measurements made on a gas prepared from the oxalic-acid standard. The computed value $0.95A_{\rm ox}$ then becomes the universal C^{14} standard activity from which δC^{14} values (below), and all dates, are calculated.

We also call attention to the mode of expression adopted by the Lamont laboratory (Lamont VIII, Radiocarbon, this volume) when C^{14} assays are corrected (normalized) for isotopic fractionation by C^{13} measurement. In this notation, which we also indorse, a quantity Δ is substituted for ΔC^{14} , the definition of which (Lamont VI, Radiocarbon Supplement, v. 1, p. 114) has been found to contain a logical inconsistency. Thus,

$$\Delta = \delta C^{14} - (2\delta C^{13} + 50) \left(1 + \frac{\delta C^{14}}{1000} \right)$$

where Δ is the per-mil deviation from the modern C^{14} standard (i.e. from $0.95A_{ox}$ as defined above), and δC^{14} and δC^{13} are the observed per-mil deviations from C^{14} and C^{13} standards. The matter is more important for modern C^{14} assays made for geochemical reasons than for routine dating. In this volume, the papers Lamont VIII and Yale VI follow the new notation, whereas Cambridge IV uses the older ΔC^{14} . Conversion can be made by the expression

$$\Delta = \Delta C^{14} - \frac{\delta C^{14}}{20}$$

RICHARD FOSTER FLINT EDWARD S. DEEVEY

ERRATUM

In Radiocarbon Supplement, v. 2, 1960, in the reference to Kenya (W-749) on p. 175, the following words should be deleted from the reference: 'bore hole drilled' and also '(the Limuru trachytes)'.