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ON A GENERALISATION OF A RESULT OF RAMANUJAN
CONNECTED WITH THE EXPONENTIAL SERIES

by R. B. PARIS

(Received 6th June 1980)

1. Introduction

One of the many interesting problems discussed by Ramanujan is an approximation
related to the exponential series for e", when n assumes large positive integer values. If
the number 6n is defined by

& = "££ + —.en{n*l), eo = \ d.l)
fc=0 K- n-

Ramanujan (9) showed that when n is large, 6n possesses the asymptotic expansion

I I + * 8 1I=I+_
" 3 135n 2835n2 8505n3

|

The first demonstrations that 6n lies between \ and 5 and that 6n decreases monotoni-
cally to the value 5 as n increases, were given by Szego (12) and Watson (13).
Analogous results were shown to exist for the function e~n, for positive integer values
of n, by Copson (4). If <f>n is defined by

e~"= Z i^-+i^2-<f,n(nsi), 4>0=l (1.3)
k% k! n\

then 4>n lies between 1 and \ and tends monotonically to the value \ as n increases, with
the asymptotic expansion

. I l l 1 13
128n3

A generalisation of these results was considered by Buckholtz (2) who defined, in a
slightly different notation, for complex 2 and positive integer n, the function #n(z) by

(1-5)

As n —* 00, Buckholtz showed that <j>n(z) possesses the asymptotic expansion

<fc.(z)~ I cm{z)n-m, (1.6)
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180 R. B. PARIS

uniformly valid for all complex values of z except in the neighbourhood of the point
z = 1. The coefficients cm(z) are defined by

c U)_(-rfin(z) ( 1 ? )
Cm Z ( l - z ) 2 m + 1 >

where Pm (z) is a polynomial in z of degree m with positive integral coefficients. For the
first few values of m we have

P0(z) = 1, ' P^z) = z, P2(z) = z + 2z2,
P3(z) = z + 8z2 + 6z3, p4(2) = 2-L'>o-2J.«o.3J.'»i-4 U.e;

The polynomials Pm(z) have been discussed in further detail by Carlitz (3). When
z = —1 the expansion (1.6) reduces to that found in (1.4) by Copson.

An asymptotic expansion of <f>n(z) which is uniformly valid as n —» » has been
obtained by Wong (15), for real values of z(=x) restricted to the interval S S x S l ,
where 8 is some fixed positive number. The leading term of this expansion is expressed
in terms of the Weber parabolic cylinder function by

where a = 2 ( x - l —logx). This expansion may be shown to yield Ramanujan's result
(1.2) when x = 1 and that given by Buckholtz in (1.6) for x < 1.

Ramanujan's result is of interest since it enables e" to be expressed between rational
limits and finds application in certain algorithms in numerical computation (7, p. 112).
It shows that the remainder function 6m after truncation of the series for c" at its
maximum term nn/n\, is O(l) for n —* °°. For large n the sum of the first n terms is
thus roughly half the sum of the whole series. A result of this type was, in fact,
employed earlier by Stokes (11) in the determination of the asymptotic behaviour of
the generalised hypergeometric function (10, p. 40)

(1.9)

for x —» +oo and real positive values of the parameters a, and bT. It would therefore
seem probable that the character exhibited by the remainder functions Gn and <f>n for
the exponential function is of a more general nature, and that results analogous to
those of Ramanujan and Copson might be expected to exist for more complicated
transcendental functions.

In this paper we consider, as a generalisation of the exponential function, the
confluent hypergeometric functions 1F1(a;b;±n) which reduce to e±n respectively
when a = b and are defined by (1.9) with p = q = 1. For convenience, the parameters a
and b will be supposed throughout to be real, although the analysis may be extended to
complex values without any complication. We show, by defining remainder functions
for the truncated hypergeometric functions analogous to those in (1.1) and (1.3), that
similar results for large values of n also exist for this class of transcendental function.
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GENERALISATION OF A RESULT OF RAMANUJAN 181

The problem is reduced to that of the examination of the asymptotic nature of a higher
order confluent function of the type 2F2(± n), when some of the parameters and also
the argument assume large values.

A discussion of the Bessel function J0(An) where A is restricted to the range 0 < A ^ 1
is given as a further example of a generalisation of Copson's results.

2. The hypergeometric function iF^a; b;-n)

We first consider the hypergeometric function iF^a; b; — n), where the parameters
a and b are supposed to be real. We suppose further that neither of a and b is equal to
zero or a negative integer, since when a = -k, k = 0 ,1 ,2 , . . . the hypergeometric
function reduces to a polynomial of degree k and when b = — k the function is no
longer defined (unless also a = — k + m, m = 0,1, 2 , . . . , fc).

We define the remainder function fa by

where (a)k denotes T(a + k)/T(a). It is readily shown, by use of the result (a)n+m =
(a)n(a + n)m for positive integral m combined with the series representation of
^(aib^-n) in (1.9), that

. a + n n (a + n)2 nz

^ 1 +
b+nn+l

= 2F2(1, a + n; b + n, n +1; — n). (2.2)

We observe that when a = b, corresponding to Copson's case (1.3), the 2F2 function
contracts to yield the remainder function fa = <f>n given by

(2.3)

where T(a, z) denotes the incomplete gamma function, and that a similar simplification
occurs when a = 1.

Employing the Euler-type integral representation for the generalised hypergeometric
function (10, p. 108)

p+lFq+l(a, au ..., Op; a + (i, bt bq; z)

= r faTO)f ^ ( l - O ^ W a i . ...,ap;bu...,bq;zt)dt,
Re(a) > 0, Re(/3) > 0, p S q +1 (2.4)

we may express fa, n = 1, 2 , . . . , as an integral of the form

fa = n f (l-x)n-\F1(a + n;b + n;-nx)dx (2.5)

f
U ; y ( y)
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the latter integral being convergent for b > a and a > — n. Integrating (2.6) by parts to
find

and adding this result to (2.6), we obtain

(2.8)

for b>a and a> — n, n = 1, 2 , . . . . Since the integrands in (2.7) and (2.8) are both
non-negative over the domain of integration, and from (2.1) t/»0=l» we deduce that
i < ^ n S l for n = 0 ,1 ,2 , . . . when fc>a>-l.

We now proceed to determine the asymptotic expansion of </»„ for n -* °°. We
reverse the order of integration in (2.6), when b > a and a> — n, to find

*• -Tv^T^ f v—'d-vr- {f (i-«)"-«-""^} d, (2.9)

The inner integral may be expressed in terms of Buckholtz's remainder function <f>n(z)
defined in (1.5), since from (2.4) and an obvious extension of (2.3),

nf (l-x)"-1e-nxydx = 1F1(l;n + l;-ny) n = 1, 2 , . . .

= <&. ( -y ) .

It then follows from (1.6) that

n\ ( l - x y - V - ^ d x - £ cm(-y)n"m, n -+ «> (2.10)
Jo m=0

uniformly in y for O ^ y ^ l where, from (1.7) and (1.8), the coefficients cm(-y) are
given by

1 y 2y2~y 6y3-8y2 + y

y)5' 3 (1 + y)7
. - 2 y ~ y 6 y - 8 y + y

2 ~ ( l + y ) 5 ' 3 " ( 1 + y ) 7 ' • • • • ( '

Substituting the expansion (2.10) into (2.9), and employing the fact that integration of
an asymptotic expansion with respect to a parameter is permissible over its domain of
uniform validity (5, p. 16), we then find

i ' (2.12)

The integrals appearing in (2.12) may be evaluated by making use of Pochhammer's
representation for the Gauss hyper geometric function (10, p. 20) of argument \

(2.13)
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GENERALISATION OF A RESULT OF RAMANUJAN 183

for Re(a)>0, Re(|3)>0 and arbitrary values of 7. Using (2.13), together with the
expressions for the coefficients c ^ - y ) in (2.11), an expansion for i/rn is then obtained
involving the functions 2Fi(£)> in which n appears only as a denominatorial parameter.
Upon straightforward expansion of the 2^1(2) functions for large n (1, p. 565), we
finally find, after a little algebraic manipulation, the expansion

/J 32n2

128n3

as n -> oo.
The expansion (2.14) has been obtained under the restriction b > a and a > — n; as n

may be taken arbitrarily large, these conditions simply become b - a > 0 for fixed
values of the parameters a and b. This restriction is a consequence of the use of the
Euler integral representation for the hypergeometric function in the integral (2.5). The
validity of the expansion (2.14) may, however, be extended to the domain b — a^O by
use of the Pochhammer loop integral (10, p. 40)

1X1 + a- 1 f(1+)
 +

— I t " (t —.Y(a + n) 2iri

which holds under the conditions that a>-n and b - a is not a positive integer. Since
(2.14) is already known to hold for b-a>0, this representation may be employed to
cover the case b — a^O. Proceeding in exactly the same manner as in (2.9) and (2.10),
and using the Pochhammer loop integral analogue of (2.13) (10, p. 22, Eq. (1.6.16)),
yields the same expansion (2.14). It is then seen that (2.14) holds for all values of a and
b (we exclude the values a, b = 0, — 1, - 2 , . . . as mentioned at the beginning of this
section), and in particular, when a = b, (2.14) reduces to Copson's expansion (1.4) for
e~n.

We now show, for b > a > 0, that «/>„ in (2.2) decreases monotonically from «/f0 = 1 to
the limit \ as n increases from 0 to oo. First consider n as a continuous variable, which
we denote by x. From (2.5) we then have for x > 0

7x(a + x; b + x; - xt) dt.

Denoting the hypergeometric function ^ ( a + x; b + x; — xt) by F(x, t), and differen-
tiating ij/x with respect to x, we easily see, after an integration by parts, that

t. (2.15)

Applying Rummer's transformation (1, p. 505) to F(x, t) yields

F(x, 0 = e-x\Fl(b-a; b + x; xt).

If the uniformly and absolutely convergent series of the type (1.9) defining the
hypergeometric function on the right hand side is now differentiated term-by-term, we
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obtain the identity

f,Lf -
d d

with

H(x rt= )m m! Ib + x b + x + l

It then follows that

[ 1 1 . , 1 1
Ib + x b + x + 1 " ' b + x + m-U

Now, H(x, () = 0 in the range of integration for b > 0 and b - a > 0. By differentiation
with respect to r of the series defining F(x, t), and application of Kummer's transforma-
tion, we find that

which is similarly positive over the range of integration for x > 0 and b > a > 0. Since
log(1-r) + f/(l-t) is non-negative in the interval O ^ K l , the integrand in (2.16) is
non-negative and consequently dij/Jdx<0 for x >0 and b > a > 0. It then follows, upon
inserting the values x = 1, 2 , . . . , that the remainder function t(/n is a monotonically
decreasing function of n when b > a > 0.

The extension of the domain of the parameters a and b for which tpn is monotonic in
character, is discussed further at the end of Section 3.

3. The hypergeometric function iF^a; b; n)

We now turn to the more difficult case of the hypergeometric function of positive
argument iF^a; b; n) which generalises Ramanujan's problem. As in Section 2, it will
be supposed that neither of a and b is equal to zero or a negative integer. We define
the remainder function i/>n in this case by

so that, as in Section 2, we find

il>n = 2F2(ha + n;b + n,n + V,n)-^^^1F1(a;b-,n). (3.1)

We observe that Ramanujan's function 0n for en defined in (1.1) may be obtained by
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GENERALISATION OF A RESULT OF RAMANUJAN 185

putting a = b in (3.1) to find

The expansion (1.2) then follows directly by making use of the well-known expansion
for large n of the incomplete gamma function F(n + 1, n) (1, p. 263; 7, p. 115).

To show that \frn^\ for n = 0 ,1 ,2 , . . . and b > a > 0 , we proceed by reasoning
identical to that employed in (2.8) to find

, . 1 1 n T(b + n)
2F2(l,a + n;b + n,n + l;n) = - + -— v '

2 2 F ( o - a ) F(a + n)

1l
Employing (2.4) to express xFxiaib;^ in terms of an Euler integral, we may then
write «/fn, for b > a > 0, in the form

, 1 1 nHb
2 2r(b-a)T(a

r<->-^ f
"^(l + fie^'dtldy,

2 2T(b-a)T(a
when n = 1, 2 , . . . . It is then clearly sufficient to prove that the expression in braces is
positive for O S y S l and n = l , 2 , . . . , so that the integrand is non-negative in the
domain of integration.

Now, for O S y S l , we have

n! pF(n + l,n) e'nnn

nn+1[ F(n +
e'nnn 1

n! J
= — ( 1 - 2 0 J > O n = l , 2 , . . .

n

upon making use of (3.2) and the fact that 3<8n<^ for all positive integer n (cf.
Section 1). The result tf/n ^ for n = 0,1, 2 , . . . and b > a > 0 then immediately follows.

From (2.4) we have for n = 1, 2 , . . .

2F2(l ,a + n;b + n,n + l ;n) = n [ (l-x)rt~1
xF1(a + n; b + n; nx) dx (3.3)

= n [ (1 - x ) r - 1 c n x
1 F 1 ( f t - a ; b + n;-nx)dx,

(3.4)
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186 R. B. PARIS

by Kummer's transformation. The method adopted in Section 2 to determine the
nature of the integral (3.3) for n —* °° by expressing it as a double integral of type (2.9)
cannot readily be employed in the present case. This is because the inner integral would
now involve Buckholtz's function <t>n(y) for O ^ y S l , instead of </>„(-y), for which the
expansion (1.6) is no longer uniformly valid in the neighbourhood of y = 1. Accord-
ingly, we proceed to obtain an asymptotic expansion, uniformly valid in x in the
interval O S x g l , of the hypergeometric function appearing in the integrand of (3.4),
which may then be employed to evaluate the integral (3.4) for large values of n.

From (2.4) we have

lFl{b-a;b + n;-nx)= n b ^ \ fV—'(1- tr
+1e—'(1) dt,

T(b - a)T(a + n) ^
= x t - l o g ( l - r ) (3.5)

for b > a and a > - n. For n -> °°, the expansion of this integral may readily be
obtained by Laplace's method (8, p. 86, Theorem (8.1)) to find for b>a

1 - ^ . W , ,3.6)

uniformly for x in the interval O ^ x S l , where

C0(x) = l, C1(x) = l-a+li

2
The restriction b>a may be removed by the device described in Olver (8, p. 119,

§5.2) where, for arbitrary positive integer M, we define the remainder function 4>M(t)
by

( 0 £ ( ) m
m=o ml

with

m+b—a — l00 j

*M(0= I (l-a)m
m=M

Then from (3.5) and (3.6) we find

Now both sides of this equality are analytic functions of a(> - n) and b for b — a + M>
0, since <f>M(t)- O(tb~a+M~l) as t —> 0 and the integral consequently converges for
b — a + M>0. Then by analytic continuation with respect to b, this equality, proved
when b — a>0, holds for values of a(> — n) and b satisfying the new condition
b — a>—M. Application of Laplace's method to the integral involving <f>M(t) for n —> °°
shows, since the integer M is arbitrary, that (3.6) holds without restriction on a and b.
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The uniformly valid expansion (3.6) may now be substituted in (3.4) to yield

(3.7)

We are therefore led to a consideration of integrals of the type

enp<x)dx, p(x) = x + log( l -x)

for n -* oo and arbitrary bounded values of a. The function p(x) has a maximum at
x = 0, and the expansion of /„ may consequently be obtained by the saddle point
method (8, p. 125) to find

\1/2 1 / 2 \3/2

) (i + «)+-fe + !a(a-l)]+ (—) 7
/ n \im/

/ 7r\1/2f / 2 \

4 = (£-) 1 + 1 —) ( )
\2nJ I \im/ n \im/ •.

+ O(n"2)j
as n —* oo. This result may now be employed in (3.7) to yield, after a little algebraic
manipulation, the expansion

-
n

(3.8)

To determine the expansion of i/*n we make use of the expansion of iFx(a; b; n) for
large values of n (1, p. 508),

provided a, b j= 0, - 1 , - 2 , . . . and Stirling's formula

+ n) (enn\\ f, , (a-l)(a-b) , nl _2,}— I——) j l + +O(n 2)\
+ n) \ n I I n J

Then from (3.1) and (3.8) we finally obtain the expansion for n —* °o

b+-[Tf5+Ka-6){(a-fc)2-4a + b + 3} ]+ . . . ) (3.9)
n

upon employing the expansion of the gamma function ratio (8, p. 119)
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188 R. B. PARIS

valid without restriction on a and b. When a = b we recover the first two terms of
Ramanujan's expansion (1.2).

The determination of the domain of the parameters a and b for which tyn in (3.1)
decreases monotonically from il>0 = 2 to its limit f+a —fcisofa more recondite nature
than that for the hypergeometric function of negative argument discussed in Section 2.
From the asymptotic formula (3.9), we see that when a-b =g, the limiting value of ipn

is \ and it is clear that t/rn cannot be monotonic in this case. For a-b<\, a necessary
condition (though clearly not sufficient) for t(in to be a monotonically decreasing
function of n is that i/rn approach its asymptote 5 + a - b from above. When a — b > g, a
necessary condition for if/n to be monotonically increasing is that the asymptote 5 + a - b
be approached from below.

We are thus led to consideration of the domains in the (a, fc)-plane in which the
function

is either positive or negative. The curves corresponding to S = 0 are indicated by the
dashed lines in Fig. 1; S is positive essentially in the left half plane and negative, apart
from an intervening sector, in the right half plane. The curves S = 0 have as asymptotes

5 •

4 -

2 -

S - - 4 - + (a-b){(a-b)2-4
45 I

F( (a;b;n)

/

i
i
I

S - 0 - M 1
*;b"J yJt

Vn
monotonically ,

increasing v

XXX\XX\\

" x < v ^ ^ ^

r . Ramanujan's

S = 0
t |

^ ^

^KXdecreasing:

>>^

case a = b

<— o - 1

Figure 1. The domains in the (a, 6)-plane in which the remainder function i/»n for ^ ( a ; b; n) is monotonic
in character.
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GENERALISATION OF A RESULT OF RAMANUJAN 189

the straight line a = b and the conic (a — b)2 — 4a + b:\-3 = 0, which represents a
parabola with vertex situated at (53/48, —7/48) and whose axis is inclined at ir/4.

Numerical calculations of tjin using (3.1) indicate that ipn is monotonic in the shaded
regions shown in Fig. 1. We observe that Ramanujan's case, corresponding to a = b,
lies in the domain where <pn is monotonically decreasing, in accordance with the results
of Szego and Watson mentioned in Section 1. Moreover, as a and b become large, the
Ramanujan line a = b is an asymptote of the monotonically decreasing domain. The
line a — b — \, which separates the two monotonic domains in the (a, f»)-plane, is also
indicated. Outside of these domains, tj/n is found to be non-monotonic in character.

The domain in the (a, b)-plane for which the remainder function tpn in (2.2) for
iF^a; b; — n) is monotonically decreasing is similarly presented in Fig. 2. In Section 2
it was shown that ipn in this case is a monotonically decreasing function of n in
fc>a>0, though from the asymptotic formula (2.14), it is clear that a necessary
condition for monotonic behaviour is given by a — b < | , with a + b S 1 when a — b=%.
It is seen that the line a = b, corresponding to Copson's case for e~n, lies within the
monotonically decreasing domain and, for negative values of a and b, would appear
from numerical calculations to be the asymptote of this domain.

F, (a ;b ; -n)

monotonically
decreasing

-2

Figure 2. The domain in the (a, b)-plane in which the remainder function i/rn for
monotonically decreasing function of n.

-^n) is a
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4. The Bessel function J0(An), 0<A ^ 1

In this section we discuss the Bessel function J0(kn), for 0 < A S l , and demonstrate
that results analogous to those of Copson for the series e~n in (1.4) likewise exist for
this function. We define the remainder function «/>„ after truncation of the series for
J0(\.n) at the nth term by

whence

^B = 1F2(l ;n + l ,n + l ;- iA2n2) , *o=l- (4.1)

From (2.4) we find the integral representation

[
for n = 1, 2 , . . . . Expressing the 0Fj function in terms of a Bessel function (1, p. 362),
we have 1

ifc, = nn! f (1 - x)"-1(|Anx1/2)-nJn(Anx1/2) dx (4.2)

= l-n!( |An)2 f (l-x)"gAnx1/2)-"-1/B+1(Anx1/2) dx,

after an integration by parts. For 0<A ^ 1 , the above integrands are both non-negative
in the range of integration, since the smallest positive zeros /n>1 and /n+1,i of Jn(z) and
/n+1(z) respectively satisfy 7n+i,i>7,,,i>n (14, §§15.22, 15.3). It therefore follows that
0 < t £ n < l for n = l , 2 , . . . and 0 < A S I .

To determine the expansion of t(/n for large values of n, we first observe that the
function y = (|Anx1/2)~'\7n(Anx1/2), appearing in the integrand in (4.2), is a monotoni-
cally decreasing function of x for O ^ x i l and for fixed A in 0 < A S l . This follows
from the fact that its derivative

^ = ~ ^Anx1/2)-"+1/n+1(Anx1/2) < 0 (0 < A S1)

for x in the interval O ^ x ^ l , since /n+i,i>n. Accordingly, we may define the new
variable T(X) by

e~T = (l-x)[n\(hknxm)-nJn(knxV2)Y'n, (4.3)

where T increases monotonically from 0 to °° as x describes the path of integration in
(4.2) from 0 to 1, and write (4.2) in the form

= n f e-nrq(n, T) dr (4.4)

where, by differentiating (4.3),

dx
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From (4.3) we find the expansion

r = ax

with

A2 n A4 n3 _ A^ n 5

4 n + 1' H 16(n + l ) 2 (n+2 ) ' r 32(n + l)3(n + 2)(n

Since T ' (0) is non-zero, there exists an expansion x = X(T) valid in the neighbourhood of
T = 0 (6, §12.051) such that

a
( 4 . 6 )

valid for sufficiently small |T|.
In order to apply Watson's lemma to the determination of the integral (4.4) for

n —» 9°, we first observe from (4.5) that on the path of integration the ratio of the
Bessel functions is positive (A § 1) and 0<q(n, T ) ^ 1. Secondly, to show that the series
expansion (4.6) for q(n, r) has a finite radius of convergence, we consider the singular
points of the function dx/dr. From (4.5)

dr_ 1 , t 1/2Jn+1(Anx1/2)
dx 1-x 2 Jn(Anx1/2) '

which is an integral (entire) function of x possessing simple poles at x = 1 and
Anx1/2 = /n(c, fc = l , 2 , . . . , where /n>fc denotes the kth positive zero of Jn(z). These
values of x correspond to infinite values of T. By considering the graph of dr/dx as a
function of x (real), it is readily seen that there is an infinite sequence of positive values
of x, situated between successive zeros of Jn(Anx1/2) and Jn+1(Anx1/2), at which dr/dx
vanishes. To verify that there are no complex zeros of dr/dx we consider the change of
argument of /(x1/2) = dj/<ix round a rectangular contour described in the positive sense
in the complex x1/2-plane with vertices at ±iT, ±iT+(k+|rt+5)77, T > 0 (so that the
side parallel to the imaginary axis separates the kth and (fc + l)th zeros of Jn(Anx1/2)).
Then in the manner described in (14, §15.4) the change of argument of / round the
contour may be shown to be -2 i r as T —» 00 and k large. It then follows that the only
zeros of dr/dx are the real positive zeros which interlace with those of Jn(Anx1/2) and
Jn+i(Anx1/2). Since jnA> n and 0 < A ^ 1, this infinite sequence of zeros lies entirely to
the right of the point x = 1. From (4.3) the corresponding values of T at these zeros
must therefore satisfy |Im (T)| S TT. We consequently infer that the inversion x = X(T) of
(4.3) is regular in at least |T| < TT.

The conditions of Watson's lemma (14, p. 236) are therefore satisfied. Expanding the
coefficients a, /3, 7 in (4.5) in terms of 1/n, we may now apply the extension of Watson's
lemma (8, p. 326 Theorem 2.1) to the integral (4.4) when q = q(n, T) to find the
expansion

for n —* °o. The expansion of ipn in the particular case A = 1, corresponding to J0(n), is
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given by

, 4 32 272 2816

It is of interest to compare the values of tyn obtained from the asymptotic formula
(4.8) with those calculated directly from the power series expansion of the -J?2 function
in (4.1) with A = 1. The values of t̂ n for several values of n are presented in the
following table:

Exact value of </»„ Asymptotic value
with A = 1 from (4.8)

5
10
15
20

0.846528
0.824561
0.816628
0.812560

0.846277
0.824549
0.816626
0.812560

It will be seen that surprisingly good accuracy \s obtained for values of n as small as
n = 5 and that for n S20, the expansion (4.8) yields the value of tyn accurate to at least
the sixth decimal figure.

We now show that tf/n in (4.1) decreases monotonically from the value t/fo= 1 to its
limit 4/4(+A2) as n increases from 0 to °°. The proof on the lines of that used for
monotonicity of the remainder function for iFj(a; b; -n) in Section 2 appears to be
somewhat more difficult in this case. This results from the fact that in the corresponding
integral representation of type (2.15) denning d&Jdx for J0(kn), the integrand is found
to change sign in the range of integration. We therefore proceed in a different manner
and consider the difference

I H ' H n = 0 , l , 2 ) . . . (4.9)

where

"r {(n + r+1)!}2 ' "'

It is easily seen by application of the binomial theorem that 5r > r(r + l)/(n +1)2> 0 for
r, n = 1, 2 , . . . and that the coefficients u. are positive for n = 0,1, 2, Since (4.9)
converges absolutely, we may regroup its terms and write

•/W-•/'„ = -{(* +1)!}2 I (u2k+1-u2k+2), (4.10)
k=0

where the sign of u2k+1 — u2k+2 depends upon the sign of the quantity

n = 0,1, 2 , . . . .
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We will now show that Ank(A)>0 for n = 1, 2 , . . . , k = 0 ,1 ,2 , . . . and 0<A ^ 1, so
that the difference between sucessive coefficients u2k+i — u2k+2 in (4.10) is positive.
Since the case n = 0 is trivial with ip0 = 1 and <K < 1, it then follows that for n =
0 ,1 ,2 , . . . i/k+i-^n <0, and therefore that the remainder function tpn in (4.1) for
J0(An) is a monotonically decreasing function of n. For n > 0, the most stringent case
arises when A = 1 since Sr>0, and Ank(A)gA^fc(l), where

n.fc(l)-n j ^ — J L1-4(n
( ) n +

4fc+4
M4fc+4 f / * , _ ] _ 1 \4fc+4 P i (h- -X- 1\(vi -X- h- -X- OM 1 / 1 h- 4- OY

= (n + 1)2 IV n / L4+ (n + 2fc + 3)2 J + 4 ~ \ + n )
4̂fc+4 r /^ _j_ J\4fc+4 (fc + \\(n-\- fc +2) k + 11

(n + 1) l\ n / (n + 2k + 3) n )
4k+4 fc(fc

upon repeated application of the binomial theorem. Therefore Anfc(l)>0 for n =
1, 2 , . . . , k = 0,1, 2 , . . . and the result follows.

As a consequence of the monotonic character of </fm we remark that 4/(4 +A2) <</»„<
1 for all positive integer n. This result may be employed to derive rational bounds for
J0(An) when 0 < A S l . This will be discussed more fully, together with the Bessel
function Jn(kn) of argument nearly equal to its order, in a future paper.

The results of this section may be easily generalised to the Bessel function
(3Are)~"J1,(An) with the corresponding remainder function

/n 1 2 ( ; , ; | )

By means of similar analysis, we then find the asymptotic formula

for large values of n. It is to be noted that the limit of tpn is independent of the order v.

5. Concluding remarks

We conclude with some remarks of a general nature concerning the higher order
hypergeometric function pFq(-n), defined in (1.9) with qSpSO, where the parameters
au ... ,Op and bu ..., bq are arbitrary complex numbers. It is readily shown that i/»n,
defined in the manner (2.1), may be expressed as

<£n = p+iFq+1(l, ax + n , . . . , Op + n; n +1 , bx + n,..., bq + n; - n),

provided none of the a,, r = 1 , . . . , p and br, r= 1 , . . . , q equals zero or a negative
integer.

When p < q, there is an excess s = q — p of denominatorial parameters and the
determination of the behaviour of if/n for large values of n may be easily obtained by
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formally expanding the series defining p+i-Fq+1(-n) to find

Since i^0= 1, it is evident that t̂ n in this case cannot be monotonic in character.
The most interesting case occurs when p = q, when the numbers of denominatorial

and numeratorial parameters are equal. It is conjectured in this case that

a result which is in accordance with Copson's result when p = q = 0 and (2.14) when
p = q = 1. It is seen that the limit of «|»n is always equal to § for the generalised
hypergeometric function pFp(— n), p = 1, 2 , . . . .

We remark, as noted by Buckholtz in the case of the exponential function, that the
corresponding discussion of the function pFQ(n) of positive arguement is of a more
recondite nature.
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