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The inner–outer interaction model (Marusic et al., Science, vol. 329, 2010, pp. 193–196)
and the attached-eddy model (Townsend, Cambridge University Press, 1976) are two
fundamental models describing the multiscale turbulence interactions and the organization
of energy-containing motions in the logarithmic region of high-Reynolds-number
wall-bounded turbulence, respectively. In this paper, by coupling the additive description
with the attached-eddy model, the generation process of streamwise wall-shear
fluctuations, resulting from wall-attached eddies, is portrayed. Then, by resorting
to the inner–outer interaction model, the streamwise wall-shear stress fluctuations
generated by attached eddies in a turbulent channel flow are isolated. Direct comparison
between the statistics from these two models demonstrates that they are consistent
with and complement each other. Meanwhile, we further show that the superpositions
of attached eddies follow an additive process strictly by verifying the validity of
the strong and extended self-similarity. Moreover, we propose a Gaussian model to
characterize the instantaneous distribution of streamwise wall-shear stress, resulting from
the attached-eddy superpositions. These findings are important for developing an advanced
reduced-order wall model.
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1. Introduction

Wall-shear stress fluctuation is a crucial physical quantity in wall-bounded turbulence,
as it is of importance for noise radiation, structural vibration, drag generation and wall
heat transfer, among others (Diaz-Daniel, Laizet & Vassilicos 2017; Cheng et al. 2020).
In the past two decades, ample evidence has shown that the root-mean-squared value of
streamwise wall-shear stress fluctuations (τ

′
x,rms) is sensitive to the flow Reynolds number

(Abe, Kawamura & Choi 2004; Schlatter & Örlü 2010; Yang & Lozano-Durán 2017;
Guerrero, Lambert & Chin 2020). It indicates that large-scale energy-containing eddies
populating the logarithmic and outer regions in high-Reynolds-number wall turbulence
have non-negligible influences on the near-wall turbulence dynamics, and thus the wall
friction (de Giovanetti, Hwang & Choi 2016; Li et al. 2019).

Until now, several models have been proposed on the organization of motions in
logarithmic and outer regions and their interactions with the near-wall dynamics. Marusic,
Mathis & Hutchins (2010) have established that superposition and modulation are the
two basic mechanisms that large-scale motions (LSM) and very-large-scale motions
(VLSM) exert influences on the near-wall turbulence. The former refers to the footprints
of LSM and VLSM on the near-wall turbulence, while the latter indicates the intensity
amplification or attenuation of near-wall small-scale turbulence by the outer motions.
Mathis et al. (2013) extended the model to interpret the generation of wall-shear stress
fluctuations in high-Reynolds-number flows. They emphasized that superposition and
modulation are still two essential factors. This inner–outer interaction model (IOIM) has
also been successfully developed to predict the near-wall velocity fluctuations with data
inputs from the log layer (Marusic et al. 2010; Baars, Hutchins & Marusic 2016; Wang,
Hu & Zheng 2021).

On the other hand, the most elegant conceptual model describing the motions in the
logarithmic region is the attached-eddy model (AEM) (Townsend 1976; Perry & Chong
1982). It conjectures that the logarithmic region is occupied by an array of self-similar
energy-containing motions (or eddies) with their roots attached to the near-wall region.
Extensive validations support the existence of attached eddies in high-Reynolds-number
turbulence, such as the logarithmic decaying of streamwise velocity fluctuation intensities
(Meneveau & Marusic 2013), as originally predicted by Townsend (1976). The reader is
referred to a recent review work by Marusic & Monty (2019) for more details. Given the
existence of wall-attached energy-containing motions in the logarithmic region, it would
be quite natural to hypothesize that the near-wall part of these motions would affect the
generation of the wall-shear fluctuations to some extent, maybe, via the superposition
and modulation mechanisms. However, some fundamental questions may be raised, e.g.
whether the IOIM and AEM are consistent with each other? There’s a possibility that the
superposition component of τ ′

x decomposed by the IOIM in physical space cannot fully
follow the predictions made by the AEM quantitatively. If yes, whether these two models
can shed light on the mechanism of wall-shear fluctuation generation and be indicative for
modelling approaches?

Previous study (Yang & Lozano-Durán 2017) verified that the generation of wall-shear
stress fluctuations can be interpreted as the outcomes of the momentum cascade across
momentum-carried eddies of different scales, and modelled by an additive process. Here,
we first aim to couple the additive description with the AEM to portray the generation
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Consistency between AEM and IOIM

process of streamwise wall-shear fluctuations, resulting from wall-attached eddies. Two
scaling laws describing their intensities and the linkages with the characteristic scales
of attached eddies can be derived (the characteristic scales of attached eddies are their
wall-normal heights according to AEM (Townsend 1976)). Then, we intend to isolate
the streamwise wall-shear stress fluctuations generated by attached eddies in a turbulent
channel flow at Reτ = 2003 (Reτ = huτ /ν, h denotes the channel half-height, uτ the wall
friction velocity and ν the kinematic viscosity) by resorting to the IOIM (Marusic et al.
2010; Baars et al. 2016). Here, the IOIM is employed as a tool to estimate the streamwise
wall-shear fluctuations generated by attached eddies. The statistics from the IOIM can
be processed to verify the scaling laws deduced by the AEM, so as to demonstrate their
consistency. Moreover, a simple algebraic model describing the instantaneous distributions
of the streamwise wall-shear stress fluctuations generated by attached eddies will be
proposed.

2. Streamwise wall-shear stress fluctuations generated by attached eddies

According to Mandelbrot (1974) and Yang & Lozano-Durán (2017), the generation
of streamwise wall-stress fluctuations can be modelled as an additive process within
multifractal formalism, which takes the form of

τ
′+
x =

n∑
i=1

ai, (2.1)

where ai are random addends, representing an increment in τ
′+
x due to eddies with

wall-normal height h/2i, and superscript + denotes the normalization with wall units.
Here, we intend to isolate the contributions from the eddies populating the logarithmic
region (τ

′+
x,o) and link to their wall-normal positions y. Here, τ

′+
x,o can be expressed as

τ
′+
x,o =

no∑
i=ns

ai, (2.2)

where ns and no represent the additives that correspond to the eddies with the wall-normal
height at ys and yo, respectively. Here, ys is the lower bound of the logarithmic region, and
generally believed to be 80 ≤ y+

s ≤ 100 (Jiménez 2018; Baars & Marusic 2020); yo is the
outer reference height. It can be found that 1 < ns < no < n. The addends ai are assumed
to be identically and independently distributed (i.i.d.) and equal to a. The number of the
addends should be proportional to

no − ns + 1 ∼
∫ yo

ys

p( y) dy ∼
∫ yo

ys

1
y

dy ∼ ln
(

yo

ys

)
, (2.3)

where p( y) is the eddy population density, which is proportional to 1/y according to
the AEM (Townsend 1976; Perry & Chong 1982). A momentum generation function
〈exp(qτ

′+
x,o)〉, where 〈 〉 represents the averaging in the temporal and spatially homogeneous

directions, is defined to scrutinize the scaling behaviour of τ
′+
x,o (Yang, Marusic &
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Meneveau 2016). Here, 〈exp(qτ
′+
x,o)〉 can be evaluated as〈

exp(qτ
′+
x,o)

〉
= 〈exp(qa)〉no−ns+1 ∼

(
yo

ys

)s(q)

, (2.4)

where q is a real number, s(q) = C1 ln〈exp(qa)〉 is called the anomalous exponent and
C1 is a constant. Equation (2.4) is called strong self-similarity (SSS). If a is a Gaussian
variable, the anomalous exponent can be recast as

s(q) = C2q2, (2.5)

where C2 is another constant. On the other hand, an extended self-similarity (ESS) is
defined to describe the relationship between 〈exp(qτ

′+
x,o)〉 and 〈exp(q0τ

′+
x,o)〉 (fixed q0)

(Benzi et al. 1993), i.e. 〈
exp(qτ

′+
x,o)

〉
=
〈
exp(q0τ

′+
x,o)

〉ξ(q,q0)
, (2.6)

where ξ(q, q0) is a function of q (fixed q0). Note that ESS does not strictly rely on the
identically and independently distribution of the addends, but the additive process (2.2).

3. DNS database and scale decomposition method

The direct numerical simulation (DNS) database used in the present study is an
incompressible turbulent channel flow at Reτ = 2003, which has been extensively
validated by previous studies (Hoyas & Jiménez 2006; Jiménez & Hoyas 2008). The
decomposition of τ ′

x is based on the IOIM first proposed by Marusic et al. (2010).
Baars et al. (2016) modified the computational process by introducing spectral stochastic
estimation to avoid artificial scale decomposition. In this work, the modified version of the
IOIM is adopted to investigate the multiscale characteristics of τ ′

x. It can be expressed as

u+
p
(

y+) = u∗ ( y+) {1 + Γuuu+
L
(

y+)}︸ ︷︷ ︸
u+

s

+u+
L
(

y+) , (3.1)

where u+
p denotes the predicted near-wall streamwise velocity fluctuation, u∗ denotes the

universal velocity signal without large-scale impact, u+
L is the superposition component,

Γuu is the amplitude-modulation coefficient and u+
s denotes the amplitude modulation

of the universal signal u∗. Here, u+
L is obtained by spectral stochastic estimation of the

streamwise velocity fluctuation at the logarithmic region y+
o , namely,

u+
L
(
x+, y+, z+) = F−1

x
{
HL
(
λ+x , y+)Fx

[
u+

o
(
x+, y+

o , z+)]} , (3.2)

where u+
o is the streamwise velocity fluctuation at y+

o in the logarithmic region and Fx

and F−1
x denote the fast Fourier transform and the inverse fast Fourier transform in the

streamwise direction, respectively. Here, HL is the transfer kernel, which evaluates the
correlation between u+( y+) and u+

o ( y+
o ) at a given length scale λ+x , and can be calculated

as

HL
(
λ+x , y+) =

〈
û
(
λ+x , y+, z+) ûo

(
λ+x , y+

o , z+)〉〈
ûo
(
λ+x , y+

o , z+) ûo
(
λ+x , y+

o , z+)〉 , (3.3)

where û is the Fourier coefficient of u, and ¯̂u is the complex conjugate of û.
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ye
+ = 0.2h+

ys
+ = 100

yo
+

Wall

Figure 1. A schematic of the AEM (Hwang 2015). Each circle represents an individual attached eddy. Here,
y+

s and y+
e are the lower and upper bounds of the logarithmic region, respectively; y+

0 is the outer reference
height, and varies from y+

s to y+
e .

In this work, we mainly pay attention to the quantity, τ ′
x generated by the attached

eddies. Thus, the predicted position y+ is fixed at y+ = 0.3, and the outer reference height
y+

o varies from 100 (namely y+
s ) to 0.2h+ (denoted as y+

e ), i.e. the upper boundary of
the logarithmic region (Jiménez 2018). We have checked that as long as the predicted
position is around y+ ≤ O(1), the results presented below are insensitive to the choice of
specific y+. Once u+

L is obtained, the superposition component of τ
′+
x can be calculated

by definition (i.e. ∂u
′+
L /∂y+ at the wall) and denoted as τ

′+
x,L( y+

o ). According to the
hierarchical attached eddies in high-Reynolds-number wall turbulence (see figure 1),
τ

′+
x,L( y+

o ) represents the superposition contributed from the wall-coherent motions with

their height larger than y+
o . Thus, the difference value τ

′+
x,L( y+

s ) − τ
′+
x,L( y+

o ) can be
interpreted as the superposition contribution generated by the wall-coherent eddies with
their wall-normal heights within y+

s and y+
o , i.e. τ

′+
x,o in (2.2). Considering that y+

s is the
lower bound of the logarithmic region, the increase of y+

o corresponds to the enlargement
of the addends in the additive description (see (2.2)). In this way, the connection between
the AEM and the IOIM are established, and the AEM predictions (see (2.4)–(2.6)) can be
verified directly.

4. Results and discussion

4.1. Scaling laws of τ
′+
x,o

Here, we further define a moment generation function based on the IOIM. It takes the form
of

G(q, y+
o ) =

〈
exp

(
q
(
τ

′+
x,L( y+

s ) − τ
′+
x,L( y+

o )
))〉

. (4.1)

Figure 2(a) shows the variations of G as a function of yo/ys for q = ±5 and q = ±3.
Power-law behaviours can be found in the interval between 1.7 ≤ yo/ys ≤ 2.9 for positive
q and 1.7 ≤ yo/ys ≤ 4 for negative q, justifying the validity of SSS, i.e. (2.4). Figure 2(b)
is in aid of accessing the scalings by displaying the variations of premultiplied G. This
observation highlights that the superpositions of wall-attached log-region motions on wall
surface follow the additive process, characterized by (2.2). It is also worth mentioning
that the power-law behaviour can be observed for larger wall-normal intervals for negative
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q = 5

(a) (b)

Figure 2. (a) G as functions of yo/ys for q = ±5 and q = ±3; (b) premultiplied G as functions of yo/ys for
q = ±5 and q = ±3.

q. As G(q, y+
o ) quantifies τ

′+
x,L( y+

s ) − τ
′+
x,L( y+

o ), which features the same sign as q, this
observation is consistent with the work of Cheng et al. (2020), which showed that the
footprints of the inactive part of attached eddies populating the logarithmic region are
actively connected with large-scale negative τ ′

x. Other q values yield similar results and
are not shown here for brevity.

The anomalous exponent s(q) can be obtained by fitting the range 2 ≤ yo/ys ≤ 2.9,
where both positive and negative q display good power-law scalings. Figure 3(a) displays
the variation of the anomalous exponent s(q) as a function of q. The solid line denotes
the quadratic fit within −0.5 ≤ q ≤ 0.5. It can be seen that the variation of s(q) is very
close to the model prediction, i.e. the quadratic function as (2.5) with C2 = 0.00629. Only
minor discrepancies between DNS data and model predictions can be observed. As such, it
is reasonable to hypothesize that the streamwise wall-shear stress fluctuation τ ′

x generated
by attached eddies of a given size follows the Gaussian distribution. Moreover, we can also
estimate the statistical moments of τ+

x,o by taking the derivative of G(q, y+
e ) with respect

to q around q = 0 (Yang et al. 2016), i.e.〈
τ

′2+
x,o

〉
= ∂2G(q; y+

o )

∂q2

∣∣∣∣
q=0

∼ 2C2 ln( yo/ys) ∼ 2C2 ln Reτ , (4.2)

〈
τ

′4+
x,o

〉1/2 =
(

∂4G(q; y+
o )

∂q4

∣∣∣∣
q=0

)1/2

∼ 2
√

3C2 ln( yo/ys) ∼ 2
√

3C2 ln Reτ , (4.3)

〈
τ

′6+
x,o

〉1/3 =
(

∂6G(q; y+
o )

∂q6

∣∣∣∣
q=0

)1/3

∼ 2 3√15C2 ln( yo/ys) ∼ 2 3√15C2 ln Reτ . (4.4)

Figure 3(b) shows the variations of second- (p = 1) to sixth- (p = 3) order moments of
τ ′

x calculated from DNS of channel flows (Iwamoto, Suzuki & Kasagi 2002; Del Álamo
& Jiménez 2003; Abe et al. 2004; Del Álamo et al. 2004; Hu, Morfey & Sandham
2006; Lozano-Durán & Jiménez 2014; Lee & Moser 2015; Cheng et al. 2019; Kaneda
& Yamamoto 2021) and compares them with the model prediction, i.e. (4.2)–(4.4). For the
second- and fourth-order variances, the model predictions are roughly consistent with the
DNS results. The comparisons also indicate a Reynolds-number dependence of 〈τ ′2+

x 〉,
which has been reported by vast studies (Schlatter & Örlü 2010; Mathis et al. 2013;
Guerrero et al. 2020), and may be ascribed to the superposition effects of the wall-attached
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Abe et al. (2004)

Del Alamo et al. (2003,2004)

Iwamoto et al. (2002)

Hu et al. (2006)

Cheng et al. (2019)

A. Lozano-Duran & Jimenez (2014)

Lee & Morse (2015)

Kaneda & Yamamoto (2021)

Model prediction
p = 3

p = 2

p = 1

s(q)
s(q) = 0.00629q2

q Reτ

〈τ x′2
p+

〉1
/p

(a) (b)

Figure 3. (a) Anomalous exponent s(q) as a function of q. The black line is a quadratic fit; (b) second- to sixth-
order moments of τ

′+
x as functions of Reτ . The dashed lines are the log-normal predictions from (4.2)–(4.4).

1.5

1.4

1.3

1.2

1.1

1.0
1.000 1.008 1.016 1.024 1.000 1.008 1.016 1.024 1.032 1.040

1.5

1.4

1.3

1.2

1.1

1.0

q = –7 q = 7

q = 5

q = 3

q = 1

q = –5

q = –3

q = –1

G

G(q = –2) G(q = 2)

(a) (b)

Figure 4. (a) G(q) as functions of G(−2) for q = −1, −3, −5, −7; (b) G(q) as functions of G(2) for
q = 1, 3, 5, 7. Both vertical and horizontal axes in (a,b) are plotted in logarithmic form.

log-region motions. Wang, Pan & Wang (2020) speculated that the amplitude modulation
effect plays a more prominent role in affecting the statistic characteristics of τ

′+
x,rms than the

superposition effect, which contradicts the present findings. In fact, amplitude modulation
has been demonstrated to exert a negligible effect on the even-order moments (Mathis,
Hutchins & Marusic 2011; Blackman, Perret & Mathis 2019). Therefore, the deduction of
Wang et al. (2020) needs to be revisited. For sixth-order moments, the model prediction
displays substantial discrepancies with the DNS data. It is expected since high-order
moments are dominated by the rare events resulting from the intermittent small-scale
motions (Frisch & Donnelly 1996), which cannot be captured by the IOIM (see figure 5a).

The ESS (i.e. (2.6)) is another scaling predicted by the multifractal formalism. Different
from SSS, ESS does not rely on the identically and independently distribution of the
addends, but the additive process (see (2.2)). Figures 4(a) and 4(b) shows the ESS
scalings for q0 = −2 and q0 = 2, respectively. The ESS holds for the entire logarithmic
region. The observation suggests that the streamwise wall-shear fluctuations generated
by logarithmic motions obey the additive process, though the streamwise wall-shear
fluctuations generated by attached eddies with wall-normal heights at approximately 0.2h+
are not i.i.d. due to the scale interactions (see figure 2), which are not described by the
attached-eddy model.
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4.2. Instantaneous distribution of τ ′
x

Furthermore, the instantaneous τ
′+
x can be decomposed as

τ
′+
x = τ

′+
x,s + τ

′+
x,L( y+

s ) − τ
′+
x,L( y+

e )︸ ︷︷ ︸
τ

′+
x,log

+ τ
′+
x,L( y+

e )︸ ︷︷ ︸
τ

′+
x,out

, (4.5)

where τ
′+
x,s denotes the amplitude modulation of the universal signal τ

′∗+
x ; τ

′+
x,log and

τ
′+
x,out are the superposition components contributed from the log region and the outer

wall-coherent motions, respectively. The methodology of removing modulation effects can
be found in Mathis et al. (2011) and Baars et al. (2016), whose details are out of the range
of the present study. Figure 5(a) shows the probability density functions (p.d.f.s) of τ

′∗+
x ,

τ
′+
x,s , τ

′+
x,log and τ

′+
x,out, and compares with the p.d.f. for the full channel data. The p.d.f.s

of τ
′+
x,s and τ

′∗+
x nearly coincide with that of τ

′+
x with asymmetric and positively skewed

shape, which demonstrates that removing the superposition and modulation effects barely
affects the instantaneous distributions. The asymmetries between the positive and negative
wall-shear fluctuations are the essential characters of the near-wall small-scale turbulence,
which may be associated with the celebrated near-wall sustaining process (Schoppa &
Hussain 2002). In contrast, the p.d.f.s of τ

′+
x,log and τ

′+
x,out are more symmetric with rare

events invisible, suggesting that the superposition components of logarithmic and outer
motions are less intermittent than the small-scale universal signals. This also explains
the reason why the log-normal model describes the additive process well (see figure 3a),
although the log-normal model is inapplicable for rare events (Landau & Lifshitz 1987).
Moreover, the skewness and flatness of τ

′+
x,log are 0.05 and 2.91, which are very close to

those of a Gaussian distribution. It strongly supports the conclusion drawn above that
the streamwise wall-shear stress fluctuations generated by attached eddies populating the
logarithmic region can be absolutely treated as Gaussian variables with

p(ξ) = 1√
2πσ

exp
(

− ξ2

2σ 2

)
, (4.6)

where p(ξ) denotes the p.d.f., and ξ is the independent variable. It is worth noting that the
variation of variance can be well predicted by the log-normal model, namely,

σ 2 = ∂2G(q; y+
o )

∂q2

∣∣∣∣
q=0

= 2C2 ln(Reτ ) + C3, (4.7)

where C2 ≈ 0.00629, and C3 ≈ −0.07959 is a constant and determined by the DNS data
at Reτ = 2003. Figure 5(b) shows the p.d.f.s of τ

′+
x,log and the model prediction by (4.6),

results of two other Reynolds numbers (Del Álamo et al. 2004; Lozano-Durán & Jiménez
2014) are also included for comparison. It can be seen that the Gaussian model proposed
here works reasonably well and can cover a wide range of Reynolds numbers. The model
remains to be validated by higher-Reynolds-number DNS data.

5. Concluding remarks

In summary, the present study reveals that the IOIM and the AEM are consistent with
each other quantitatively. The statistical characteristics of the superpositions of log-region
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Figure 5. (a) The p.d.f.s of τ
′∗+
x , τ

′+
x,s , τ

′+
x,log, τ

′+
x,out, and τ

′+
x ; (b) The p.d.f.s of τ

′+
x,log in channel flows with

Reτ = 934, 2003, and 4179. Dashed lines denote the Gaussian model predictions with (4.6)–(4.7).

eddies follow the predictions of the AEM, namely, the SSS and ESS scalings. Based
on these observations, we conclude that the streamwise wall-shear stress fluctuations
generated by attached eddies populating the logarithmic region can be treated as Gaussian
variables. A Gaussian model is then proposed to describe their instantaneous distributions
and verified by DNS data spanned broad-band Reynolds numbers. Considering the
fact that the intensity of wall-shear stress fluctuations is typically underpredicted by
state-of-the-art wall-modelled large-eddy simulation (WMLES) approaches (Park & Moin
2016), the Gaussian model proposed in the present study may be constructive for the
development of the LES methodology, and the distribution characteristics of τ

′∗+
x are

helpful for developing more accurate near-wall models of WMLES approaches.
It is noted that some previous works adopted the IOIM to investigate the spectral

characteristics of the wall-coherent components of the signals in the near-wall region,
such as the work of Marusic, Baars & Hutchins (2017), but whether they are consistent
with the AEM predictions in physical space quantitatively has not been verified in detail.
The consistency of the two models demonstrated here fills the gap and complements
their works. Moreover, the findings in the present study indicate that we can isolate the
footprints of attached eddies within a selected wall-normal range by employing the IOIM,
i.e. by adjusting y+

1 and y+
2 in τ

′+
x,L( y+

1 ) − τ
′+
x,L( y+

2 ). Here, y+
1 and y+

2 are two selected
wall-normal heights in the logarithmic region, and y+

1 < y+
2 . In this regard, the present

study may provide a new perspective for analysing some flow physics in wall-bounded
turbulence, such as the inner peak of the intensity of u′, and the streamwise inclined
angles of attached eddies. All these are under investigation currently and will be reported
in separate forthcoming papers.
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