DERIVATIONS RELATED TO A SEPARABLE ELEMENT OF AN ALGEBRA

JAMES MARTIN and W. G. LEAVITT

(Received 19 March 1969, revised 15 July 1969)
Communicated by B. Mond

Let R be a C-algebra over a commutative ring C of zero characteristic. An element $a \in R$ will be called separable if there exists $p \in C[x]$ for which $p(a)=0$ and such that $p^{\prime}(a)$ is invertible, where p^{\prime} is the formal derivative of p. Call A the C-algebra generated by a_{R}, and a_{L}, the right and left multiplications by a, and write D_{a} for the inner derivation defined by a. It will be shown that when a is separable there exists $\phi \in A$ such that $\left[p^{\prime}(a)\right]^{-1} \phi D_{a}$ is idempotent. As a consequence it follows that the additive group of R may be decomposed into a direct sum of Ker D_{a} and $\operatorname{Im} D_{a}$. Another result is that for an arbitrary C-derivation δ there exists $d \in \operatorname{Im} D_{a}$ such that $a \delta=a D_{d}$. Thus $\operatorname{Ker} D_{a}$ (and also $\operatorname{Im} D_{a}$) is a δ-subgroup of R^{+}if and only if $a \delta=0$.

Theorem 1. Let a be separable over C with $p(a)=0$ and $h=p^{\prime}(a)$ invertible. There exists ϕ in the C-algebra A generated by a_{R} and a_{L} such that $h^{-1} \phi D_{a}$ is idempotent.

Proof. Suppose p has degree n, and we write

$$
\begin{equation*}
\theta=\sum_{k=1}^{n} \frac{p^{(k)}\left(a_{L}\right)}{k!} D_{a}^{k-1} \tag{1}
\end{equation*}
$$

where $p^{(k)}$ is the formal $k^{\text {th }}$ derivative of p. Now $p\left(a_{L}\right)=0$ and $a_{R}=a_{L}+D_{a}$. Then since A is a commutative algebra, it is easy to see that

$$
\theta D_{a}=\sum_{0}^{n} \frac{1}{k!} p^{(k)}\left(a_{L}\right) D_{a}^{k}=p\left(a_{R}\right)=0
$$

Relation (1) can be written in form $h^{-1} \theta=1-h^{-1} \phi D_{a}$ for some $\phi \in A$. Let $\alpha=h^{-1} \phi D_{a}$ then since h^{-1}, ϕ, and θ commute, we have $(1-\alpha) \alpha=h^{-2} \phi \theta D_{a}=0$. Thus α is idempotent.

Corollary 1. $R=\operatorname{Ker} D_{a} \oplus \operatorname{Im} D_{a}$.
Proof. Since α is idempotent it is well known that $R=\operatorname{Ker} \alpha \oplus \operatorname{Im} \alpha$. But $\operatorname{Im} \alpha \subseteq \operatorname{Im} D_{a}$ and since the elements of $\operatorname{Ker} D_{a}$ commute with a, we have Ker $D_{a} \subseteq \operatorname{Ker} \alpha$. Also $\theta D_{a}=0$ so (1) implies $0=D_{a}-\alpha D_{a}=D_{a}-D_{a} \alpha$. Thus Ker $\alpha \subseteq \operatorname{Ker} D_{a}$ and $\operatorname{Im} D_{a} \subseteq \operatorname{Im} \alpha$.

Also note that $\operatorname{Ker} \theta=\operatorname{Im} D_{a}$ and $\operatorname{Im} \theta=\operatorname{Ker} D_{a}$.
Lemma 1. Let $p(x)=\sum_{0}^{n} c_{j} x^{j}$, then (1) may be written alternately as

$$
\begin{equation*}
\theta=\sum_{j=1}^{n} c_{j} \sum_{i=0}^{j-1} a_{L}^{i} a_{R}^{j-i-1} \tag{2}
\end{equation*}
$$

Proof. Substituting $a_{R}=a_{L}+D_{a}$ in (2) yields

$$
\theta=\sum_{j=1}^{n} c_{j} \sum_{i=0}^{j-1} \sum_{k=0}^{j-i-1}\binom{j-i-1}{k} a_{L}^{j-k-1} D_{a}^{k}
$$

Invert the last two summations and sum the binomial coefficients over i to obtain $\binom{j}{k+1}$. Then changing limits on k and inverting the summations leads immediately to the result (1).

Theorem 2. If a is separable over C and δ is an arbitrary C-derivation in R, then there exists a unique $d \in \operatorname{Im} D_{a}$ such that $a \delta=a D_{d}$.

Proof. Since $p(a)=0$ it follows from Lemma 1 that $0=p(a) \delta=a \delta \theta$. Thus $a \delta(1-\alpha)=0$. Since $\alpha=h^{-1} \phi D_{a}$ is idempotent this implies

$$
a \delta=a \delta\left(h^{-1} \phi D_{a}\right)^{2}=a D_{d}
$$

where

$$
d=-a \delta h^{-2} \phi^{2} D_{a} \in \operatorname{Im} D_{a}
$$

To establish uniqueness suppose $a \delta=a D_{c}$ for some $c \in \operatorname{Im} D_{a}$. Then

$$
0=a D_{c}-a D_{d}=a D_{c-d} \text { so } c-d \in \operatorname{Ker} D_{a} .
$$

But also $c-d \in \operatorname{Im} D_{a}$ so by Corollary 1 we have $c-d=0$.
Theorem 3. If a is separable over C then a C-derivation δ maps Ker D_{a} into itself if and only if $a \delta=0$. When this is the case δ also maps $\operatorname{Im} D_{a}$ into itself.

Proof. By Theorem 2 we have $a \delta=a D_{d}=-d D_{a} \in \operatorname{Im} D_{a}$. Thus if δ maps Ker D_{a} into itself it follows that $a \delta \in \operatorname{Ker} D_{a} \cap \operatorname{Im} D_{a}=0$. Conversely, if $a \delta=0$ then $a x=x a$ implies $a(x \delta)=(x \delta) a$. It is also easy to see that $a \delta=0$ implies $D_{a} \delta=\delta D_{a}$ so δ also maps $\operatorname{Im} D_{a}$ into itseif.

Let γ be the projection of R onto Ker D_{a}.
Corollary 2. A C-derivation δ satisfies a $\delta=0$ if and only if $\gamma \delta=\delta \gamma$.
Proof. Since $a \delta \in \operatorname{Im} D_{a}$ and $a \gamma=a$ it is clear that $\gamma \delta=\delta \gamma$ implies $a \delta=0$. The converse follows immediately from Theorem 3.

Remark. If we write $a \delta=a D_{d}=-d D_{a}$ it is easy to show that $a \delta=0$ is also equivalent to either $d=0$ or $D_{d}=0$. Two other conditions equivalent to $a \delta=0$ are: $\gamma D_{d}=0$ or $\gamma D_{d}=D_{d} \gamma$.

Lemma 3. For an arbitrary $c \in \operatorname{Im} D_{a}$ we have $\gamma D_{c} \gamma=0$.
Proof. Let $x \in \operatorname{Ker} D_{a}$ then $0=x D_{a}=-a D_{x}$. By Corollary 2 this implies $\gamma D_{x}=D_{x} \gamma$. But $c \gamma=0$ and so for an arbitrary $y \in R$ we have $y \gamma D_{c} \gamma=-c D_{y \gamma} \gamma=$ $-c \gamma D_{y \gamma}=0$.

The question of conditions on a C-derivation δ so that $\operatorname{Ker} D_{a} \delta \subseteq \operatorname{Im} D_{a}$ is open. The following is a partial answer:

Theorem 4. The derivation D_{c} maps $\operatorname{Ker} D_{a}$ into $\operatorname{Im} D_{a}$ if and only if $c=c_{1}+c_{2}$ where $c_{2} \in \operatorname{Im} D_{a}$ and $c_{1} \in$ centralizer of $\operatorname{Ker} D_{a}$ in R.

Proof. Since $D_{c}=D_{c_{1}}+D_{c_{2}}$ the sufficiency follows from Lemma 3 and the fact that $D_{c_{1}}$ is zero on Ker D_{a}. Conversely, suppose $\gamma D_{c} \gamma=0$ for $c=c_{1}+c_{2}$ where $c_{1} \in \operatorname{Ker} D_{a}$ and $c_{2} \in \operatorname{Im} D_{a}$. Then by Lemma 3 we have $x D_{c_{1}} \in \operatorname{Im} D_{a}$ for all $x \in \operatorname{Ker} D_{a}$. But Ker D_{a} is a subring of R so $x D_{c_{1}} \in \operatorname{Ker} D_{a} \cap \operatorname{Im} D_{a}=0$. Thus $x c_{1}=c_{1} x$ for all $x \in \operatorname{Ker} D_{a}$.

Note. For an arbitrary C-derivation δ it follows from $a \delta \in \operatorname{Im} D_{a}$, by an easy induction, that $C[a] \delta \subseteq \operatorname{Im} D_{a}$. By the last theorem δ will not in general map all of Ker D_{a} into $\operatorname{Im} D_{a}$. In fact, the following is an example in which a derivation maps a member of Ker D_{a} into a non-zero member of $C[a]$.

Let C be the rational field and $K=C[a] /\left(a^{2}+a+1\right)$. Write $A=K[x, y]$ where $x y \neq y x$, and $I=(y x-x y-a)$, with $R=A / I$. The element $a \in R$ is separable over R with $p(a)=a^{2}+a+1=0$ and $p^{\prime}(a)$ invertible. Also $y D_{x}=a$ for $y \in \operatorname{Ker} D_{a}=R$. Thus the only question is whether or not R is trivial. However, it is clear that in each coset of A modulo I there is a unique element in form $\sum \alpha_{i} x^{m_{i}} y^{m_{i}}$ where $\alpha_{i} \in K$. Thus $R \neq 0$.

Remark that this example also shows that conditions on the images of $\operatorname{Im} D_{a}$ by a C-derivation δ (such as $\operatorname{Im} D_{a} \delta \subseteq \operatorname{Im} D_{a}$ or $\operatorname{Im} D_{a} \delta \subseteq \operatorname{Ker} D_{a}$) do not in general restrict δ.

Norfolk, Nebraska
and
University of Nebraska

