THE LIMIT OF BIASED VARISOLVENT CHEBYSHEV APPROXIMATION

BY CHARLES B. DUNHAM

ABSTRACT. Best biased and one-sided Chebyshev approximation with respect to a varisolvent approximating function on an interval are considered. The uniform limit of best biased approximations is the (unique) best one-sided approximation if the best one-sided approximation is of maximum degree. Examples are given where the best one-sided approximation is not of maximum degree and failure of uniform convergence and of existence occurs.

Let $[\alpha, \beta]$ be a closed interval and let $C[\alpha, \beta]$ be the space of continuous functions on $[\alpha, \beta]$. For given r in $[0, \infty]$ define

$$d_r(y) = y \qquad y \le 0$$
$$= ry \qquad y > 0$$

and for $g \in C[\alpha, \beta]$ define the *r*-biased Chebyshev norm to be

 $||g||_r = \sup\{|d_r(g(x))| : \alpha \le x \le \beta\}.$

The $\| \|_{\infty}$ norm is also called the one-sided (from above) norm. Let F be an approximating function unisolvent of variable degree on $[\alpha, \beta]$ with parameter space P and bounded degree. The *r*-biased Chebyshev problem is given $f \in C[\alpha, \beta]$ to find $A^* \in P$ for which $e_r(A) = \|f - F(A, .)\|_r$ attains its infimum $\rho_r(f)$ over $A \in P$. Such a parameter A^* is called best with respect to the *r*-biased norm and $F(A^*, .)$ is called a best approximation with respect to the *r*-biased Chebyshev norm.

Varisolvent approximating functions (approximating functions unisolvent of variable degree) are studied in [9, Chapter 7] with respect to ordinary Chebyshev approximation. We will assume that the difficulty pointed out in [1; 3] does not occur: we assume

HYPOTHESIS A. For given $A \in P$ and $\varepsilon > 0$ there exists $B, C \in P$ such that

$$F(A, .) - \varepsilon < F(B, .) < F(A, .) < F(C, .) < F(A, .) + \varepsilon.$$

This is a necessary condition for an alternating theory [9, 21].

Received by the editors February 22, 1980 and, in revised form, August 5, 1980. AMS Subject Classification (1980) 41A50.

r-biased Chebyshev approximation, $0 < r < \infty$, is introduced in [5, 224] under different notation and a general characterization of best approximations is given.

THEOREM. Let F be of degree n at A. F(A, .) is a best r-biased approximation to f if and only if $d_r(F - F(A, .))$ alternates n times on $[\alpha, \beta]$. A best r-biased approximation is unique.

If there exists no $F(A, .) \ge f$, the one-sided problem is vacuous. We henceforth assume existence of such an F(A, .).

THEOREM. Let F be of degree n at A. $F(A, .) \ge f$ is a best one-sided approximation to f if and only if there is a set $x_0, \ldots, x_n, \alpha \le x_0 < \cdots < x_n \le \beta$ such that f - F(A, .) takes alternately the value $-e_{\infty}(A)$ and 0 on the set. Best one-sided approximations are unique.

LEMMA 1. Let F(A, .) be the best one-sided approximation to f on $[\alpha, \beta]$ and F be of degree n at A. Let $\{x_0, \ldots, x_n\}$ be an ordered set of points such that f-F(A, .) is alternately $-e_{\infty}(A)$ and 0. Let $\delta > 1/r$ and $||f-F(B, .)||_r \le e_{\infty}(A)$. Then

(1)
$$F(B, x_i) - F(A, x_i) \ge -\delta ||f - F(A, .)||_{\infty} \text{ if } f(x_i) - F(A, x_i) = 0$$
$$\le \delta ||f - F(A, .)||_{\infty} \text{ if } f(x_i) - F(A, x_i) = -e_{\infty}(A)$$

Proof. Suppose $F(B, x_i) - F(A, x_i) < -\delta ||f - F(A, .)||_{\infty}$ and $f(x_i) - F(A, x_i) = 0$. Then $|f(x_i) - F(B, x_i)|_r \ge r \delta ||f - F(A, .)||_{\infty} > ||f - F(A, .)||_{\infty}$. Suppose $F(B, x_i) - F(A, x_i) > 0$ and $f(x_i) - F(A, x_i) = -e_{\infty}(A)$, then $f(x_i) - F(B, x_i) < -e_{\infty}(A)$, hence $||f - F(B, .)||_r > e_{\infty}(A)$.

Let $\| \|$ denote the ordinary Chebyshev norm on $[\alpha, \beta]$, which is equal to $\| \|_1$.

LEMMA 2. Let F be of degree n (maximal) at A then for given $\delta > 0$ there exists $\eta(\delta) > 0$ such that $||F(A, .) - F(B, .)|| < \eta(\delta)$ if (1) holds and $\eta(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

This lemma was first stated in [4] and proven in [7].

LEMMA 3. Let F be unisolvent of degree m at A_k , k = 0, 1, ... and let $\{F(A_k, .)\}$ converge pointwise to $F(A_0, .)$ on m distinct points then $\{F(A_k, .)\}$ converges uniformly to $F(A_0, .)$.

This lemma is a generalization of a result of Tornheim. It was first stated in [4] and proven in [7].

LEMMA 4. Let F(A, .) be the one-sided best approximation to f and $f \neq F(A, .)$, then for $r < \infty$, $\rho_r(f) < e_{\infty}(A)$.

Proof. Since $||g||_r \le ||g||_{\infty}$ for $g \in C[\alpha, \beta]$, we have $\rho_r(f) \le e_{\infty}(A)$. If $\rho_r(f) = e_{\infty}(A)$ then F(A, .) is a best *r*-biased approximation to *f*. But $f - F(A, .) \le 0$ and so *A* cannot be best by the alternating characterization of [5].

THEOREM. Let F be unisolvent of variable degree. Let f have a best one-sided approximation F(A, .) and F be of degree n (maximal) at A. There exists M such that r > M implies that there is a best approximation to f with respect to $|| ||_r$. Let r(k) be an increasing sequence with limit ∞ and $F(A_k, .)$ be best with respect to $|| ||_{r(k)}$ then $\{F(A_k, .)\}$ converges uniformly to F(A, .).

Proof. The theorem is obvious if f = F(A, .), so we assume that f is not an approximant.

Let x_0, \ldots, x_n be as in Lemma 1. By definition of solvency of degree *n* at *A* there exists $\gamma > 0$ such that if $|y_k - F(A, x_k)| < \gamma$, $k = 1, \ldots, n$, then there exists a parameter *B* satisfying

(2)
$$F(B, x_k) = y_k \qquad k = 1, ..., n.$$

Using property Z and maximality of n, it is easily seen that F is unisolvent of degree n at such B, and hence B is completely determined by (2). Choose δ such that $\eta(\delta) < \gamma/2$ then by Lemmas 1 and 2, if $r > 1/\delta$ and $||f - F(B, .)||_r \le e_{\infty}(A)$, we have $||F(A, .) - F(B, .)|| < \gamma/2$. Now let $||f - F(B_k, .)||_r$, be a decreasing sequence with limit $\rho_r(f)$, which is less than $e_{\infty}(A)$ by Lemma 4, then for all k sufficiently large $||F(A, .) - F(B_k, .)|| < \gamma/2$. Then n-tuples of values at the points x_1, \ldots, x_n of the approximants $F(B_k, .)$ form, therefore, a bounded sequence with subsequence converging to an accumulation point (y_1, \ldots, y_n) which determines a parameter B at which F is unisolvent of degree n. By Lemma 3, $\{F(B_k, .)\}$ converges uniformly on $[\alpha, \beta]$ to F(B, .), hence for all $x \in [\alpha, \beta]$, $|f(x) - F(B, x)| \le \rho_r(f)$ and so F(B, .) is a best approximation to f with respect to $|| \parallel_r$. The first part of the theorem is shown. Now let $\{r(k)\} \rightarrow \infty$, then for all k sufficiently large a best approximation $F(A_k, .)$ with respect to the r(k) norm exists. From Lemmas 1 and 2 it follows that $\{F(A_k, .)\}$ converges uniformly to F(A, .).

If (F, P) is unisolvent, all approximations are of maximum degree and we always have uniform convergence of biased approximations to the one-sided approximation.

We now give an example where F is unisolvent of less than maximum degree at the best one-sided approximation and uniform convergence does not occur. Consider the case when $F(A, x) = a_1 \exp(a_2 x)$. It follows from results of Barrar and Loeb [2, 594] and of Meinardus and Schwedt [8, 312-313] that F is unisolvent of degree 1 at parameters corresponding to the zero function and degree 2 at parameters corresponding to nonzero functions.

56

EXAMPLE 1. Let $[\alpha, \beta] = [0, 1]$ and f(x) = x - 1. As f(1) = 0, $f \le 0$, and 0 is of degree 1, 0 is the best one-sided approximation to f. As $f \le 0$, 0 is not a best approximation with respect to the $|| ||_r$ norm, $0 < r < \infty$. Let $F(A_k, .)$ be best to f with respect to $|| ||_k$, then $f - F(A_k, .)$ oscillates twice [5, 227], hence $F(A_k, .)$ is non-constant. Now

$$\frac{d^2}{dx^2}(f(x) - F(A_k, x)) = -F''(A_k, x) = -a_1a_2^2\exp(a_2x).$$

As $F(A_k, .) < 0, a_1 < 0$, hence

$$\frac{d^2}{dx^2}(f(x) - F(A_k, x)) > 0, \qquad 0 \le x \le 1,$$

and $F(A_k, 0) < f(0) = -1$. Hence $F(A_k, .) \rightarrow 0$ and convergence does not occur.

Best biased approximations need not exist if the best one-sided approximation is not of maximum degree.

THEOREM. Given varisolvent (F, P) and u continuous on $[\alpha, \beta]$, define $P_u = \{A: F(A, .) > u\}$. (F, P_u) is a varisolvent family with the same degrees.

This follows directly from the definition of varisolvence.

EXAMPLE 2. Take the same problem as in the previous example except we let u = -1 and approximate by (F, P_u) . Suppose $F(A_k, .)$ is best to f with respect to $\| \|_k$, then by arguments of the preceding example $F(A_k, 0) < -1$, which is a contradiction.

There appears to be no simple treatment of the behaviour of $\rho_r(f)$ as a function of *r*. The possible non-existence of best approximations complicates analyses greatly. The following example shows that we can have discontinuities even with fixed degree.

EXAMPLE 3. Let F(a, .) = a and $P = \{a : a \notin [0, 1]\}$. We have $\rho_r(0) = 0$ for $r < \infty$ but $\rho_{\infty}(0) = 1$.

The major theorem of this paper ensures that $\rho_r(f) \rightarrow \rho_{\infty}(f)$ if the best onesided approximation is of maximum degree.

The case where F is merely an alternating approximating function, as considered in [7; 9, section 7-7], is also of interest. The uniform convergence part of the theorem applies by Lemma 1 and 2, but no existence result holds.

As best biased approximations can be computed by the Remez algorithm for approximation with respect to a generalized weight function [5, 228] the theorem suggests use of a large bias to get an approximation close to a best one-sided approximation from above.

Let us also consider what happens when the bias factor r tends to zero. Positive deviations are weighted by r and negative deviations weighted by 1.

C. B. DUNHAM

This is equivalent to weighting positive deviations by 1 and negative deviations by 1/r, which increases both deviations by a factor of 1/r. We get by similar arguments

THEOREM. Let F be unisolvent of variable degree. Let f have a best one-sided approximation from below F(A, .) and F be of degree n (maximal) at A. There exists f such that $r < \varepsilon$ implies that there is a best approximation to f with respect to $|| ||_r$. Let r(k) be a decreasing sequence with limit 0 and $F(A_k, .)$ be best with respect to $|| ||_{r(k)}$ then $\{F(A_k, .)\}$ converges uniformly to F(A, .).

REFERENCES

1. R. Barrar and H. Loeb, On N-parameter and unisolvent families, J. Approx. Theory 1 (1968), 180–181.

2. R. Barrar and H. Loeb, On the continuity of the nonlinear Tschebyscheff operator, Pac. J. Math **32** (1970), 593–601.

3. C. Dunham, Necessity of alternation, Can. Math. Bull. 11 (1968), 743-744.

4. C. Dunham, Continuity of the varisolvent Chebyshev operator, Bull. Amer. Math. Soc. 74 (1968), 606–608.

5. C. Dunham, Chebyshev approximation with respect to a weight function, J. Approx. Theory **2** (1969), 223–232.

6. C. Dunham, Alternating minimax approximation with unequal restraints, J. Approx. Theory 10 (1974), 199-205.

7. C. Dunham, Alternating Chebyshev approximation, Trans. Amer. Math. Soc. 178 (1973), 95–109.

8. G. Meinardus and D. Schwedt, Nicht-lineare approximationen, Arch. Rat. Mech. Anal. 17 (1964), 297-326.

9. J. Rice, The Approximation of Functions, Volume 2, Addison-Wesley, Reading, Mass., 1969.

COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF WESTERN ONTARIO

London, Ontario N6A 5B9 Canada

58