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Abstract. We show that the image of the adelic Galois representation attached to
a non-CM modular form is open in the adelic points of a suitable algebraic subgroup
of GL2 (defined by F. Momose). We also show a similar result for the adelic Galois
representation attached to a finite set of modular forms.
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Introduction Let E be an elliptic curve over Q, and p a prime number. Then, the
action of the Galois group on the Tate module of E determines a Galois representation

ρE,p : Gal(Q/Q) → GL2(Zp).

If Ẑ = ∏
p Zp is the profinite completion of Z (the integer ring of the ring Q̂ of finite

adeles), then the product of the ρE,p defines an adelic Galois representation

ρE : Gal(Q/Q) → GL2(Ẑ).

Suppose E does not have complex multiplication. Then, the images of these
representations are described by the following three theorems, all of which are due
to Serre:

(A) [10, Section IV.2.2] For all primes p, the image of ρE,p is open in GL2(Zp).
(B) [11, Theorem 2] For all but finitely many p, the image of ρE,p is the whole of

GL2(Zp).
(C) [11, Theorem 3] The image of the product representation ρE is open in GL2(Ẑ).

Note that (C) implies both (A) and (B), but the converse is not automatic; theorem
(C) shows that not only do the ρE,p individually have large image, but they are in some
sense “independent of each other” up to a finite error.

If one replaces the elliptic curve E by a modular eigenform f , then one has p-
adic Galois representations ρf,p and an adelic representation ρf , and it is natural to
ask whether analogues of theorems (A)–(C) hold in this context. For modular forms
of level 1, analogues of all three theorems were obtained by Ribet [7]; but the case
of modular forms of higher level is considerably more involved, owing to the presence
of so-called “inner twists”.

The appropriate analogues of (A) and (B) for general eigenforms were determined
by Momose [4] and Ribet [8], respectively. However, somewhat surprisingly, there does
not seem to be a result analogous to (C) in the literature for general modular eigenforms
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f . The first aim of this paper is to fill this minor gap, by formulating and proving an
analogue of (C) for general eigenforms; see Section 2, in particular Theorem 2.3.1.

The second aim of this paper is to extend these results to pairs of modular forms:
given two modular forms f, g, how large is the image of the product representation
ρf × ρg? In Section 3, we formulate and prove analogues of (A)–(C) for this product
representation. This extends earlier partial results due to Ribet [7, Section 6] (who
proves the analogue of (B) for pairs of modular forms of level 1, and sketches an
analogue of (A)); and of Lei, Zerbes and the author [3, Section 7.2.2] (who prove an
analogue of (B) for pairs of modular forms of weight 2).

These results can all be extended to the case of arbitrary finite collections
(f1, . . . , fn) of modular forms, but we give the proofs only in the case n = 2 to save
notation.

In Section 4, we give an application of these results which was the original
motivation for our study of images of Galois representations; this is to exhibit certain
special elements in the images of the tensor product Galois representations ρf,p ⊗ ρg,p

whose existence is important in Euler system theory. These results are used in recent
work of Kings, Zerbes and the author [2] in order to prove finiteness results for Selmer
groups.

1. Some profinite group theory.

1.1. Preliminary lemmas.

LEMMA 1.1.1 (Ribet). Let p ≥ 5 be prime, and let K1, . . . , Kt be finite unramified
extensions of Qp, with rings of integers O1, . . . ,Ot and residue fields k1, . . . , kt. Let G
be a closed subgroup of SL2(O1) × · · · × SL2(Ot) which surjects onto PSL2(k1) × · · · ×
PSL2(kt). Then G = SL2(O1) × · · · × SL2(Ot).

Proof. If we assume that G surjects onto SL2(k1) × · · · × SL2(kt) this is a special
case of Theorem 2.1 of Ribet [7]. So, it suffices to check that there is no proper subgroup
of SL2(k1) × · · · × SL2(kt) surjecting onto PSL2(k1) × · · · × PSL2(kt). But this follows
readily by induction from the case t = 1, which is Lemma IV.3.4.2 of Serre [10]. �

LEMMA 1.1.2 (cf. [10, Lemma IV.3.4.1]). Let K be a finite extension of Qp for some
prime p, and let Y1, Y2 be closed subgroups of GL2(OK ) such that Y1 � Y2 and Y2/Y1

is a non-abelian finite simple group. Then, Y2/Y1 is isomorphic to one of the following
groups:
� PSL2(F), where F is a finite field of characteristic p such that #F ≥ 4;
� the alternating group A5.

Proof. Since the kernel of GL2(OK ) → PGL2(k) is solvable, where k is the residue
field of K , we see that any such quotient Y2/Y1 is in fact a subquotient of PSL2(k).
The result now follows from the determination of the subgroup structure of PSL2(k),
which is due to Dickson; cf. [13, Theorem 6.25]. �

LEMMA 1.1.3. If k and k′ are any two finite fields of characteristic ≥ 5 and φ :
PSL2(k) ∼= PSL2(k′) is a group isomorphism, then φ is conjugate in PGL2(k′) to an
isomorphism induced by a field isomorphism k ∼= k′.
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Proof. Since the groups PSL2(k) for finite fields k of characteristic ≥ 5 are non-
isomorphic unless k ∼= k′, it suffices to check that every group automorphism of
PSL2(k) is induced by conjugation in PGL2(k), which is a standard fact. �

We also have an “infinitesimal” version of this statement, which we will use later
in the paper.

LEMMA 1.1.4. If K and K ′ are finite extensions of Qp for some prime p, B and B′ are
central simple algebras of degree 2 over K and K ′, respectively, and the Lie algebras sl1(B)
and sl1(B′) are isomorphic as Lie algebras over Qp, then the isomorphism is induced by a
field isomorphism K ∼= K ′ and an isomorphism of central simple algebras B ∼= B′ over K.

Proof. We may recover K from sl1(B) as the algebra of Qp-endomorphisms of
sl1(B) commuting with the adjoint action of sl1(B); thus, it suffices to consider the
case K ′ = K . There are exactly two central simple algebras of degree 2 over any p-adic
field (one unramified and one unramified), and their Lie algebras are non-isomorphic;
and every automorphism of either of these is inner (since the corresponding Dynkin
diagram A1 has no automorphisms). �

1.2. Subgroups of adele groups. Let F be a finite étale extension of Q; that is, F is
a ring of the form

⊕t
i=1 Fi, where Fi are number fields.

A quaternion algebra over F is defined in the obvious way: it is simply an F-algebra
B of the form

⊕t
i=1 Bi, where Bi is a quaternion algebra over Fi (a central simple Fi-

algebra of degree 2); we allow the case of the split algebra M2×2(Fi). There is a natural
norm map

normB/F : B× → F×,

(which is just the product of the reduced norm maps of the Bi over Fi).
We fix a homomorphism of algebraic groups k : Gm → ResF/Q Gm; this just

amounts to a choice of integers (k1, . . . , kt) such that k(λ) = (λk1 , . . . , λkt ).

DEFINITION 1.2.1. For B, F , k as above, we let G and G◦ be the algebraic groups
over Q such that for any Q-algebra R we have

G(R) = {(x, λ) ∈ (B ⊗ R)× × R× : normB/F (x) = λ1−k},
and

G◦(R) = {x ∈ (B ⊗ R)× : normB/F (x) = 1}.

Then, G and G◦ are linear algebraic groups over Q, and G◦ is naturally a subgroup
of G. More generally, we may fix a maximal order OB in B and thus define G and G◦

as group schemes over Z. For all but finitely many primes p, we then have

G(Zp) = {(x, λ) ∈ GL2(OF ) × Zp
× : det(x) = λ1−k};

changing the choice of OB does not change G(Zp) away from finitely many primes p.

THEOREM 1.2.2. Let U◦ be a compact closed subgroup of G◦(Q̂), where Q̂ = Q ⊗ Ẑ
is the finite adeles of Q, such that:
� for every prime p, the projection of U◦ to G◦(Qp) is open in G◦(Qp);
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� for all but finitely many primes p, the projection of U◦ to G◦(Qp) is G◦(Zp).
Then, U◦ is open in G◦(Q̂).

The proof we shall give of this theorem is a relatively straightforward generalization
of the case F = Q, B = M2×2(Q), k = 2, which is the Main Lemma of Serre [10, Section
IV.3.1].

Proof. Let S be a finite set of primes containing 2, 3, all primes ramified in F/Q,
all primes at which B is ramified, and all primes p such that the projection of U◦ to
G◦(Qp) is not equal to G◦(Zp).

For a prime p, let kp = ∏
w|p kw where the product is over primes w | p of F , and

kw is the residue field of F at w. Then, for each p /∈ S we have a natural map

U◦ → PSL2(kp),

given by projection to the p-component and the natural quotient map. By the definition
of S, it is surjective. I claim that the restriction of this map to U◦ ∩ G◦(Zp) is also
surjective (where we consider G◦(Zp) as a subgroup of G◦(Q̂) in the natural way).

If this is not the case, then the group

Q = U◦/
(
U◦ ∩ G◦(Zp)

)
,

must have a quotient isomorphic to a non-trivial quotient of PSL2(kp), and in particular
this group must surject onto the simple group PSL2(k) for some finite field k of
characteristic p. However, the group Q is exactly the image of U◦ in

∏
q�=p G◦(Qq).

Hence, the finite simple group PSL2(k) must be a subquotient of an open compact
subgroup of

∏
q�=p G◦(Qq); but this is not possible, since

∏
q�=p G◦(Qq) is a compact

subgroup of
∏

q�=p GL2(L ⊗ Qq) for any étale extension L/F which splits B, and thus
is conjugate to a closed subgroup of the maximal compact subgroup

∏
q�=p GL2(OL ⊗

Zq), and we know that this group does not have PSL2(k) as a quotient by Lemma
1.1.2. Hence, U◦ ∩ G◦(Zp) is a subgroup of G◦(Zp) = SL2(OF ⊗ Zp) which surjects
onto PSL2(kp), and by Lemma 1.1.1, this implies that G◦(Zp) ⊆ U◦.

So, we have
∏

p/∈S G◦(Zp) ⊆ U◦. In order to show that U◦ is open in G◦(Q̂), it
therefore suffices to show that the image of U◦ is open in

∏
p∈S G◦(Qp). However,

since G◦(Qp) contains a finite-index pro-p subgroup for each p ∈ S, and S is finite, one
sees easily by induction on #S that any subgroup of

∏
p∈S G◦(Qp) whose projection to

G◦(Qp) is open for all p ∈ S must itself be open. �
THEOREM 1.2.3. Let U be a compact subgroup of G(Q̂), where Q̂ = Q ⊗ Ẑ is the

finite adeles of Q, such that:
� for every prime p, the projection of U to G(Qp) is open in G(F ⊗ Qp);
� for all but finitely many primes p, the projection of U to G(Qp) is G(Zp);
� the image of U in Q̂× is open.
Then, U is open in G(Q̂).

Proof. Let U◦ = U ∩ G◦(Q̂). We claim U◦ satisfies the hypotheses of the previous
theorem.

Since G(Q̂)/G◦(Q̂) ∼= Q̂× is abelian, the group U◦ contains the closure of the
commutator subgroup of U . Since SL2(OF ⊗ Zp) is the closure of its own commutator
subgroup for p ≥ 5, we see that if p ≥ 5 and U surjects onto G(Zp), then U◦ surjects
onto G◦(Zp).
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Let us show that for an arbitrary prime p, the commutator subgroup of G◦(Zp) has
finite index. It suffices to show the corresponding result for SL1(OB) for B a quaternion
algebra (possibly split) over a p-adic field; and this is equivalent to the statement that
the Lie algebra sl1(B) is a non-trivial simple Lie algebra, which is clear since it becomes
isomorphic to sl2 after base extension to any splitting field of B.

By the previous theorem, we conclude that U contains an open subgroup of G◦(Q̂).
But the image of U in Q̂× is open by hypothesis, so we conclude that U is in fact open
in G(Q̂). �

REMARK 1.2.4. We cannot dispense with the hypothesis that the image of U in
Q̂× is open: there exist proper closed subgroups of Ẑ× whose projection to Z×

p is open

for all p, but which are not open in Ẑ×, such as the group Ẑ×2. We may even arrange
that the projection to Z×

p is surjective for all p, as with the group {x : xp ∈ Z×2
p ∀p >

2} ∪ {x : xp /∈ Z×2
p ∀p > 2}.

2. Large image results for one modular form.

2.1. Setup. Let f be a normalized cuspidal modular newform of weight k ≥ 2,
level N and character ε. We write L = Q(an(f ) : n ≥ 1) for the number field generated
by the q-expansion coefficients of f . Note that L is totally real if ε = 1, and is a CM
field if ε �= 1.

DEFINITION 2.1.1.
(1) For p prime, we write

ρf,p : GQ → GL2(L ⊗ Qp),

for the unique (up to isomorphism) representation satisfying Tr ρf (σ−1
� ) = a�(f )

for all � � Np, where σ� is the arithmetic Frobenius.
(2) We write

ρf : GQ → GL2(L ⊗ Q̂),

for the product representation
∏

p ρf,p, where Q̂ is the ring of finite adeles of Q.

The condition (1) only determines ρf,p up to conjugacy, and we can (and do)
assume that its image is contained in GL2(OL ⊗ Zp), where OL is the ring of integers
of L. Thus, ρf takes values in GL2(OL ⊗ Ẑ), where Ẑ = ∏

p Zp is the profinite comple-
tion of Z.

REMARK 2.1.2. Our normalizations are such that if f has weight 2, ρf,p is the
representation appearing in the étale cohomology of X1(N) with trivial coefficients.
Some authors use an alternative convention that Tr ρf (σ�) = a�(f ), which gives the
representation appearing in the Tate module of the Jacobian J1(N); this is exactly the
dual of the representation we study, so the difference between the two is unimportant
when considering the image.

2.2. The theorems of Momose, Ribet, and Papier. For χ a Dirichlet character,
we let f ⊗ χ denote the unique newform such that a�(f ⊗ χ ) = χ (n)a�(f ) for all but
finitely many primes �.
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DEFINITION 2.2.1 [8, Section 3]. An inner twist of f is a pair (γ, χ ), where γ : L ↪→
C is an embedding and χ is a Dirichlet character, such that the conjugate newform f γ

is equal to the twist f ⊗ χ .

Note that we always have f = f ⊗ ε−1, so any newform of non-trivial character
has at least one non-trivial inner twist.

Lemma 1.5 of Momose [4] shows that if (γ, χ ) is an inner twist of f , then χ takes
values in L× and γ (L) = L. Thus, the inner twists (γ, χ ) of f form a group � with the
group law

(γ, χ ) · (σ,μ) = (γ · σ, χσ · μ).

Moreover, for any (γ, χ ) ∈ �, the conductor of χ divides N if N is odd, and divides
4N if N is even.

It is well known that if there exists a non-trivial χ such that f ⊗ χ = f , then f
must be of CM type and χ must be the quadratic Dirichlet character attached to the
corresponding imaginary quadratic field.

We now assume (until further notice) that f is not of CM type. Thus, for any inner
twist (γ, χ ) ∈ �, the Dirichlet character χ is uniquely determined by f and γ , and we
write it as χγ . The map (γ, χ ) �→ γ identifies � with an abelian subgroup of Aut(L/Q);
we write F for the subfield of L fixed by �. The extension L/F is Galois, with Galois
group � [4, Proposition 1.7].

Let us write H for the open subgroup of GQ which is the intersection of the kernels
of the Dirichlet characters χγ for γ ∈ �, interpreted as characters of GQ in the usual
way. Then, for all σ ∈ H we have Tr ρf (σ ) ∈ F ⊗ Q̂.

THEOREM 2.2.2 (Momose, Ribet, Ghate–Gonzalez-Jimenez–Quer). There exists
a central simple algebra B of degree 2 over F, unramified outside 2N disc(L/Q)∞, and
an embedding B ↪→ M2×2(L), with the following property: we have

ρf (H) ⊆ B(F ⊗ Q̂)× ⊆ GL2(L ⊗ Q̂).

Moreover, for all but finitely many primes p we have B ⊗ Qp = M2×2(F ⊗ Qp), and we
may conjugate ρf,p such that

ρf,p(H) = {x ∈ GL2(OF ⊗ Zp) : det x ∈ Z×(k−1)
p }. (†)

Proof. This result is mostly proved in Ribet [8], building on earlier results of
Momose [4]; the only statement not covered there is the explicit bound on the set of
primes at which B may ramify, which is Corollary 4.7 of Ghate et al. [1]. �

We will need later in the paper the following refinement:

COROLLARY 2.2.3 (Papier). Let p be such that B and L are unramified above p,
and ρf,p(H) is the whole group (†); and let σ ∈ GQ(μp∞ ). Then, the image of the coset
σ · (

H ∩ GQ(μp∞ )
)

under ρf,p is the set(
α 0
0 ε(σ )α−1

)
SL2(OF ⊗ Zp),

for any α ∈ (OL ⊗ Zp)× such that γ (α) = χγ (σ )α for all γ in Gal(L/F).

https://doi.org/10.1017/S0017089516000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000367


ADELIC GALOIS REPRESENTATIONS 17

Proof. See [8, Theorem 4.1]. (Strictly speaking, Ribet in fact only shows that there
is α ∈ L× with this property, and excludes any primes p such that α is not a p-adic unit.
However, since we have assumed L/F is unramified above p, we can always re-scale α

to be a p-adic unit.) �

2.3. Adelic open image for GL2. Since the determinant of ρf |H is χ1−k, where
χ : GQ → Ẑ× is the adelic cyclotomic character, we can extend ρf to a homomorphism
ρ̃f : H → G(Q̂), where G is the algebraic group of Definition 1.2.1 (for the specific
choices of B, F and k as in this section). This homomorphism is characterized by the
requirement that its projection to GL2(L ⊗ Q̂) is ρf , and its projection to Q̂× is the
cyclotomic character.

Applying Theorem 1.2.3 to ρ̃f (H), we obtain the first new result of this paper:

THEOREM 2.3.1. The image of H under ρ̃f is an open subgroup of G(Q̂).

REMARK 2.3.2. One can show exactly the same result with modular forms replaced
by Hilbert modular forms for a totally real field E, since the Momose–Ribet theorem
has been generalized to this context by Nekovář [5, Theorem B.4.10]. We have stated
the result only for elliptic modular forms in order to save notation.

2.4. The CM case. For completeness, we briefly describe the image of ρ̃f in the
CM case.

Let us now suppose f is of weight k ≥ 2 and is of CM type, associated to some
Hecke character

ψ : K̂× → L̃×,

for some imaginary quadratic field K and Grössencharacter ψ of infinity-type (1 −
k, 0), with ψ taking values in some extension L̃ of L. The relation between f and ψ is
given by

ap(f ) = ψ(�p) + ψ(�p′),

whenever p is a rational prime, not dividing the level of f , which splits in K as pp′. Here
�p ∈ K̂× is a uniformizer at p.

Let us write ψ̂ for the homomorphism K×\K̂× → (K̂ ⊗K L̃)× defined by

ψ̂(x) = x1−kψ(x).

If we identify K×\K̂× with Gab
K via the Artin map1, then the adelic Galois representation

ρg is given by IndGQ

GK
(ψ̂).

Note that there is a finite-index subgroup U ⊆ Ô×
K contained in the kernel of ψ ;

thus, the image of ψ̂ contains a finite-index subgroup of the group {x1−k : x ∈ Ô×
K }. In

particular, for almost all primes p the image of GK under ρg,p contains the group{(
x1−k 0

0 x̄1−k

)
: x ∈ (OK ⊗ Zp)×

}
.

1Normalized in the French manner, so geometric Frobenius elements correspond to uniformizers.

https://doi.org/10.1017/S0017089516000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000367


18 DAVID LOEFFLER

3. Joint large image.

3.1. Preliminaries. Now let f , g be two newforms of weights kf , kg ≥ 2, levels
Nf , Ng and characters εf and εg, respectively. We assume neither f nor g is of CM type,
and we write Lf , Lg for their coefficient fields. We will need the following lemma:

LEMMA 3.1.1. Suppose there exist embeddings Lf , Lg ↪→ C such that we have

a�(f )2

�kf −1εf (�)
= a�(g)2

�kg−1εg(�)

for a set of primes � of positive upper density. Then, there is a Dirichlet character χ such
that g = f ⊗ χ .

Proof. This is a special case of Theorem A of Ramakrishnan [6]. �
REMARK 3.1.2. Recall that the upper density of a set of primes S is defined by

UD(S) = lim sup
X→∞

#{� ∈ S : � ≤ X}
#{� : � ≤ X} .

We will need below the easily-verified fact that if S1, . . . , Sn are sets of primes, then

UD(S1 ∪ · · · ∪ Sn) ≤ UD(S1) + · · · + UD(Sn),

so if S1 ∪ · · · ∪ Sn has positive upper density, then at least one of the sets Si has positive
upper density.

We can obviously apply the theory of the previous section to each of f and g, and
we use the subscripts f, g to refer to the corresponding objects for each form; so we
have number fields Ff , Fg, quaternion algebras Bf , Bg, and algebraic groups Gf , Gg.

We may unify these as follows: we let F = Ff × Fg, which is an étale extension of
Q, and B = Bf × Bg, which is a quaternion algebra over F ; and the group G◦ of norm
1 elements of G is just G◦

f × G◦
g. We let

k : Gm → ResF/Q Gm = ResFf /Q Gm × ResFg/Q Gm,

be the character sending λ to (λkf , λkg ). Then, Definition 1.2.1 gives us an algebraic
group

G = {(x, λ) ∈ B× × Gm : norm(x) = λ1−k}
= {(xf , xg, λ) ∈ B×

f × B×
g × Gm : norm(xf ) = λ1−kf , norm(xg) = λ1−kg}.

This is, of course, just the fibre product of Gf and Gg over Gm. Letting H = Hf ∩ Hg,
we have a representation

ρ̃f,g : GQ → G(Q̂),

and in particular

ρ̃f,g,p : GQ → G(Qp)

for all primes p.
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3.2. Big image for almost all p.

PROPOSITION 3.2.1. Let p ≥ 5 be a prime unramified in B, and let U be a subgroup of
G(Zp) which surjects onto Gf (Zp) and Gg(Zp). Then, either U = G(Zp), or (after possibly
conjugating U) there are primes v | p of OFf , w | p of OFg and an isomorphism

OFf ,v
∼= OFg,w,

such that for all (x, y, λ) ∈ U we have (y mod w) = ±λ(kf −kg)/2(x mod v).

Proof. This is visibly a generalization of Proposition 7.2.8 of Lei et al. [3], and
we follow essentially the same argument. (We have changed notation from H to U to
avoid confusion with the Galois group H above.)

Let U◦ = U ∩ G◦(Zp). By the same commutator argument as before, U◦ is a
subgroup of G◦(Zp) = G◦

f (Zp) × G◦
g(Zp) which surjects onto either factor.

By Goursat’s Lemma, there are closed normal subgroups Nf � G◦
f (Zp) and Ng �

G◦
g(Zp) such that U◦ is the graph of an isomorphism φ : G◦

f (Zp)/Nf ∼= G◦
g(Zp)/Ng.

The maximal normal closed subgroups of G◦
f (Zp) are precisely the kernels of

the quotient maps to PSL2(kv) for each prime v | p of Ff , and every automorphism
of PSL2(kv) is the composite of a field automorphism of kv and conjugation by an
element of PGL2(kv). Hence, after possibly replacing U by a conjugate of U in G(Zp),
we may find primes v | p of Ff and w | p of Fg, and an isomorphism OFf ,v

∼= OFg,w,
such that U◦ is contained in a conjugate of the group

{(x, y) ∈ G◦
f (Zp) × G◦

g(Zp) : x mod v = ±y mod w}.

For a general element (x, y, λ) ∈ Up, let t = (x mod v)−1(y mod w) ∈ GL2(F), and
let [t] denote its image in GL2(F)/{±1}. For any element (u, v) ∈ U◦, we have the same
commutator identity as in Lei et al. [3, Proposition 7.2.8],

[u−1tu] = [u−1x−1yu] = [x−1][(xux−1)−1(yvy−1)][y][v−1u] = [x−1y] = [t],

since (xux−1, yvy−1) ∈ U◦. This shows that [t] commutes with every element of PSL2(F),
so that t is a scalar matrix. It is clear that we must have t2 = λkf −kg by comparing
determinants, and this gives the result. �

THEOREM 3.2.2. If f is not Galois-conjugate to a twist of g, then for all but finitely
many primes p we have ρf,g,p(H) = G(Zp).

Proof. Let us fix embeddings of Ff and Fg into C, and let F be their composite.
The above theorem shows that for all p outside some finite set S, if ρf,g,p(H) �=

G(Zp), then there is some prime v of F above p dividing the product

∏
γ∈Gal(Fg/Q)

(
a�(f )2 − �kf −kgγ (a�(g))2) ,

for all primes � whose Frobenius elements lie in H. Since no non-zero element of F may
be divisible by infinitely many primes, we deduce that either ρf,g,p(H) = G(Zp) for all
but finitely many p, or the above product is zero, so for each prime � whose Frobenius
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lies in H, there is γ ∈ Gal(Fg/Q) (possibly depending on �) such that we have

a�(f )2

�k−1εf (�)
= γ

(
a�(g)2

�k−1εg(�)

)
,

(since εf (�) = εg(�) = 1 for all such �). Since there are only finitely many possible γ ,
there must be at least one γ ∈ Gal(Fg/Q) such that the above equality holds for a set
of � of positive upper density. By Lemma 3.1.1, this implies that for some (and hence
any) γ ′ ∈ Gal(Lg/Q) lifting γ , the conjugate form gγ is a twist of f . �

3.3. Open image for all p.

PROPOSITION 3.3.1. Let p be arbitrary and let U be a subgroup of G(Zp) which
has open image in Gf (Zp) and Gg(Zp). Then, either U is open in G(Zp), or there are
primes v of Ff and w of Fg above p, a field isomorphism Ff,v ∼= Fg,w, and an isomorphism
Bf ⊗ Ff,v ∼= Bg ⊗ Fg,w, such that U has a finite-index subgroup contained in a conjugate
of the subgroup

{(x, y, λ) ∈ G(Zp) : yw = λ(kf −kg)/2xv},

where xv and yw are the projections of x and y to the direct summands (Bf ⊗ Ff,v)× and
(Bg ⊗ Fg,w)×.

Proof. This follows in a very similar way to Proposition 3.2.1 with all the groups
concerned replaced by their Lie algebras. We know that u = Lie(U) is a subalgebra
of Lie(G) which surjects onto Lie(Gf ) and Lie(Gg). Since G◦

f and G◦
g are semi-simple

we deduce that u◦ = Lie(U◦) is a subgroup of Lie(G◦
f ) ⊕ Lie(G◦

g) surjecting onto either
factor. By Goursat’s Lemma for Lie algebras, we deduce that it must be contained in
the graph of an isomorphism between simple factors of Lie(G◦

f ) and Lie(G◦
g). Using

Lemma 1.1.4, we deduce the above result. �
PROPOSITION 3.3.2. If f is not Galois-conjugate to a twist of g, then ρf,g,p(H) is open

in G(Zp) for all primes p.

Proof. By the previous result, if ρf,g,p(H) is not open in G(Zp), there is an element
γ ∈ Gal(Ff /Q) and a positive-density set of primes � such that we have

a�(f )2

�k−1εf (�)
= γ

(
a�(g)2

�k−1εg(�)

)
.

Ramakrishnan’s theorem now tells us that gγ is a twist of f . �

3.4. Adelic big image.

THEOREM 3.4.1. Let f , g be non-CM-type cusp forms of weights kf , kg ≥ 2. Then,
either ρf,g(H) is open in G(Q̂), or kf = kg and f is Galois-conjguate to a twist of g.

Proof. Suppose f is not Galois-conjguate to a twist of g. Then, by the results of
the previous two sections, ρf,g(H) is a compact subgroup of G(Q̂) whose image is open
in G(Qp) for all primes p, and equal to G(Zp) for all but finitely many p. Applying
Theorem 1.2.3, we deduce that this subgroup must be open in G(Zp). �
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Via exactly the same methods and induction on n, one can prove the following
generalization. We shall not give the proof here, as the notation becomes somewhat
cumbersome, but the arguments are exactly as before.

THEOREM 3.4.2. Let f1, . . . , fn be newforms of weights k1, . . . , kn ≥ 2. Then either
� there is a Dirichlet character χ and i, j ∈ {1, . . . , n} such that fi ⊗ χ is Galois-

conjugate to fj, with χ �= 1 if i = j;
� or there is an open subgroup H of GQ such that the image of H under the map

ρf1 × · · · × ρfn × χ : GQ → GL2(Lf1 ⊗ Q̂) × · · · × GL2(Lf1 ⊗ Q̂) × Q̂×,

is an open subgroup of G(Q̂), where G is the algebraic group{
(g1, . . . , gn, λ) ∈ B×

f1
× · · · × B×

fn
× Gm : norm(gi) = λ1−ki

}
.

REMARK 3.4.3. Note that Serre [12] has formulated a general conjecture on the
image of Galois representations for motives: for any motive M of rank r over a number
field K , one can define a connected subgroup MT(M) of GLr /Q such that the image
of ρM : GK → GLr(Q̂) is contained in MT(M)(Q̂). Thus, a finite-index subgroup H
of GQ lands in MT0(M)(Q̂), where MT0(M) is the identity component.

In general one does not expect ρM(H) to be open in MT0(M)(Q̂), because of
obstructions arising from isogenies; e.g. if M = Q(2), then MT(M) = Gm, but the
image of GQ is the group of squares in Ẑ×, which is not open. However, there is a
distinguished class of “maximal” motives for which this should be the case.

The motive M(f ) attached to a weight k modular form is not maximal if k > 2,
but M(f ) ⊕ Q(1) is maximal if f is not of CM type (cf. §11.10 of op.cit.), and the group
Gf is the connected component of MT(M(f ) ⊕ Q(1)). Thus, we have verified Serre’s
open image conjecture for the maximal motives

M(f1) ⊕ · · · ⊕ M(fn) ⊕ Q(1),

whenever the fi are non-CM forms of weight ≥ 2 and no fi is Galois-conjugate to a
twist of fj.

4. Special elements in the images.

4.1. Setup. This section is more technical, and was the original motivation for the
present work: to find elements in the images of ρf,p × ρg,p with certain special properties.
In this section, we fix newforms f, g as before, and a Galois extension L/Q with
embeddings Lf , Lg ↪→ L; we then have representations ρf,p, ρg,p : GQ → GL2(OL,p)
for each prime p of L.

Let Vp be the four-dimensional Lp-vector-space L⊕4
p , with GQ acting via the tensor-

product Galois representation ρf,p ⊗ ρg,p; and let Tp be the GQ-stable OL,p-lattice O⊕4
L,p

in Vp.
Our aim is to verify the following conditions, in as many cases as possible:

HYPOTHESIS (Hyp(Q(μp∞ ), Vp)).
(1) Vp is an irreducible Lp

[
GQ(μp∞ )

]
-module (where p is the rational prime below p).

(2) There is an element τ ∈ GQ(μp∞ ) such that Vp/(τ − 1)Vp has dimension 1 over Lp.

https://doi.org/10.1017/S0017089516000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000367


22 DAVID LOEFFLER

HYPOTHESIS (Hyp(Q(μp∞ ), Tp)).
(1) Tp ⊗ kp is an irreducible kp

[
GQ(μp∞ )

]
-module, where kp is the residue field of Lp.

(2) There is an element τ ∈ GQ(μp∞ ) such that Tp/(τ − 1)Tp is free of rank 1
over OL,p.

Our formulation of these is exactly that of Rubin [9, Chapter 2]. Note that
Hyp(Q(μp∞ ), Tp) ⇒ Hyp(Q(μp∞), Vp). We note the following preliminary negative
result:

PROPOSITION 4.1.1. If εf εg is the trivial character, then Hyp(Q(μp∞ ), Vp) is false
(for every prime p).

Proof. If εf εg is trivial, the image of GQ(μp∞ ) under ρf,p × ρg,p is contained in
the subgroup

{
(x, y) ∈ GL2(Lp) × GL2(Lp) : det(xy) = 1

}
. An easy case-by-case check

shows that the image of this subgroup under the tensor-product map to GL4(Lp)
contains no element τ such that τ − 1 has one-dimensional cokernel. �

4.2. Special elements: the higher-weight case. In this section, we assume f and
g have weights ≥ 2, both f and g are non-CM, and f is not Galois-conjugate to any
twist of g.

We say p is a good prime if the prime p of Q below p is ≥ 5, p is unramified in
the quaternion algebra B over Ff ⊕ Fg described above, p � Nf Ng, and the conclusion
of Theorem 3.2.2 holds for p. For any good prime, it is clear that the irreducibility
hypothesis (1) in Hyp(Q(μp∞), Tp) is satisfied.

For convenience, we set N = LCM(Nf , Ng) if Nf and Ng are both odd, and N =
4 LCM(Nf , Ng) otherwise, so for any inner twist (γ, χ ) of either f or g, the conductor
of χ divides N.

PROPOSITION 4.2.1. Let u ∈ (Z/NZ)× be such that εf (u)εg(u) �= 1. Let p be a good
prime, and suppose that χγ (u) = 1 for all γ in the decomposition group of p in �f , and
similarly for �g.

Then, Hyp(Q(μp∞ ), Vp) holds; and if p ≥ 7 and εf εg(u) �= 1 mod p, then in fact
Hyp(Q(μp∞ ), Tp) holds.

Proof. The condition on the decomposition groups implies that for σ ∈ GQ(μp∞ )

whose image in (Z/Nf NgZ)× is u, the quantities α arising in Papier’s theorem (Corollary
2.2.3) for f and g lie in Ff,p and Fg,p, respectively, so we have ρf,p(σ ) ∈ GL2(Ff,p) and
ρg,p(σ ) ∈ GL2(Fg,p). Since

(ρf,p × ρg,p)
(
H ∩ GQ(μp∞ )

) = SL2(OFf ,p) × SL2(OFg,p),

it follows that the image of GQ(μp∞ ) under ρf,p × ρg,p contains the element((
x 0
0 x−1εf (u)

)
,

(
y 0
0 y−1εg(u)

))
,

for any x ∈ O×
Ff ,p

and y ∈ O×
Fg,p

. Choosing x, y ∈ Z×
p with xy = 1 and x−2εf (u) �= 1,

x2εg(u) �= 1 we see that the image of this element under the tensor product map is
diagonal and has exactly one entry equal to 1, so Hyp(Q(μp∞ ), Vp) holds.

If p ≥ 7, then we may choose x such that x−2εf (u) �= 1, x2εg(u) �= 1 modulo p
(as there are at least three distinct quadratic residues modulo p); and the condition
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εf εg(u) �= 1 mod p implies that the fourth diagonal entry is also not equal to 1 modulo
p. So Hyp(Q(μp∞ ), Tp) holds. �

REMARK 4.2.2. In particular, the proposition applies if εf εg �= 1 and Ff,p = Lf,p

and Fg,p = Lg,p, since in this case both decomposition groups are trivial and we may
take any u with εf εg(u) �= 1. See [3, Proposition 7.2.18], which is the special case where
Lf,p = Lg,p = Qp.

PROPOSITION 4.2.3. Suppose there exists u ∈ (Z/NZ)× such that εg(u) = −1, but
χγ (u) = 1 for all γ ∈ �f . Then, for all good primes p, Hyp(Q(μp∞), Tp) holds.

Proof. Since p � Nf Ng, we may find σ ∈ GQ(μp∞ ) mapping to u. By Papier’s theorem
(Corollary 2.2.3 above), the image of the coset σ · (H ∩ GQ(μp∞ )) under ρf,p × ρg,p is
the set

{
(x, y) : x ∈ SL2(OFf ,p), y ∈ (

α 0
0 −α−1

)
SL2(OFg,p)

}
,

where α ∈ O×
Lg,p

is any element such that γ (α) = χγ (σ )α for all inner twists (γ, χγ ) of
g such that γ lies in the decomposition group of p.

However, the coset
(

α 0
0 −α−1

)
SL2(OFg,p) contains

(
α 0
0 −α−1

) (
0 1

−1 0

) = (
0 α

α−1 0

)
. Since

α is only defined up to multiplication byO×
F,p, we may assume that α2 �= 1 mod p (using

the assumption that p ≥ 5). Then, the element
(

0 α
α−1 0

)
is conjugate in GL2(OLg,p) to(

1 0
0 −1

)
.

Hence the group GQ(μp∞ ) contains an element τ whose image in GL2(OLf ,p) ×
GL2(OLg,p) is conjugate to

((
1 1
0 1

)
,
(

1 0
0 −1

))
, and this acts on Tp with cokernel free of

rank 1 as desired. �

REMARK 4.2.4. Note in particular that the hypotheses of the preceding proposition
are satisfied if g has odd weight, and either Nf and Ng are coprime, or f has trivial
character and no non-trivial inner twists.

4.3. Special elements: the CM case. We now suppose that f , g both have weights
≥ 2, as before, and f is non-CM, but g is CM, associated to a Grössencharacter ψ of
an imginary quadratic field K . Let L̃g be the extension of Lg in which the values of ψ

lie, and let us suppose that our embedding Lg ↪→ L extends to an embedding L̃g ↪→ L.
We let H be an open subgroup of GK , with GK/H abelian, such that H ⊆ Hf and

ψ̂(H) ⊆ (ÔK )×(1−k). In this CM setting, we say a prime p of L (above some rational
prime p) is good if p � Nf Ng, p is unramified in Ff and in the quaternion algebra Bf ,
the image of H under ρf,p contains Gf (Zp), and the image of GK under ψ̂p contains
(OK ⊗ Zp)×(1−k). Since H is open in GQ, all but finitely many primes p are good, as
before.

PROPOSITION 4.3.1. Suppose there exists u ∈ (Z/NZ)× such that εf εg(u) �= 1 and
εK (u) = 1, where εK is the quadratic Dirichlet character attached to K.

Let p be a good prime such that Lf,p = Ff,p and L̃g,p = Qp. Then, Hyp(Q(μp∞ ), Vp)
holds; and if p ≥ 7 and εf εg(u) �= 1 mod p, then in fact Hyp(Q(μp∞ ), Tp) holds.

Proof. This is similar to Proposition 4.2.1. Since SL2(OF,p) and Z×
p have no

common quotient, the image of H ∩ GQ(μp∞ ) under ρf,p × ρg,p is the whole of the
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group

SL2(OF,p) ×
{(

y 0
0 y−1

)
: y ∈ Z×

p

}
.

If we choose σ ∈ GQ(μp∞ ) lifting u, then ρf,p(σ ) ∈ GL2(OF,p), and ρg,p(σ ) is diagonal;
thus the image of the coset σ · (H ∩ GQ(μp∞ )) contains all elements of the form((

x 0
0 x−1εf (u)

)
,

(
y 0
0 y−1εg(u)

))
,

with x ∈ O×
Ff ,p

and y ∈ Z×
p . The proof now proceeds as before. �

4.4. Special elements: the weight one case. We now assume g is a weight 1 form,
so the Galois representation ρg lands in GL2(Lg) ⊂ GL2(Lg ⊗ Q̂), and has finite image
(i.e. it is an Artin representation). In this section, we do permit g to be of CM type. As
in the previous section, we assume that our other newform f has weight ≥ 2 and is not
of CM type.

THEOREM 4.4.1. Suppose Nf is coprime to Ng. Then, for all primes p of L such that
p � Ng and p is unramified in Ff and Bf , we may find τ ∈ GQ(μp∞ ) such that Vp/(τ − 1)Vp

is 1-dimensional over Lp.
For all but finitely many p, we may choose τ such that Tp/(τ − 1)Tp is free of rank

1 over OL,p.

Proof. Let p be the rational prime below p. As ρ is unramified outside Ng and ρf,p

is unramified outside pNf , and (pNf , Ng) = 1, we conclude that the splitting field of
ρg is linearly disjoint from that of ρf,p and from Q(μp∞ ). Hence, given any a ∈ ρg(GQ)
and b ∈ ρf,p

(
GQ(μp∞ )

)
, we may find τ ∈ GQ(μp∞ ) such that ρg(τ ) = a and ρf,p(τ ) = b.

We know that ρg is odd, so ρ(GQ) contains an element a conjugate to
( −1 0

0 1

)
.

Meanwhile, since f is not of CM type, ρf,p
(
GQ(μp∞ )

)
contains a conjugate of an

open subgroup of SL2(Ff,p), where Ff,p is the fixed field of the extra twists of f as in
the previous section. In particular, it contains a conjugate of an open subgroup of
SL2(Zp); so, after a suitable conjugation, the image contains the element b = ( 1 pr

0 1

)
for

r � 0. The preceding argument allows us to find τ ∈ GQ(μp∞ ) such that ρg(τ ) = a and
ρf,p(τ ) = b. As a ⊗ b − 1 clearly has 1-dimensional kernel, we are done.

For all but finitely many p we have the stronger result that ρf,p
(
GQ(μp∞ )

)
contains

a conjugate of SL2(OF,p), so we may take r = 0 and we deduce that a ⊗ b − 1 has
1-dimensional kernel modulo p. �

REMARK 4.4.2. Further strengthenings of the results of this section may be possible:
it seems reasonable to expect that whenever εf εg is non-trivial, Hyp(Q(μp∞ ), Tp) should
hold for all but finitely many p. But I have not been able to prove this.
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