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Abstract In this note, we prove that the moduli stack of vector bundles on a curve with a fixed
determinant is A1-connected. We obtain this result by classifying vector bundles on a curve up to A1-
concordance. Consequently, we classify Pn-bundles on a curve up to A1-weak equivalence, extending a
result in [3] of Asok-Morel. We also give an explicit example of a variety which is A1-h-cobordant to a
projective bundle over P2 but does not have the structure of a projective bundle over P2, thus answering
a question of Asok-Kebekus-Wendt [2].
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1. Introduction

Let C be a smooth projective curve of genus g over a field k. Fix a line bundle L∈Pic(C).

Consider the following moduli stack Bunn,L.
Bunn,L(Y ) = { category of rank n vector bundles on C×Y , such that for any object

V, detV ∼= p∗(L), where p : C×Y → C}
This is a smooth algebraic stack [1, Prop 1.3]. Any stack can be regarded as a simplicial

sheaf via the nerve construction (see [6]) and thus it defines an object in the A1-homotopy

category. Therefore, it makes sense to talk about A1-connectedness of Bunn,L. Following
is the main theorem of this note:

Theorem 1.1. Bunn,L is A
1-connected for any curve C over an infinite field k and

L ∈ Pic(C).

The proof of Theorem 1.1 relies on finding an explicit A
1-concordance (see [2,

Definition 5.1] or Definition 2.1) between a vector bundle E of rank n and determinant L
to the vector bundle On−1

C ⊕L. This is achieved by induction on n. In the course of this

proof, we also achieve the classification of vector bundles of a given rank on the curve C

https://doi.org/10.1017/S1474748023000087 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0001-5345-7221
mailto:amit@iiserpune.ac.in
mailto:suraj.yadav@ur.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748023000087&domain=pdf
https://doi.org/10.1017/S1474748023000087


1020 A. Hogadi and S. Yadav

up to A
1-concordance (Theorem 2.5). Once the question of A1-connectedness of Bunn,L

is settled, it is natural to wonder the same about its open substack Buns
n,L, the moduli

of stable vector bundles for a curve of genus greater than 1. Assuming that n and degree

of L are co-prime, k algebraically closed, the coarse moduli space is known to be rational

([8, Theorem 1.2]) and one may be tempted to conclude that A
1-connectedness of an

algebraic stack is dictated by that of its coarse moduli space (if it exists). However, in
Example 2.9, we show that this simply is not the case. We give an example of “stacky”

P
1, an orbifold with P

1 as a coarse moduli space, which is not A
1-connected. It should

also be noted that the A1-connectedness is not preserved under rationality of a morphism
of schemes as illustrated by Gm ↪→ A

1.

Related to A
1-concordance is the notion of an A

1-h-cobordism ([3, Definition 3.1.1]

or Definition 3.1). Furthermore, projectivizations of two A
1-concordant vector bundles

are A
1-h-cobordant. As an application of A

1-connectedness of Bunn,L, we obtain the

following theorem which classifies P
n-bundles over any curve of genus g up to A

1-weak

equivalence. This extends the result on classification of Pn-bundles over P1 given in [3].

Theorem 1.2. Let X = PC(E) and Y = PC(F) be P
n-bundles over C, where C lies over

an infinite field. Then the following are equivalent:

(1) X and Y are A
1- weakly equivalent.

(2) X and Y are A
1-h-cobordant.

(3) det(E)⊗det(F)−1 = L⊗n+1, for some L ∈ Pic(C).

In another application of our theorem, we answer a question raised in [2]: whether a
variety which is A1-h-cobordant to a P

1-bundle over P2 has a structure of P1-bundle over

P
2. The answer is no and we prove in the following theorem that the suggested example

in op. cit. indeed works.

Theorem 1.3. Let X := PP1(E), where E := O⊕O(−1)⊕O(1) on P
1
k (where k is an

infinite field). Then X is A
1-h-cobordant to P

1
k ×P

2
k but doesn’t have the structure of a

P
1
k-bundle over P

2
k.

2. Classification of vector bundles on a curve up to A
1-concordance

In this section, we classify vector bundles on a curve up to A
1-concordance (Theorem 2.5)

and obtain the proof of Theorem 1.1 as a consequence of that. Recall the following
definition from [2].

Definition 2.1. [2, Definition 5.1] Let X be a scheme over a field k. Then two given

vector bundles E0 and E1 on X are said to be directly A
1-concordant if there exists a

vector bundle E on X×A
1 such that i∗0E ∼= E0 and i∗1E ∼= E1, where ik :X×{k} ↪→X×A

1,

for k=0,1. E0 and E1 on X are A1-concordant if they are equivalent under the equivalence

relation generated by direct A1-concordance.

Lemma 2.2. Let E0 and E1 be A
1-concordant vector bundles on a normal variety X,

and let V be a vector bundle on X×A
1. Then (i∗0(V)⊗L)⊕E0 and (i∗1(V)⊗L)⊕E1 are

A
1-concordant, for any L ∈ Pic(X).
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Proof. It is enough to prove the lemma in the case when E0 and E1 are directly A
1-

concordant. Let the direct A
1-concordance be given by a vector bundle E on X ×A

1.
Note that p∗ : Pic(X)→ Pic(X×A

1) (where p :X×A
1 →X) is an isomorphism (see [5,

II, Prop. 6.6]) with the inverse given by i∗0 = i∗1. Then the lemma immediately follows

from the definition by considering the vector bundle (V ⊗p∗L)⊕E and the fact that the

pullback functor commutes with the direct sums.

In light of the previous lemma, the following corollary is rather obvious, but we state

it nevertheless, keeping in mind its direct application in the proof of Theorem 1.1.

Corollary 2.3. Let E0 and E1 be A
1-concordant vector bundles on a normal variety X

Then the following statements hold:

(1) On
X ⊕E0 and On

X ⊕E1 are A
1-concordant for any n≥ 0.

(2) OX(m)⊕E0 and OX(m)⊕E1 are A
1-concordant for any m.

Proof. For the first statement, take V = On
X×A1 , keeping the notation of the previous

lemma in mind.
For the second statement, take V =OX×A1 and L= p∗OX(m).

2.1. A
1-concordance via Ext classes

Now we look at a way of constructing A
1-concordance between vector bundles.

Proposition 2.4. Let 0→E0 →E →E1 → 0 be any short exact sequence of vector bundles

on a projective scheme X over a field k. Then E is directly A
1-concordant to E0⊕E1.

Proof. Consider E as an element in Ext1(E1,E0). If E is trivial, then our claim is
obvious, so assume to the contrary. Consider the moduli functor Ext1(E1,E0) given by

Y �→ Ext1(p∗E1,p∗E0), where p :X×Y →X. It is well-known ([7, Proposition 3.1]) that

this functor is representable by A
n
k , where n = dim(Ext1(E1,E0)) as a vector space over

k and n > 0 by the assumption that E is nontrivial. Therefore, by representability, there
is a universal class V (of vector bundle) on X×A

n
k whose pullback to X× ti ↪→X×A

n
k ,

i = 0,1 is E and E0 ⊕E1 respectively for some k -rational points ti ∈ A
n
k . For any two

given k -rational points in A
n
k (in our case t0 and t1), there is a closed embedding

i : A1
k ↪→ A

n
k such that the composition Speck

0−→ A
1
k

i−→ A
n
k is t0 and the composition

Speck
1−→ A

1
k

i−→ A
n
k is t1. Now consider the pullback of the universal class, (idX × i)∗V,

via the map idX × i :X×A
1
k →X×A

n
k . By construction, the vector bundle (idX × i)∗V

on X×A
1
k gives a direct A1-concordance between E and E0⊕E1

2.2. Classification result and proof of Theorem 1.1

Theorem 2.5. Let E and F be rank n vector bundles on the curve C. Then the following
hold:

(1) E is A
1-concordant to On−1

C ⊕det(E).
(2) E is A

1-concordant to F iff det(E)∼= det(F).
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Proof. We first prove (1) for the case when n = 2. For the general case we will use

induction.

Case 1 : n = 2. First, assume E is globally generated and denote det(E) by L. Then, by
[5, II, Exercise 8.2], we have the following short exact sequence

0→OC →E → E ′ → 0 (2.1)

where E ′ is a line bundle. By the Whitney sum formula of Chern classes ([4, Theorem
5.3(c)])

c1(L) = c1(E) = c1(OC)+ c1(E ′) = c1(E ′).

Therefore, by Proposition 2.4, E is directly A
1-concordant to OC ⊕L. For a general E ,

choose m >> 0 such that E(m), L(m) are globally generated. Then again, by applying
[5, II, Exercise 8.2], we get a short exact sequence for E(m) which we tensor by O(−m)

to obtain the following short exact sequence.

0→OC(−m)→E →L(m)→ 0 (2.2)

This proves E is directly A
1-concordant to OC(−m)⊕L(m). As the final step, we now

prove that OC(−m)⊕L(m) is directly A
1-concordant to OC ⊕L. Note that m is chosen

such that L(m) is globally generated, therefore OC(m)⊕L(m) is globally generated.
Hence, we have a short exact sequence which shows OC(−m)⊕L(m) is directly A

1-

concordant to OC ⊕L.

0→OC(−m)→OC ⊕L→L(m)→ 0 (2.3)

Therefore, E is A1-concordant to OC ⊕L.

Case 2 : Now we handle the general case. So assume n > 2 and choose m such that E(m)

and L(m) are globally generated. Then we have a short exact sequence giving a direct

A
1-concordance between E and OC(−m)⊕E ′, where E ′ is a vector bundle of rank n−1

with determinant L(m). By induction, E ′ is A
1-concordant to On−2

C ⊕L(m). Therefore,

by the second statement of Corollary 2.3, we have an A
1-concordance between OC(−m)⊕

On−2
C ⊕L(m) and OC(−m)⊕E ′. Hence, E is A

1-concordant to O(−m)⊕On−2
C ⊕L(m).

Now by the short exact sequence 2.3, OC ⊕L is directly A
1-concordant to OC(−m)⊕

L(m), which implies, by the first statement of Corollary 2.3, that O(−m)⊕On−2
C ⊕L(m)

is directly A
1-concordant to On−1

C ⊕L, thus finishing the proof of (1).

For proving (2), we first observe that if det(E) ∼= det(F), then (1) implies that E is
A

1-concordant to F . Hence, it remains to show that if E is directly A
1-concordant to F ,

then det(E)∼= det(F).

So assume that E is directly A
1-concordant to F , which by definition gives us a vector

bundle E ′ on C ×A
1 such that i∗0E ′ ∼= E and i∗1E ′ ∼= F . We have c1(detE) = c1(i

∗
0E ′) =

i∗0(c1(E ′)), where the first equality follows from the isomorphism i∗0E ′ ∼= E and the fact that

for any vector bundle V, c1(V) = c1(detV), while the second equality is the functoriality of
Chern classes ([4, Theorem 5.3(d)]). Similarly, we have c1(detF) = c1(i

∗
1E ′) = i∗1(c1(E ′)).

Moreover, (i0)
∗ = (i1)

∗ : CH1(C ×A
1) → CH1(C), which implies c1(detE) = c1(detF)

Therefore, det(E)∼= det(F).
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Before we proceed with the proof of Theorem 1.1, we recall some standard definitions.

Definition 2.6. Let X be a simplicial sheaf and U a scheme. Then x and y in X (U) are
said to be naively A

1-homotopic if there exists f : A1
U →X such that f0 = x and f1 = y,

where fi is the composition U
i−→ A

1
U

f−→X , for i= 0,1.

Definition 2.7. For a given simplicial sheaf X , we define S(X ) to be the Nisnevich

sheafification of the presheaf U �→ X (U)/∼, where ∼ is the equivalence relation generated

by naive A
1-homotopies.

The following standard lemma will be required in our proof. It is essentially [11,

Section 2, Corollary 3.22] combined with [9, Lemma 6.1.3.],

Lemma 2.8. A simplicial sheaf X is A
1-connected if S(X )(F ) = ∗ for every finitely

generated field extension F over k.

Now we have all the ingredients in place to prove Theorem 1.1.

Proof of Theorem 1.1. We regard Bunn,L as a simplicial sheaf. By definition, any two

F -valued points of Bunn,L are two rank n (with determinant condition) vector bundles,
say E0 and E1 on C. A morphism A

1
F →Bunn,L is a vector bundle E on C×A

1. Then E0
and E1 are naively A

1-homotopic if and only if they are A
1-concordant. By Theorem 2.5,

both E0 and E1 are A
1-concordant to On−1

C ⊕L. Hence, they are A
1-concordant to each

other. Therefore, by Lemma 2.8, Bunn,L is A1-connected.

Motivated by the question of A1-connectedness of moduli stack of stable vector bundles,

we observe in the example below that there does not seem to be an immediate way of

concluding A
1-connectedness of a stack by looking at its coarse moduli space.

Example 2.9. Let C be a curve of genus 2 over a field with characteristics not equal
to 2. In particular, it is a hyperelliptic curve (See [5, IV, Exercise 1.7(a)]). Therefore, there

is a finite morphism f : C → P
1 of degree 2, and we have an action of the finite group

G := Z/2Z on C. By [5, IV, Exercise 2.2(a)], such a morphism is unramified at all but 6
points (denoted as closed subscheme Z ′) of C. So the action of G is free on C \Z ′. Let
Z denote the closed subset in P

1 corresponding to the 6 branched points. The quotient

stack
[
C/G

]
has coarse moduli space P

1, and the morphism π :
[
C/G

]
→ P

1 gives an

isomorphism of an open subscheme of
[
C/G

]
with P

1 \Z. See [12, Example 8.1.12] for
more details on quotient stacks.

Let E(G) denote the simplicially contractible, simplicial sheaf with E(G)n =Gn+1 (See

[11, Example 1.11, page 128]). The morphism C →
[
C/G

]
is a G-torsor. Moreover, G acts

freely on the space E(G)×C and (E(G)×C)/G

[
C/G

]
. πA

1

0 (G)∼= Z/2Z, being a finite

abelian group, is a strictly A
1-invariant sheaf. So all the hypotheses of the statement of

[10, Theorem 6.50] are satisfied, as a consequence of which we obtain the following long
exact sequence of A1-homotopy groups/pointed sets, where ∗ is a chosen basepoint.

· · · → πA
1

0 (G,∗)→ πA
1

0 (E(G)×C,∗)→ πA
1

0 (
[
C/G

]
,∗)→∗
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But on the account of E(G) being simplicially contractible and C being A
1-rigid (as all

curves of genus g > 0 are), πA
1

0 (E(G)×C) ∼= πA
1

0 (C) ∼= C. So by long exact sequence,[
C/G

]
being A

1-connected would imply surjection of finite group Z/2Z on C ∼= πA
1

0 (C),

which cannot happen.

Remark 2.10. By definition, any hyperelliptic curve of genus g admits a finite map

of degree 2 to P
1. By Hurwitz’s theorem, such a morphism has 2g+2 ramified points.

Therefore, Example 2.9 can be generalised to an hyperelliptic curve of any genus (which
is necessarily greater than 1).

3. Applications

As applications of the results in the previous section, we give a proof of Theorem 1.2 and
Theorem 1.3. We first recall the following definition from [3].

Definition 3.1. [3, Definition 3.1.1] Let X0 and X1 be smooth and proper varieties over
k. They are directly A

1-h- cobordant if there exists a smooth scheme X with f :X →A
1

a proper surjective morphism such that

(1) the fibers of f over 0 and 1 are X0 and X1 respectively

(2) the natural maps Xi ↪→X for i= 0,1 are A
1-weak equivalences.

X0 and X1 are A
1-h-cobordant if they are equivalent under the equivalence relation

generated by direct A1-h-cobordance.

While A
1-concordance is a relation between vector bundles, A1-h-cobordism a relation

between proper schemes. Note that by [2, Lemma 6.4], projectivizations of A1-concordant

vector bundles are A
1-h-cobordant.

Recall that, given a locally free sheaf E of rank n+1 on a scheme X, the associated

P
n-bundle, denoted PX(E), is the scheme ProjX(Sym(E)). Here, Proj is the relative proj

construction and Sym(E) is the symmetric algebra of E as an OX -module. See [5, II, page
162] for more details.

We now paraphrase the classification of Pn-bundles on P
1 up to A

1-weak equivalence

proved in [3] to highlight that Theorem 1.2 is its direct generalisation to an arbitrary
smooth projective curve.

Proposition 3.2. [3, Proposition 3.2.10] Let X := P(On
P1 ⊕OP1(a)) and Y := P(On

P1 ⊕
OP1(b)) be two P

n-bundles over P
1. Then the following statements are equivalent:

(1) X and Y are A
1- weakly equivalent.

(2) X and Y are A
1-h-cobordant.

(3) n+1 divides a− b.

Note that in case of C = P
1, the condition det(E)⊗det(F)−1 = L⊗n+1 in Theorem 1.2

exactly translates to the fact that n+1 divides a−b as stated in the Proposition 3.2. This

is due to Pic(P1) being isomorphic to Z. For a general curve, Picard group is much more

complicated and humongous (think of the Jacobian variety of a curve), so one doesn’t
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get any further simplification. We now prove Theorem 1.2, which is an extension of the
previous proposition.

Proof of Theorem 1.2. (3) =⇒ (2): By Theorem 2.5, E is A1-concordant to On
C ⊕L1,

where L1 = det(E) and F is A
1-concordant to On

C ⊕L2, where L2 = det(F). Hence, X
and PC(On

C ⊕L1) are A
1-h-cobordant. In the exact same manner, Y and PC(On

C ⊕L2)

are A1-h-cobordant. Suppose L1⊗L−1
2 =L⊗n+1. That implies L1 =L⊗n+1⊗L2 for some

L∈Pic(C). Let E ′ =(On
C⊕L2)⊗L. Then det(E ′)=L1. Therefore, P(E ′) is A1-h-cobordant

to P(On
C ⊕L1). Furthermore, P(E ′) is isomorphic (as a scheme) to P(On

C ⊕L2) by the

general fact that tensoring a vector bundle by a line bundle gives an isomorphism of

projectivization of the two vector bundles. This proves X and Y are A
1-h-cobordant.

(2) =⇒ (1): this is immediate from the definition of A1-h-cobordism.
(1) =⇒ (3): A1-invariance of the Chow rings implies that it is enough to show that

the Chow rings of P(On
C ⊕L1) and P(On

C ⊕L2) are not isomorphic if L1⊗L−1
2 �= L⊗n+1

for any L ∈ Pic(C). The Chow ring of C – which is simply Z⊕Pic(C), with product of
any two line bundles under the ring structure being zero – is denoted R. For simplicity of

notation, we will denote On
C⊕Li, i= 1,2 by Ei. Then by the projective bundle formula for

the Chow rings [4, Theorem 9.6], the Chow ring of P(E1) is R1 :=R[ζ]/(ζn+1+c1(E1)ζn).
But c1(E1) = c1(L1). In the ring R1, ζ as well as any element x ∈ Pic(C) has grading 1

with xy = 0 for x,y ∈Pic(C). Let’s assume we have a graded ring isomorphism φ between

R1 and R2 := R[σ]/(σn+1 + c1(L2)σ
n). Then such an isomorphism has to respect the

grading and hence φ(ζ) = x+aσ, where x ∈ Pic(C) and a ∈ Z. Similarly, φ−1(σ) = y+bζ,
where b ∈ Z and y ∈ Pic(C). We first prove that a = ±1. The condition φ−1 ◦φ(ζ) = ζ

implies that x+ay+abζ = ζ. Hence, ab= 1, so a=±1.

By the graded ring structure of R1, as discussed before, xi = 0 for any i > 1.
Moreover, φ(ζn+1+c1(L1)ζ

n) has to be divisible by σn+1+c1(L2)σ
n in R2. First assume

a = 1. Proof for the case a = −1 is similar. We expand φ(ζn+1 + c1(L1)ζ
n) as σn+1 +

σn((n+1)x+ c1(L1)) and this expression is divisible by σn+1 + c1(L2)σ
n. Comparing

coefficients, we conclude that c1(L1)− c1(L2) = (n+1)x. This implies that L1⊗L−1
2 =

L⊗n+1, where c1(L) = x.

Now, we answer a question raised in [2] negatively.

Question 3.3. [2, Question 6.9.1] If X is any smooth projective variety that is A
1-h-

cobordant to a P
1-bundle over P

2, does X have the structure of a P
1-bundle over P

2?

The authors further add the answer is possibly no, and nontrivial rank three vector

bundles over P
1 deformable to the trivial one are the likely counterexamples. We now

prove Theorem 1.3 which shows that the example alluded to above is indeed a correct
counterexample.

Proof of Theorem 1.3. By Theorem 2.5, X := P(E) π−→ P
1 is A

1-h-cobordant to the

trivial P2- bundle on P
1, namely, P1×P

2. However, X and P
1×P

2 are not isomorphic
as schemes. By [5, II, Exercise 7.9(b)], an isomorphism would imply that for some line

bundle on P
1, say O(a) where a ∈ Z, O(a)⊗E 
 O(a)⊕O(a−1)⊕O(a+1)
O⊕3 is an

isomorphism of vector bundles on P
1, which cannot happen.
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Now suppose X
θ−→ PP2(E ′) := Y

φ−→ P
2, with θ an isomorphism of schemes, for some

rank 2 vector bundle E ′ on P
2. We thus have the following diagram

X 
 Y P
2

P
1

φ

π

Without loss of generality we can assume (by twisting E ′ with a suitable line bundle in

Pic(P2) as c1(E ′⊗L) = c1(E ′)+2c1(L)), c1(E ′) ∈ {0,1}. Since Y is A1-weakly equivalent

to the trivial bundle on P
2, their Chow rings are isomorphic. By [2, Lemma 4.5], we have

c1(E ′)2− 4c2(E ′) = 0. So c1(E ′) = 0 = c2(E ′). It thus suffices to show that E ′ splits as a

direct sum of line bundles as this will prove that E ′ 
OP2 ⊕OP2 . By the assumption that

X 
 Y , this will imply that X is isomorphic to P
2×P

1, which from the discussion in the
first paragraph of this proof cannot happen.

We will prove that φ has a section. Such a section will give the following short exact

sequence.

0→L1 →E ′ →L2 → 0 (3.1)

As both Chern classes of E ′ vanish, by the Whitney sum formula of Chern classes, both
L1 and L2 will be trivial. Therefore such a short exact sequence has to be a split one.

This will prove E ′ 
OP2 ⊕OP2 .

Define F ↪→ Y to be θ ◦π−1(z) for a point z ∈ P
1. By construction, F 
 P

2. We claim
φ maps F isomorphically onto P

2. First we claim that φ|F is surjective. If not, then

Z := φ(F ) is either a point or an irreducible curve (not necessarily smooth) in P
2. Since

φ : Y → P
2 is a P

1-bundle map, the fiber of φ over each point of P2 is P
1. Therefore, Z

cannot be a point. So assume Z is an irreducible curve in P
2. Consider smooth points

z1 �= z2 ∈ Z. Then using flatness of φ, we have φ−1(zi) 
 P
1 ⊂ F for i = 1,2. However,

any two lines in P
2 intersect, so φ−1(z1) and φ−1(zi) intersect in F (which is isomorphic

to P
2). This contradicts our assumption that z1 �= z2. This establishes the surjectivity of

φ|F . We also conclude φ|F is a degree d morphism to P
2 with d≥ 1.

We now show that d= 1. This is achieved by comparing the graded ring isomorphism

induced on the Chow rings of X and Y. The Chow ring of X is R1 := Z[x,y]/(x2,y3),
where

(i) x is the divisor P2 as a fiber over a point of P1

(ii) y corresponds to a divisor D′, such that the pushforward π∗(OX(D′)) to P
1 is the

vector bundle E .
Similarly, the Chow ring of Y is R2 := Z[s,t]/(s2,t3) where

(i) t corresponds to fiber of P1 (as a degree 1 curve in P
2) via φ

(ii) s corresponds to a divisor D, such that the pushforward φ∗(OY (D)) to P
2 is the

rank two vector bundle E ′.

Let ψ :R1 →R2 be an isomorphism of graded rings. Then ψ(x) = as+ bt, where a,b ∈ Z.

We have the condition that ψ(x2) = ψ(x)2 = a2s2+2abst+b2t2 lies in the ideal generated
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by s2 and t3. This implies b= 0. Morever, ψ−1 ◦ψ(x) = x. Therefore, a=±1. In a similar

fashion, one proves that any isomorphism between R1 and R2 sends y to ±t. Therefore,
we conclude that the graded ring isomorphism between R1 and R2 is given by x �→±s and

y �→ ±t. This implies s is equivalent (in the Chow ring) to the class of F 
 P
2. Grauert’s

theorem ([5, III, Corollary 12.9]) implies that the intersection multiplicity of divisor D

corresponding to s (see the description of R2 above) with any fiber of the map φ is 1.
As s and F are equivalent in the Chow ring, the same holds for F. This cannot happen

unless d=1 because if not, one can consider a point z′ in P
2 such that the set φ|−1

P2 (z
′) has

more than one point. This will force φ−1(z′) = P
1 to intersect P2 in more than one point,

meaning an intersection multiplicity of greater than 1 which, as we just proved, cannot

happen. This proves φ|F is an isomorphism onto P
2 and hence establishes the existence

of a section of φ. Via the short exact sequence 3.1, this proves that E ′ is a trivial rank 2
vector bundle on P

2, and thereby finishes the proof.
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