the injection orifice. In addition, the authors observed a thin layer
of baroclinic vorticity of opposite sign to the vorticity around the vortex ring. This thin
layer of vorticity was observed to move against the travel direction of the ring due to
buoyancy. Camassa et al. (2013) experimentally and numerically studied a vortex ring
settling in a two-layer configuration of miscible fluids and found that, depending on the
initial conditions (e.g. vortex size, speed and the initial distance to the interface), the vortex
ring can either be trapped in one density layer or penetrate the interface. More recently,
Olsthoorn & Dalziel (2015, 2017) experimentally investigated the mixing efficiency and
stability effects of a vortex ring impinging a density interface by reconstructing full
three-dimensional velocity field measurements. The authors also reported a time scale
for the evolution of baroclinic vorticity production when a vortex ring crosses the density
interface. It should be noted that Scase & Dalziel (2006) analysed a vortex ring crossing a
density interface at an oblique angle. In this case, a three-dimensional vortex ring collapses
into a nearly two-dimensional flow as a result of the stable fluid stratification.

While most literature focuses on the important cases of turbulent mixing of stratified
fluids (e.g. Caulfield 2021; Smith, Caulfield & Taylor 2021) and the evolution of vortex
rings crossing a density interface (e.g. Camassa et al. 2016), the question remains of
whether the motion of a vortex ring is symmetrical as it travels along or against a stable
density gradient. Given the hundred-metre-long migrations that mesozooplankton undergo
in the ocean (Bianchi et al. 2013a,b), accurate assessment of biogenic induced transport
is essential to better understand the sustainability of marine ecosystems. In this study, we
examine the process of a vortex ring crossing a density interface between two miscible
fluids in two different directions, along and against the density gradient. The penetration
distance of the vortex ring is tracked and compared between the two cases in § 3.1. The
associated baroclinic vorticity generated at the interface is examined in § 3.2 and then used
in further discussions on the source of asymmetry in § 4.

2. Experimental set-up and methods

The experimental set-up consists of a transparent acrylic tank (25.4 cm × 25.4 cm ×
50.8 cm) and two identical piston-cylinder arrangements (one on top and one at the
bottom) positioned at the centre of the tank as shown in figure 1(a). In each vortex
generation system, the inner diameter of the cylinder, D, is 2.54 cm. The piston, which has
a cylindrical cross-section and is 25.4 cm in length, moves freely within the cylinder. The
motion of the piston is controlled by a hydraulic circuit, which displaces a prescribed fluid
column at a given speed and distance, L, using a larger piston and a step motor controlled
by an Arduino board.

For all experiments, a stable two-layer density stratification was produced by slowly
filling the tank midway with homogeneous fluid and subsequently adding another fluid
layer with greater density. In all cases, the interface between the two fluids remained
nearly stagnant during the filling process. Nonetheless, the tank was left undisturbed for
approximately half an hour before performing experiments. To generate vortex rings, one
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Figure 1. (a) Sketch of the experimental set-up consisting of an acrylic tank and two vortex generators. The
tank was filled with two uniform fluid layers such that a stable stratification was achieved, i.e. ρ1 > ρ2. Vortex
rings that are generated from the bottom (top) of the tank propagate upward (downward) and cross the density
interface. The camera field of view (boxed region) is centred at the density interface. (b) Sketch of the density
variation across the depth of the tank to illustrate the density interface in (a). (c) Representative raw image of
an upward propagating vortex ring crossing the density interface. The small bright dots are the tracer particles
used for PIV measurements. The blue arrows indicate the recirculating direction of the flow in the vortex ring.

of the pistons was set into motion with a constant speed of Up = 7.54 ± 0.18 cm s−1.
The corresponding Reynolds number was Re = UpDρ/μ = 1915, where μ is the dynamic
viscosity, considering the properties of fresh water. To restrict our tests to the case of
individual vortex rings without a wake (Gharib, Rambod & Shariff 1998), the stroke ratio,
L/D, for all cases presented here was 2.55.

The properties of the fluid solutions tested in this study are presented in table 1. In all
cases, tap water was used as the baseline, and table salt (NaCl) was added to increase
the density of the solution. This property was measured with a floating hydrometer
with a resolution of 0.5 kg m−3. The density difference encountered by the vortex ring
as it crosses the interface is characterized by a normalized density contrast: �ρ∗

21 =
(ρ2 − ρ1)/ρ2 and �ρ∗

12 = (ρ1 − ρ2)/ρ1, where ρ1 and ρ2 are the densities of bottom
(dense) and the top (the baseline, light) fluids, respectively. As discussed in §§ 3 and 4,
the value and sign of Δρ∗ plays an important role in the motion of vortex rings (table 1).
The maximum change of viscosity between the two fluids does not surpass 3.5 % according
to the data in the literature (Qasem et al. 2021). This viscosity effect is, therefore, assumed
to be negligible (Sharqawy, Lienhard & Zubair 2010).

2.1. Measurement techniques
Two experimental techniques were implemented in this study. Planar laser-induced
fluorescence (PLIF) was used to track the location of the vortex and the density gradient,
while two-dimensional particle image velocimetry (PIV) was used to measure the velocity
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Vortex rings crossing a density gradient

ρ (kg m−3) S (g L−1) �ρ∗
12 �ρ∗

21

1002 4.6 1.9 × 10−3 −2.0 × 10−3

1004 7.4 3.9 × 10−3 −4.0 × 10−3

1005 9.0 4.9 × 10−3 −5.0 × 10−3

1007 10.2 6.9 × 10−3 −7.0 × 10−3

1008 15.7 7.9 × 10−3 −8.0 × 10−3

1013 23.6 1.3 × 10−2 −1.3 × 10−2

Table 1. Properties of the liquids used in the experiments. The first column lists the density of the solutions
(pure water is the top layer fluid and the baseline solution, ρ2), followed by the corresponding salinity in
the second column. The third and fourth columns indicate the normalized density contrasts, where �ρ∗

12 =
(ρ1 − ρ2)/ρ1 and �ρ∗

21 = (ρ2 − ρ1)/ρ2.

field in the mid-plane of the experimental tank. The first technique was performed by
adding a small amount of fluorescent dye (Rhodamine 6G, Sigma-Aldrich) to one of the
fluid layers (20 ppm). Note that since the amount of mixing during the initial instants of the
interaction of the vortex ring with the interface is very small, the location of the interface
was used as a proxy for the sharpest density gradient, ∇ρ.

Velocity fields were obtained via two-dimensional PIV (figure 1c). A continuous laser
sheet was created using a plano concave cylindrical lens (−3.9 mm focal length) and a
laser light beam (1 W, 532 nm, continuous, Laser Glow). Both fluid layers were seeded
with 13 μm silver-coated hollow glass spheres (Potters Industries Inc). A high-speed
camera (Photron Ultima APX-RS) was used at 125 frames per second. The velocity
fields were computed using the software Dynamic Studio (Dantec Dynamics) with the
single-frame scheme and applying standard validation and filtering algorithms (Willert
& Gharib 1991). A representative instantaneous raw PIV image showing a vortex ring
penetrating the density interface from the top is presented in figure 2(a). Note that the
change in contrast is due to the fluorescent dye used to track the interface between the two
layers. In this case, the induced velocity and vorticity fields result in the deformation of
the interface between the two homogeneous layers (see figure 2(b), where the dashed line
indicates the position of the density interface defined as the mean pixel value between the
top and bottom regions in the raw image).

As the vortex ring crosses the interface, the generation of baroclinic vorticity is evident
at the density interface (figure 2b,c) In principle, the production of baroclinic vorticity
can be measured experimentally using the density and pressure gradients acquired from
the PLIF and the PIV velocity field measurements, respectively. However, the uncertainty
associated with this method was too large to ensure accuracy (details can be found in
supplementary materials available at https://doi.org/10.1017/jfm.2023.165). Instead, the
circulation of the baroclinic vorticity was calculated by locating the vorticity strand in
the vicinity of the sharp density gradient (figure 2c). It is important to note that the vortex
rings in this study are compact, i.e. the vortex structure has only one separatrix in the
cross-sectional area, and there is no additional baroclinic vorticity generation at the inner
side of the separatrix (figure 2b,c). According to Norbury (1973) and Palacios-Morales &
Zenit (2013), one can classify vortices depending on the value of α, which is defined as
α2 = A/(πR2

v), where A is the area of the vortex core and Rv is the vortex mean radius.
The value of α ranges from 0 to

√
2, where 0 corresponds to a skinny vortex and

√
2

corresponds to a spherical vortex. In this study, α is approximately 0.55, suggesting that
the vortex ring is compact but not close to Hill’s spherical vortex.
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Figure 2. (a) Representative PIV image of a vortex ring penetrating the density interface of a stable two-layer
system. (b) Velocity field computed by processing the PIV image in (a); the colour indicates the dimensionless
vorticity field, ωUp/D, where ω is the vorticity; the size and direction of the arrows indicate the magnitude and
the direction of the velocity field, respectively; the dashed line shows the instantaneous position of the interface
between the two fluid layers. Panel (c) shows half of the vortex ring and induced flow in (b). From the vorticity
field, the circulation of the main vortex and the baroclinic vorticity are retrieved by numerically integrating
within the dotted line region (main vortex) and the black dashed line region (baroclinic vorticity), where the
red dashed line indicates the density gradient.

3. Results

3.1. Vortex ring crossing a density interface
Experiments were conducted using the upper and lower piston-cylinder arrangements in
the water tank to produce isolated vortex rings propagating both upwards and downwards
or against and along the density gradient (e.g. figures 3(a) and 3(b), respectively). In both
cases, backflow was observed after the vortex ring crossed the interface, in which case
some fluid inside the vortex ring was observed to flow back close to its original position
(e.g. the last images of figure 3a,b). This observation is consistent with the experimental
and numerical results from Dahm et al. (1989) and Olsthoorn & Dalziel (2017). In this
study, the authors observed that whenever a vortex ring crossed a fluid interface, the
baroclinic production of vorticity peeled off the outer fluid layer of the vortex. Then, due
to gravitational effects, this peeled-off layer was transported backward or opposite to the
vortex travel direction, thereby creating a backflow once the vortex ring had fully crossed
the interface. Also, as the backflow induces an instability of the Kelvin–Helmholtz type,
a wavy or rolled-up structure is generated, as seen in figures 3(a) and 3(b). However, the
backflow is much weaker in figure 3(b) than in figure 3(a), presumably due to differences
in the direction of travel of each vortex.

In the current study, the position and diameter of the vortex ring were tracked once
the vortex ring crossed the interface between the two fluid layers (figure 3c). It was
observed that the diameter of the vortex ring (solid diamond in figure 3c) decreases when
crossing the interface to less dense fluids (figure 3a). This is likely due to the backflow
and the peeling process, in line with the experimental work by Dahm et al. (1989) and
the theoretical prediction in (1.4). However, when the vortex ring crosses the interface
to denser fluids (hollow diamonds in figure 3c), the diameter shrinking effect is smaller
than that in the other direction (solid diamonds, bottom to top, figure 3c). In addition, the
penetration depth of the ring (circles in figure 3c) also depends on the direction of travel
of the vortex. It was found that the vortex penetrated deeper into the second layer when
moving against the density gradient than when moving downward towards the denser fluid
solution. The asymmetry in the process can be explained by focusing on the effect of the
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Vortex rings crossing a density gradient
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Figure 3. Vortex ring crossing a density interface (Fr = 0.18, �ρ∗ = 0.004). Representative case of a vortex
ring moving towards a solution with lower (a) and higher (b) densities. Note that in (b), the images are flipped
upside down and the pixel intensities are inverted for clarity. To compare the cases, the corresponding images
in (a,b) share the same non-dimensional formation time, and �tU/D = 2.5. (c) Time evolution of the position
and diameter of the vortex rings while crossing the interface. (d) Normalized maximum penetration depth, ym,
as a function of Froude number, Fr. Results are compared with relevant studies in the literature. The solid line
fits the trend of the data in Linden (1973) with a slope of 1.

initial conditions on the generation of baroclinic vorticity as the vortex ring crosses the
interface. This will be further discussed in § 4 using the pressure and density fields.

The same experiment was repeated for different density ratios (Froude number, Fr)
(table 1). The vortex positions were tracked, and the maximum penetration depths were
computed and compared with results in the literature (figure 3d). Our experimental data
(filled and empty red circles) is in good agreement with measurements reported in the
literature, thereby validating our methodology. In particular, Linden (1973) reported that
the slope of the best-fit curve was close to 1 (solid line in figure 3d).

3.2. Penetration depth and circulation
Experiments were repeated with different density ratios (Froude number, Fr). The
maximum penetration depth is identified and reported for each case (figure 4a).
Even though our experimental results follow a general trend as reported in the literature,
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Figure 4. Asymmetry of motion. (a) Normalized maximum penetration distance, ym, as a function of Froude
number, Fr. Empty and filled symbols show experimental results for vortex rings moving along and against the
density gradient, respectively. The solid and dashed lines are the best fit for each data group. (b) Normalized
circulation, Γ/Γo, where Γo is the maximum circulation of the main vortex ring, as a function of dimensionless
time for both cases (ρ = 1005 kg m−3 in table 1). Similar to (a), empty and filled symbols correspond to vortex
rings moving downwards and upwards, respectively. Squares denote the value of the circulation of the main
vortex ring, while the circles correspond to the circulation associated with baroclinic vorticity.

the curves of maximum penetration distance do not overlap. At a given Froude number,
the vortex ring moving towards a less dense fluid layer attains a longer penetration depth
(solid circles) than if moving towards a denser fluid solution. This is consistent with what
has been observed in § 3.1, corroborating the inherent asymmetry in the vortex ring motion
across a density interface.

To understand the vortex propagation asymmetry, the circulation of the main vortex ring
is examined along with the circulation associated with the baroclinic vorticity generated
at the density interface (e.g. figure 2b,c). The evolution of circulation for the main vortex
ring (squares) and the baroclinic vorticity (circles) once the vortex ring crosses the density
interface is presented in figure 4(b). Independent of the travel direction, the circulation of
the main vortex ring decreases when crossing the density interface, which is in line with
the peeling effects discussed in § 3.1. In contrast, the circulation of the baroclinic vorticity
(circles) increases when the vortex ring crosses the density interface. It is to be noted
that the baroclinic circulation associated with the upward-travelling vortex ring (filled
circles in figure 4b) reaches its maximum much sooner and attains a much higher value
than the downward-travelling vortex ring (empty circles in figure 4b). The high baroclinic
circulation of the upward-travelling vortex ring is assumed to induce a stronger backflow
at the density interface (figure 3a), leading to a stronger peeling effect and thus resulting
in a smaller vortex ring diameter, which is supported by the observations in figure 3(a,b).
Therefore, a smaller drag force is expected for the upward vortex ring, given its smaller
diameter, resulting in a greater penetration depth maximum than for the case of a bigger
downward-moving vortex ring.

4. Further analysis and discussion

From Marshall & Plumb (2016), the vorticity conservation equation for a fluid with a
non-uniform density is

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v − ω(∇ · v) + ν∇2ω + 1

ρ2 (∇ρ × ∇P) , (4.1)
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Figure 5. Schematic of the physical process causing asymmetry in vortex ring penetration depth. Panels (a,b)
show the vortex ring crossing from below and above the interface, respectively. The pressure gradient is the
same for both cases (∇P1 = ∇P2). However, the density gradient is different between the two cases (∇ρ1 =
−∇ρ2). Thus, considering (4.2) the contribution to baroclinic vorticity production is different: one is positive
and the other is negative. (a) Crossing from high to low density. (b) Crossing from low to high density.

where ω is vorticity, v is velocity, ν is kinematic viscosity, ρ is density and P is
pressure. For an axisymmetric flow, the first term on the right-hand side vanishes. For an
incompressible fluid flow, the second term on the right-hand side is also zero. Therefore,
neglecting viscous effects, on either side of the interface gives

Dω

Dt
= 1

ρ2 (∇ρ × ∇P) . (4.2)

Considering the axisymmetry of vortex rings, integrating (4.2) over half the
cross-sectional region of the vortex ring and the associated induced flow (as shown in
figure 2c) gives the rate of change of circulation, Γb,

DΓb

Dt
=

∫
S

1
ρ2 (∇ρ × ∇P) dS, (4.3)

where dS is a surface element vector in half the cross-sectional region of the vortex ring
and the associated induced flow (as shown in figure 2c). Equation (4.3) shows that the rate
of change of circulation is related to the cross product of the density and pressure gradients
at the density interface.

Figure 5 includes a schematic showing the orientation of the density and the pressure
gradients as the vortex ring crosses the interface (solid blue line). While the orientation
of the pressure gradient is independent of the direction of travel of the vortex ring, the
density gradients between the two cases are flipped by 180◦, �ρ∗

12 = −�ρ∗
21, depending

on whether the vortex ring travels towards a denser or lighter fluid layer. Therefore, from
(4.2), the baroclinic vorticity generated at the density interface has opposite signs, resulting
in different contributions to the circulation: one increasing and the other decreasing.
Specifically, to the right of the vortex ring, the cross product of the density and the pressure
gradients is positive for the upward penetration (figure 5a) but negative for the downward
penetration (figure 5b), suggesting that the total vorticity generated at the density interface
is larger for the upward than for the downward penetration case. This trend is consistent
with the circulation evolution plot in figure 4(b).

Finally, it is worth noting that the generation of baroclinic vorticity and the
observed difference in the maximum penetration depth of translating vortices in this
study are important from an ecological standpoint. While so-called Darwinian drift
has been identified as a successful large-scale transport mechanism with potentially
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far-reaching implications, studies rarely include the effect of migrating direction relative
to ocean stratification. Our study suggests that the swimming direction of self-propelled
mesozooplankton may have important consequences for the vertical transport of nutrients,
carbon and oxygen across stable density gradients. Taking this into account, from
the individual-organism level, the thrust force produced by an organism will likely
depend on the swimming direction with respect to the stratification, which may affect
organism behaviours in activities such as feeding, preying and escaping. Likewise, the
amount of induced biogenic transport will also depend on the direction in which the
organism travels relative to the ocean density gradient. For instance, consider a jellyfish
swimming through a stratified fluid, the hydrodynamic forces on the organism and the
induced mixing can be expected to differ depending on whether it swims upwards or
downwards, even if the jellyfish pumps at the same rate. From the swarm-organism
level, those differences inherent from the individual level may become significant
during collective motion, such as the diel vertical migrations of aggregations, resulting
in different amounts of transport depending on the swimming direction relative to
the stratification. Including these differences in either regional or global modelling
efforts will be necessary to accurately understand the role of organisms as ecosystem
engineers.

5. Conclusion

In this study, we performed experiments to quantify the kinematics of a vortex ring
crossing the fluid interface of a stable two-layer stratified system. Focus was given to
the differences arising from the orientation of the vortex travel direction relative to the
density gradient. The maximum penetration depth of the vortex ring crossing a density
interface was measured and validated with relevant literature. It was found that the
evolution of the vortex ring position, size and the maximum penetration depth differ
with respect to the penetration direction (along or against the density gradient). This
difference can be attributed to the asymmetry in the generation of baroclinic vorticity
due to the orientation of the density and pressure gradients at the density interface. It was
found that a greater maximum penetration depth is associated with a stronger baroclinic
vorticity. Specifically, the higher circulation of the baroclinic vorticity in the upward
penetration motion leads to a stronger peeling effect on the vortex ring, resulting in a
smaller vortex ring size and a smaller drag in the penetration process, which contributes
to the larger maximum penetration depth. Finally, while the vortex ring penetration of
density interfaces was studied only in the vertical direction, we hypothesize that similar
asymmetry can also be observed with the vortex ring penetrating the density interface
at an oblique angle or with the vortex ring travelling in a continuously stratified fluid.
Going forward, we plan to leverage our findings to improve the characterization of marine
ecosystems in global ocean circulation models. While the hydrodynamic signature of
migrating mesozooplankton aggregations have just started to get analysed, symmetry of
fluid motion is usually assumed, having important consequences for the net amount of
biogenic induced transport of oxygen, carbon and nutrients.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.165.
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