DERIVATIONS RELATED TO A SEPARABLE ELEMENT OF AN ALGEBRA

JAMES MARTIN and W. G. LEAVITT

(Received 19 March 1969, revised 15 July 1969)

Communicated by B. Mond

Let R be a C-algebra over a commutative ring C of zero characteristic. An element $a \in R$ will be called *separable* if there exists $p \in C[x]$ for which p(a) = 0 and such that p'(a) is invertible, where p' is the formal derivative of p. Call A the C-algebra generated by a_R , and a_L , the right and left multiplications by a, and write D_a for the inner derivation defined by a. It will be shown that when a is separable there exists $\phi \in A$ such that $[p'(a)]^{-1}\phi D_a$ is idempotent. As a consequence it follows that the additive group of R may be decomposed into a direct sum of Ker D_a and Im D_a . Another result is that for an arbitrary C-derivation δ there exists $d \in \text{Im } D_a$ such that $a\delta = aD_d$. Thus Ker D_a (and also Im D_a) is a δ -subgroup of R^+ if and only if $a\delta = 0$.

THEOREM 1. Let a be separable over C with p(a) = 0 and h = p'(a) invertible. There exists ϕ in the C-algebra A generated by a_R and a_L such that $h^{-1}\phi D_a$ is idempotent.

PROOF. Suppose p has degree n, and we write

(1)
$$\theta = \sum_{k=1}^{n} \frac{p^{(k)}(a_L)}{k!} D_a^{k-1},$$

where $p^{(k)}$ is the formal k^{th} derivative of p. Now $p(a_L) = 0$ and $a_R = a_L + D_a$. Then since A is a commutative algebra, it is easy to see that

$$\theta D_a = \sum_{0}^{n} \frac{1}{k!} p^{(k)}(a_L) D_a^k = p(a_R) = 0.$$

Relation (1) can be written in form $h^{-1}\theta = 1 - h^{-1}\phi D_a$ for some $\phi \in A$. Let $\alpha = h^{-1}\phi D_a$ then since h^{-1} , ϕ , and θ commute, we have $(1-\alpha)\alpha = h^{-2}\phi\theta D_a = 0$. Thus α is idempotent.

COROLLARY 1. $R = \text{Ker } D_a \oplus \text{Im } D_a$.

PROOF. Since α is idempotent it is well known that $R = \text{Ker } \alpha \oplus \text{Im } \alpha$. But Im $\alpha \subseteq \text{Im } D_a$ and since the elements of Ker D_a commute with a, we have Ker $D_a \subseteq \text{Ker } \alpha$. Also $\theta D_a = 0$ so (1) implies $0 = D_a - \alpha D_a = D_a - D_a \alpha$. Thus Ker $\alpha \subseteq \text{Ker } D_a$ and Im $D_a \subseteq \text{Im } \alpha$.

507

Also note that Ker $\theta = \operatorname{Im} D_a$ and $\operatorname{Im} \theta = \operatorname{Ker} D_a$.

LEMMA 1. Let $p(x) = \sum_{0}^{n} c_{j} x^{j}$, then (1) may be written alternately as

(2)
$$\theta = \sum_{j=1}^{n} c_j \sum_{i=0}^{j-1} a_L^i a_R^{j-i-1}$$

PROOF. Substituting $a_R = a_L + D_a$ in (2) yields

$$\theta = \sum_{j=1}^{n} c_j \sum_{i=0}^{j-1} \sum_{k=0}^{j-i-1} {j-i-1 \choose k} a_L^{j-k-1} D_a^k$$

Invert the last two summations and sum the binomial coefficients over *i* to obtain $\binom{j}{k+1}$. Then changing limits on *k* and inverting the summations leads immediately to the result (1).

THEOREM 2. If a is separable over C and δ is an arbitrary C-derivation in R, then there exists a unique $d \in Im D_a$ such that $a\delta = aD_d$.

PROOF. Since p(a) = 0 it follows from Lemma 1 that $0 = p(a)\delta = a\delta\theta$. Thus $a\delta(1-\alpha) = 0$. Since $\alpha = h^{-1}\phi D_a$ is idempotent this implies

$$a\delta = a\delta(h^{-1}\phi D_a)^2 = aD_d$$

where

$$d = -a\delta h^{-2}\phi^2 D_a \in \operatorname{Im} D_a.$$

To establish uniqueness suppose $a\delta = aD_c$ for some $c \in \text{Im } D_a$. Then

$$0 = aD_c - aD_d = aD_{c-d}$$
 so $c - d \in \text{Ker } D_a$.

But also $c-d \in \text{Im } D_a$ so by Corollary 1 we have c-d = 0.

THEOREM 3. If a is separable over C then a C-derivation δ maps Ker D_a into itself if and only if $a\delta = 0$. When this is the case δ also maps Im D_a into itself.

PROOF. By Theorem 2 we have $a\delta = aD_d = -dD_a \in \text{Im } D_a$. Thus if δ maps Ker D_a into itself it follows that $a\delta \in \text{Ker } D_a \cap \text{Im } D_a = 0$. Conversely, if $a\delta = 0$ then ax = xa implies $a(x\delta) = (x\delta)a$. It is also easy to see that $a\delta = 0$ implies $D_a\delta = \delta D_a$ so δ also maps Im D_a into itself.

Let γ be the projection of R onto Ker D_a .

COROLLARY 2. A C-derivation δ satisfies $a\delta = 0$ if and only if $\gamma \delta = \delta \gamma$.

PROOF. Since $a\delta \in \text{Im } D_a$ and $a\gamma = a$ it is clear that $\gamma\delta = \delta\gamma$ implies $a\delta = 0$. The converse follows immediately from Theorem 3.

REMARK. If we write $a\delta = aD_d = -dD_a$ it is easy to show that $a\delta = 0$ is also equivalent to either d = 0 or $D_d = 0$. Two other conditions equivalent to $a\delta = 0$ are: $\gamma D_d = 0$ or $\gamma D_d = D_d \gamma$.

LEMMA 3. For an arbitrary $c \in \text{Im } D_a$ we have $\gamma D_c \gamma = 0$.

PROOF. Let $x \in \text{Ker } D_a$ then $0 = xD_a = -aD_x$. By Corollary 2 this implies $\gamma D_x = D_x \gamma$. But $c\gamma = 0$ and so for an arbitrary $y \in R$ we have $\gamma \gamma D_c \gamma = -cD_{yy} \gamma = -c\gamma D_{yy} = 0$.

The question of conditions on a C-derivation δ so that Ker $D_a \delta \subseteq \text{Im } D_a$ is open. The following is a partial answer:

THEOREM 4. The derivation D_c maps Ker D_a into Im D_a if and only if $c = c_1 + c_2$ where $c_2 \in \text{Im } D_a$ and $c_1 \in \text{centralizer of Ker } D_a$ in R.

PROOF. Since $D_c = D_{c_1} + D_{c_2}$ the sufficiency follows from Lemma 3 and the fact that D_{c_1} is zero on Ker D_a . Conversely, suppose $\gamma D_c \gamma = 0$ for $c = c_1 + c_2$ where $c_1 \in \text{Ker } D_a$ and $c_2 \in \text{Im } D_a$. Then by Lemma 3 we have $xD_{c_1} \in \text{Im } D_a$ for all $x \in \text{Ker } D_a$. But Ker D_a is a subring of R so $xD_{c_1} \in \text{Ker } D_a \cap \text{Im } D_a = 0$. Thus $xc_1 = c_1 x$ for all $x \in \text{Ker } D_a$.

Note. For an arbitrary C-derivation δ it follows from $a\delta \in \text{Im } D_a$, by an easy induction, that $C[a]\delta \subseteq \text{Im } D_a$. By the last theorem δ will not in general map all of Ker D_a into Im D_a . In fact, the following is an example in which a derivation maps a member of Ker D_a into a non-zero member of C[a].

Let C be the rational field and $K = C[a]/(a^2 + a + 1)$. Write A = K[x, y]where $xy \neq yx$, and I = (yx - xy - a), with R = A/I. The element $a \in R$ is separable over R with $p(a) = a^2 + a + 1 = 0$ and p'(a) invertible. Also $yD_x = a$ for $y \in \text{Ker } D_a = R$. Thus the only question is whether or not R is trivial. However, it is clear that in each coset of A modulo I there is a unique element in form $\sum \alpha_i x^{n_i} y^{m_i}$ where $\alpha_i \in K$. Thus $R \neq 0$.

Remark that this example also shows that conditions on the images of $\text{Im } D_a$ by a *C*-derivation δ (such as $\text{Im } D_a \delta \subseteq \text{Im } D_a$ or $\text{Im } D_a \delta \subseteq \text{Ker } D_a$) do not in general restrict δ .

Norfolk, Nebraska and University of Nebraska