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DISTORTION THEOREMS FOR DIFFEOMORPHISMS 

W. HENGARTNER AND D. POULIN 

ABSTRACT. Generalizations of the Koebe distortion theorem to a class of diffeo-
morphisms are given. They are applied to univalent harmonic mappings. 

1. Introduction. Let/ be a complex-valued harmonic function defined on the unit 
disk U. Then/ can be written in the form/ = h+g where h and g belong to the linear 
space H(U) of analytic functions on U. In order to have a unique representation, we 
assume that g(0) = 0. 

Suppose now that in addition, / is also univalent on U. Without loss of generality, 
we may assume that/ is orientation-preserving, since if not, consider the function/(z). 
It follows then, that / is a solution of the (non-uniformly) elliptic partial differential 
equation 

fz=afz, aeH(U),\a\<lonU. 

Therefore, / is a locally quasiconformal and pseudo-analytic mapping of second kind on 
U. (For more details see e.g. [4] and [1].) Observe that/ G H(U) and hence is conformai 
if and only if a = 0, i.e. g = 0. 

A well known distortion theorem due to Koebe states that 

(i) W) -/(0)| > ^ ™ , zeu, 

for all univalent analytic functions on U. A generalization of (1) has been given by 
J. Clunie and T. Sheil-Small [2], which have shown that 

(2) ^~m^40W> 26f/' 
holds for all univalent harmonic and orientation-preserving mappings/ = h + g defined 
on U satisfying the condition/^(0) = g'(0) = 0. 

In this paper we give first two distortion theorems for a large class of diffeomorphisms 
defined on the unit disk U. As a corollary of Theorem 1, we get a generalization of Koebe's 
2 -Theorem. Our next result, Theorem 2, contains both, the sharp Koebe estimate (1) and 
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the result (2) of Clunie and Sheil-Small. For univalent harmonic mappings satisfying the 
properties above, Clunie and Sheil-Small have also shown that 

{w;\w-f(0)\<R}cf(U) 

implies that R < Ro = 2ir 9 ^ • The upper bound Ro is best possible but there is 
no univalent harmonic mapping of the considered class which has the property that 
{w ; \w — f(0)\ < Ro} belongs to f(U). In Theorem 4 we give a corresponding result 
for univalent harmonic mappings which are defined on the exterior of the unit disk and 
which are of the form 

f{z)=Az+Bz + Y;°»[-) + £*»(-)> 1*1 <W-
n=0 v ^ y n=\ V ^ 7 

In particular, we show that for any omitted value p, we have 

r2-! 
max{|f(z) - p | ; |z| = r}> (\A\ - |JS|)—^—, r > 1. 

where equality holds for the mapping 

— B A 
f(z) =Az + Bz+p - . 

z z 
The proof is based on Theorem 3, where we derive a corresponding result for the class 
of diffeomorphisms f on U which satisfy the inequality \f-z\ < c\z\p\fz\ for some c G [0,1] 
and some p > 0. Finally, we give in Section 3 a univalence criterion for orientation-
preserving harmonic mappings. 

2. Generalizations of the Koebe distortion theorem. We start with the following 
result: 

THEOREM 1. Letf be a diffeomorphism defined on U such that for some given p > 0 
and ce [0,1] 

(3) \fi\<c\z\PU 

for all z E U. Then we have the inequality 

REMARK. For c = 1 and/? = 1, we get the inequality (2). However the case c = 0 
does not yet give the classical Koebe estimate (1). 

PROOF. We modify the proof of J. Clunie and T Sheil-Small given for the case of 
harmonic mappings [2, Theorem 4.4]. First, observe that the inequality (4) is satisfied if 
/^(0) = 0. Hence, we may assume that/z(0) ^ 0. 
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Fix r € (0,1). Define 

(5) ^ = f j E T ^ - d « = W -

Observe that F(0) = 0, Fz(0) = 1 and that 

(6) \F-z(z)\<c^\z\p\Fz(z)\ zEU. 

Therefore we have also Fz(0) = 0. 

Next, choose e > 0 such that Ae = {w ; \w\ <e}c£l and define £l£ = Q. \ Ae. Since 
F is a diffeomorphism satisfying F(0) = F|(0) = 0 and Fz(0) = 1, we have 

n . F(eeit) = eeit + o(e) and} n 
( 7 ) F-l(eeit) = eelt + o(e)j as£^{)' 

Let T be the set of rectifiable Jordan arcs in Q£ joining dAe to dQ. We say that a 
measurable function p(w) > 0 is admissible for T if 

I p(w) \dw\ > 1 

for all 7 € T. In particular, put 

Then, for e small enough, 

(8) p(W)=i]^k/S^(^d\z\ ife<\z\<l 
I 0 otherwise 

is up to a uniform term of o(l) admissible for T, where w = F(z). Indeed, according to 
(8), we have 

> jF_i{^{r,z)\dz\ / jj{r,z)d\z\ 

> 1+^(1). 

The modulus M(Qe) of the ring domain £le is defined by 

1 r 2 

——— = inf / p {w)dudv (w = u + iv) 

where the infimum is taken over all admissible p for T. 
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For the particular p defined in (8) we get (up to an additional term o(l)) from (6) and 

(7) 

- JUO.) W' Z) M de I Of ̂ z) dlzl)2 

= j f / Wr,z)d[z\dO I {Jl iKr,z)d\z\)2 + 0(1). 

as e tends to 0. 
Hence, 

1 /-i 

(9) 

M(QS) > — ( xl;(r,z)d\z\+o(l) 

= — ( - l n [ e ] - - l n [ l + c r ? ? ] + - l n [ l + c r p ^ ] l + o(l). 
Z7T I /? /? J 

Let 8 be the distance of d Q from the origin. Without loss of generality, we may assume 
that S E d Q. Then by Grôtzsch [4], we have 

(10) M(«e) < M(De), 

whereDe = C\{[<$,co)U{u>; |w| < e}}. 
For e small enough, we conclude from [4; Section 2.3 of Chapter 2] that 

[) Af(Dc) = ^ - l n 
27T 

\A8-

i e . 
+ 0(1). 

From (9), (10) and (11), we get 

ln[4S] > - In 
P 

1+crPeP' 
. 1 + crP . 

+ 0(1). 

letting e —• 0, we obtain 

\F(eu)\ = 
/ ( r O - / ( 0 ) 

r-/,(0) 
>s> 1 

" 4(1 +crf)2/P 

and the theorem is proved. 
As an immediate consequence, we get a generalization of the Koebe \-Theorem: 

COROLLARY 1. Letf be defined as in Theorem 1. Then 

(12) {W>_ / (0)|<-J^}c/(I/). 
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If c = 0 and \z\ is small, then the inequality (4) is not best possible. Our next result 
gives an improvement of Theorem 1 for the cases/? > 1. 

THEOREM 2. Letf be a diffeomorphism defined on U such that for some given p > 0 
andc E [0,1] 

(i3) \k\<c\zm, 
for all z G U. Then we have the inequality 

(14) \f(z) - / ( 0 ) | > 
16(0)1 \z\ 

( 1 + C ) 2 / P ( 1 + |Z|)2 ' 
zEU. 

REMARKS. (1) If c = 0 orp = oo, then/ is a univalent conformai mapping and the 
inequality (14) reduces to the classical sharp Koebe estimate (1). 

(2) Let/ = h+g be a univalent harmonic and orientation-preserving mapping defined 
on U having the property that g'(0) = 0. Then, by Schwarz's lemma, the condition (13) 
is satisfied with c = 1 and p = 1 and the inequality (14) reduces to the form (2). 

(3) For/? = 1 and c = 1, we conjecture that (14) may be replaced by 

(15) i/(rc' ' ')-/(0)|>|Z(0)|rexp 

where equality holds for the univalent mapping 

-4zi 

-4r 
1+r 

(16) « s l+z 
f(z) = Z-— exp 

1 +z Ll+zJ 

PROOF. Fix r e (0,1) and t € [0, 2TT]. Define 

z 
Uz) = 

(17) G(z) = 
(1+r)2 

( l+e- ' ' z ) 2 ' 
4r 

Mz) 

4r 

L(l+r)2 

\f(o>i(.z)) - / ( 0 ) ] 

Observe that G(0) = 0, Gz(0) =/z(0) and that 

(18) G{ell)Jll!lmrel^fm=V(re'')-fm 
Ar ux y JX ' A(r) 

Since ut(z) is a Schwarz function, i.e. ujt(z) is analytic and \u)t{z)\ < \z\ on U, we get 

, . = \fz(u<(z))\WM cMO|p|fe(^(z))|K(z)| clzP |6(^(0) | K(Z)| 
1 l ( Z ) | A(r) - A(r) ~ A(r) 

= c\z\p\Gz(z)\ 

and therefore we have 
(19) \G-Z(z)\ < c\zf\Gz{z)\ z G U. 

https://doi.org/10.4153/CMB-1994-052-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-052-9


356 W. HENGARTNER AND D. POULIN 

Applying Corollary 1 to G we get 

1(1+r)2 

(20) \G(elt)\ = 
Ar 

-\f(relt)-f(0)] > lfz(0)| 
4 ( 1 + C ) 2 / P 

and Theorem 2 follows immediately. 
Our next result gives a sharp estimate for the largest possible disk centered at the 

origin lying in the image f(U). 

THEOREM 3. Letf be a diffeomorphism defined on U such that for some given p > 0 
andc G [0,1] 
(21) \fz\<c\z\%\, 

for all z G U. Then we have the inequality 

(22) min{l/(z) - / ( 0 ) | ; |zj =r}<({
 Vf^)2/p, z€U. 

The inequality is best possible. 

PROOF. Let r, F, e and £l6 be as in the proof of Theorem 1 and let T be the set of 
rectifiable Jordan arcs in Qe separating 3A£ and d£l. Then, for e small enough, 

(23) p(w) = ( 2,r|z|(|F2HF2|)> if ^ < N < 1 
10 otherwise 

is up to a uniform term of o(l) admissible for T, where w = F(z). The modulus M(Q£) of 
the ring domain Qe is determined by 

p (w) dudv (w = u + iv) 

where the infimum is taken over all admissible p for T. Again let 6 be the distance of 
d Q from the origin. Since the annulus {w ; e < \w\ < 6} lies in Qe we conclude, by the 
superadditivity of the moduli, that 

1 . fS 
2 ^ l n 

r 

( - ) <M(Qe) < JF.Hiic)P
2{F(z))(\Fz\

2 - \F-Z\2)dxdy (z = x + iy) 

_ r 1 \FZ\ + \F-Z\ 

~ JF-HO.) 4TT2|ZP \FZ\ - \F-Z\ y 

^ / / T^Ti-, T T Û ^ k \ d t + o(l) 
JO Je 4lî2\z\ 1 -Clf\z\P 

I f 2 r 1 - crPsP I ^ 
- | - l n [ e ] + - l n — — +o(l). 

2?r 

as e tends to 0. 
Therefore, we get 

™mz)-f(0)\;\z\ = r}< (^
r
)2^ zeu. 
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It remains to show that the inequality is best possible. For c = 0 or p = oo, the 
inequality (22) follows from the minimum modulus principle applied to /(z)~f(Q) and 
equality holds if and only iff(z) = az + b. Let 0 < c < 1 and/? > 0. Consider the 
function 

f(z)= (\-C\Z\P)2IP' 

Direct calculations show that the partial derivatives 

cL\z\p 

Mz) = T l+2 
(l-c\z\n ï 

and 

fz(D = 1 

(\-C\Z\P)UÏ 

are continuous functions on U satisfying the property 

\fz(z)\=c\z\p\fz(z)\. 

Next, we show that f is univalent on U. Since /(0) = 0 and arg/(z) = argz, it is 
sufficient to verify that |j4 > 0 on U. We have 

al /W)l = d + g^) > Q 
dr (l-crP)l+1p 

and Theorem 3 is established. 
Let/ = h + g be a univalent harmonic and orientation-preserving mapping defined on 

[/ having the property that g'(0) = 0. Then, by Schwarz's lemma, the condition (13) is 
satisfied with c = 1 and/? = 1. As we have mentioned in the introduction, Clunie and 
Sheil-Small [2] have shown that for such harmonic mappings the inequality 

(24) min{\f(z)-f(°)\;\z\=r}<27y^Mr, 0 < r < l . 

holds. The estimate, which is best possible for r = 1, is much better than our inequality 
(22). However, we get sharp estimates for univalent harmonic mappings defined on the 
exterior of the unit disk. 

Let A = {w ; | w| > 1} be the exterior of the closed unit disk V and let f be a univalent 
harmonic and orientation-preserving mapping defined on A which maps infinity onto 
itself. Then/ is of the form 

n=0 ^Z' n=\ V ^ 

We restrict ourself to the case where C = 0, i.e. to mappings of the form 

(25) f{z)=Az + Bz + 2C\n\z\+Y,an ( - ) + E M - ) 

_ ;!)"+£*-(lA" 
—0 \zJ n=i Vz> 

It follows then that A ^ 0 and \B\ <\A\. 

(26) f(z)=Az+Bz + Y.a«(-) + E M - ) 
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THEOREM 4. Let f be a univalent harmonic and orientation-preserving mapping 
defined on À which is of the form (26) and let p be a point of the complement of 
/(A). Then we have 

r2-! 
(27) max{|/Xz) -p\ ; \z\ = r} > (\A\ - \B\)—j—, r > 1. 

Furthermore, equality holds for the mapping 

(28) f(z)=Az + Tz+p---i. 
z z 

PROOF. Define 

Mz) = —-—, 

, , , Mz)-*m 
fi(z) = 

and 

Then 

ato^™ 
(fiUz) 

b(Q = afy=a<;2 + 0(e), | o r | < l , 1 

is an analytic function on U and by Schwarz's lemma, we have \b(Q\ < \(,\2 for all £ in 
U. Define 

8(0 l 

Then g is a diffeomorphism on U satisfying the inequality 

l«2(0l = HOI \g((Q\ < IC|2U<(0I 

for all £ E U. Since g(0) = 0 and g^(0) = 1, we conclude from Theorem 3 (c = 1 and 
p = 2) that 

r 
min{\g(z)\ ; \z\ = r) < j — ^ , r < l -

Therefore, we have 

?-\ 
(29) max{[/2(z)| ; \z\ = r) > —y-, r>\. 

The latter inequality is best possible for the univalent harmonic mapping 

(30) F2(z) = z-X-. 
z 
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Since 

f(z) -p=Afx (z) = A (f2(z) + -f2(z)), 

we get from (29) the estimate 

. r 2 - ! / . \B\ 
max{\f(z)-p\ ; |z| = r} > \A\—^-{l - | - | ) 

f 2 - ! 
( |A|- |B|) , r>\. 

Since equality of (29) holds for F2 defined in (30), and since F2{relt) - !-^-elt, equality 
in (27) holds for 

(31) F(z)=A\ 
1 

z— -
z 

and the statement of Theorem 4 follows. 

+p + B 
1 

z — 
ZJ 

3. A univalence criterion for harmonic mappings. Let now/ = h+g be a univalent 
harmonic mapping defined on U. Without loss of generality, we may assume that / is 
orientation-preserving, i.e. that a = g'/h' E H(U) and \a\ < 1 on U. 

Consider the conformai transformation 

T(z) = 
Z+Z\ 

1 +Z\Z 

for a fixed z\ 6 U and put 

(32) G(z) = (f o T){z) - {a o T)(0)(f o D(z). 

Then G is again a univalent harmonic mapping defined on U and, by Schwarz's lemma, 
we have 

^(z ) 
(aoD(z)-(aoD(O) <N-| l - ( a o D ( 0 ) ( a o r ) ( z ) | 

Hence, G satisfies condition (3) with c = p = 1 and Theorem 1 (or Theorem 2) applies. 
We get, according to (4) or (14), 

^-o^^m-
\z\ 

which leads us to 

W o T)(z) - (f o D(0)| > 4 ( 1 ^ |(f o 7%(0)|(l - |(a o D(0)|). 

Defining Z2 = ?XzX we conclude that 

(33) \f(z2)-f(zù\ > , h
| 1 " ! r | 2 | l | 7

2 ~ Z
7

l l
h 2 ( l - |z,|2)|*'(zi)|(l - Kzi) |) . 

(|1 - Z\Z2\ + \Z2 ~ Z\\Y 

THEOREM 5. Letf = h + g be an orientation-preserving mapping defined on U. Then 
f is univalent if and only if (33) holds. 
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REMARK. In the case of analytic functions, there is an analogous result called the 
Invariant Koebe Distortion theorem [3]. 

PROOF. The necessity of condition (33) for univalence has been already shown. 
Hence, suppose that/(g) = /(£) for a couple ( z , ( ) 6 ( / x ( / , 2 / Ç By (33), it follows 
that h'(z) = 0 and since/ is orientation-preserving, we get also g'(z) = 0. Since/ is a 
harmonic mapping, it follows that/ is at least two-valent in any neighborhood of z. Such 
a result does not hold in general for quasi-regular mappings as the example z\z\2 shows. 
It follows then that there exist two sequences zn, <̂  in U, n G N, such that zn —

¥ z , d —• z 
and f(zn) =/(Ci)- Applying again (33), we get h\zn) = g'(zn) = 0 and, by the identity 
principle, we conclude that/ = h + g is a constant, which contradicts our assumption that 
/ is an open and orientation-preserving mapping. 
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