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§ 1. Introduction.
1-1. The two functions F (A, 8) and G (A, 9), defined by the infinite
integrals (1) and (2) respectively, below, occur in Kottler's theoretical
discussion1 of the diffraction of a monochromatic plane wave by a
perfectly black half plane. Some properties of these functions have
been investigated by several recent writers.

Copson and Ferrar2 obtained, by a somewhat laborious method,
the Fourier expansion of F (A, 8) with respect to 8. The coefficients
of this expansion turned out to be " cut " Bessel functions of the
third kind with the argument A. By the aid of this expansion Copson
and Ferrar discussed the behaviour of F (A, 8) for small values of A.

Watson3 obtained the expansions of both F (A, 0)/cos £0 and
G (A, 8)/cos \8 into power series in sin \8, convergent when | sin \8 | < 1,
and also discussed the behaviour of F (A, 8) and G (A, 8) when 8
approaches one of the values ziz "f lying on the circumference of the
circle of convergence of his series.

In a recent note4 I myself obtained a definite integral representa-
tion of F(h,8), (3), and emphasised that this integral representation
seems to be a better expedient for discussing the behaviour of F (A, 8)
when A is small.

1-2. In the following lines I propose to add some remarks to the
theory of the functions F (A, 8) and G (A, 8).

The proof of the Fourier expansion of Copson and Ferrar is " less
easy than one might expect," and Watson, pointed out the series to
be very slowly convergent. Both difficulties I believe to be caused
by the fact that the function F (A, 8) is not a periodic function in 8.
The representation by a definite integral shows, however, that

1 F. Kottler, Ann. der Physik 71 (1923), 457-508 (496, 499).
2 E. T. Copson and W. L. Ferrar, Proc. Edin. Math. Soc. (2), 5 (1938), 159-68.
3 G. N. Watson, Proc. Edin. Math. Soc. (2), 5 (1938), 173-81.
* A. Erdelyi, Proc. Edin. Math. Soc. (2), 6 (1939), 11.
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TWO INFINITE INTEGRALS 95

is the sum of an elementary function, 8e-ikco*el2ir, and a function
periodic in 8. It is therefore very probable that expanding only
the second, periodic, term, a more rapidty convergent Fourier series
can be found. In § 2 this series is quite easily obtained, using only
the generating function of Bessel coefficients (i.e., of Bessel functions
of first kind whose order is an integer), integrating term by term a
uniformly convergent series, and using Bateman's generalisation of
Kapteyn's integral. The convergence of the Fourier series obtained
thus is comparable with the convergence of the exponential series,
whereas the convergence of Copson and Ferrar's Fourier expansion is
comparable with the convergence of the series

oo / \n

S —L- sin 2nd .
n = \ n

In § 3 another expansion of F (A, 8) is obtained, in terms of
Lommel's function s^„ (A). This expansion, being a power series in
cos 8, is useful for numerical computation of F (A, 8) for values of 8
near to ^n. Both series mentioned hitherto exhibit the behaviour of
F (A, 8) for small values of A.

In § 4 I propose to show that the coefficients of Watson's
expansions of F (A, 8) and G (A, 8) are expressible in terms of
Whittaker's confluent hypergeometric function Wn_m(z). Moreover,
G (A, 8) itself is expressible in terms of the Error function.

§ 2. The Fourier expansion.

2-1. The functions in question are those defined by the infinite
integrals

1 fM .. , , sin 6rp t \ Q\ I olK cosh / ,7/ / 1 \v (A, v) = — \ e. ————• -at l i )

In Jo cosh t + cos a v '

and

^ 1 f00 x t,/cos 18 cosh U
G(X,8)~~ elKcosht—rf— \dt. (2)

v ' 77 Jo cosh< + cos 8 v

Both integrals are absolutely convergent if the restrictions 3 (̂ ) > 0,
| H ( 0 ) | < T T are supposed to be fulfilled by the complex variables
A and 8.

The first of these functions is also representable in the form

(3)F (A, 61) = e-
iK™e | ^ - | s in 8 T H<» (I) eu^edl\,
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96 A. ERDELYI

in which only a definite integral occurs. This representation I derived
from Kottler's differential equation for F (A, 0), but it can be as well
derived immediately from (1), putting in (1)

1 fX 1
glAcosht _ ^ g — i K c o s d I g i s ( c o s h < + c o s S) ^ g i g — t X c o s *

cosh i-f cos 0 Jo ' cosh t-\- cos 0'

and inverting the order of integration in the first of the terms
obtained thus.

2-2. Copson and Ferrar obtained, in the paper quoted above, the
Fourier expansion

F{\,9) = \ 2 i-n-i Up (\) sin nO. (4)
«.=!

In this expansion Up1 (A) is a " cut Bessel function of the third kind,"
obtained by omitting all terms containing negative powers of A from
the expansion of H^ (A) in ascending powers of A. This expansion is
valid when — \-n < 9 < \ir\ when \n < ± 6 < •"> the term ± |e~tXcos9 has
to be added to the expansion on the right.

Watson pointed out that this series, though very elegant,
converges very slowly, since for fixed A and large n we have

h,W (A) = 21 cos \n-n + 0 (n ~2).

A more rapidly convergent Fourier series can be found for the
second term of the finite integral representation (3), that is to say for

F (A, 9) - JL e-»~.« = _ I sin 6 f H^(t) e-«*-o«».» dt. (5)
2n 4 Jo

F (A, 9) is defined by this equation obviously for any finite values of A
and 9, real or complex, and the restrictions mentioned in 2.1 can be
removed.

2-3. To expand (5) into a Fourier series, we differentiate Jacobi's

expansion1

e-i(x-«coSe ^ jQ(X — t)+ 2 E i-nJn(X — t)cosn9

1 G. N. Watson, Theory of Bessel Functions (Cambridge, 1922), 5 222 (3), (4). This
book will be referred to in the sequel as Bessd Functions.
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with respect to 6. Term by term differentiation being permissible by
reason of the uniform convergence of Jacobi's expansion in every
finite domain of the variables A — t and 8, we obtain

A ^nJn (A - t) sinn6.sin0.e £ i
A — tn=1

This series being absolutely and uniformly convergent for 8 ̂  t ^ A
(or on the path of integration, if A happens to be complex), term by
term integration is permissible and yields

F (A, B) = £- e~iK™e - I s i n 0 (* H#> (I) e - ^ - '
*T 4 Jo

t pn(*-t)^r (6)
Z77

2-4. To evaluate the integrals in (6) we deal at first with the more

general integral

f # W ( 0 J B ( A - 0 > — . , ( » = l , 2 , . . . . ) . (7)
Jo A — I

In order to make this integral convergent we must suppose the real
part of v to be between — 1 and + 1. Now1

(t) = J A t ) e ~ ^ J ( t )
i s i n i>77

and hence

(t)Jn(\-t)£- _e—• f
A — < Joo A — t i s i n I ' T T ^ J Q A — t J o A — t

According to Bateman's extension of Kapteyn's integral2 we have

Jo

n f H? (t) Jn(\-t), = .^
J o A — t 1S1D VTT

' X - t ~ n

and thus

1 Bê seJ Functions, §3 61 (5).
2 H. Bateman, Proc. London Math. Soc. (2), 3 (1905), 111-23 (120). See also

Functions, § 12 2 (3).
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98 A. EKDELYI

Approaching the limit v->0 on both sides of this equation—the
carrying out of the limiting process under the sign of integration is
easily justifiable—we obtain by the rule of L'Hospital

n f J?O)
Jo n

r | l . (8)

2-5. Putting (8) in (6), we obtain, instead of Copson and Ferrar's
expansion (4), the Fourier series

F (A, 6) = — e-«eos«+ I | s i n ne rp
2TT - w B = 1 ldv

_ e -rtcos« , 1 y •_„_! • » L 2raJ_(A)-| \ .
2TT 2 n = 1 { " 771L 3v _!,,=„ J

From our derivation it is clear that this expansion is uniformly
convergent in any finite domain of the (real or complex) variables A
and 9. Moreover, this expansion shows that F (A, 9) can be written
in the form

F (X, 9) = F, (X,9) + logX . F2(X, 9),

with two functions, Fx and F2, which are integral functions of both of
the complex variables A and 9.

We can easily obtain information on the rapidity of convergence
of (9), using1

Hence for fixed A and large values of n

Jn (A) - -\J-?
 K)\ =\\--, log (\X) \jn (A) + - . S ( , V V u f (n + m + 1)

ml Sv X=n [ ™ J nim=Q m\{n + m)\ T

TTl

From this asymptotic form it is seen that the absolute convergence
of (9) is comparable with the convergence of the exponential series
with argument \ \ A | exp {13 (0) | }.

1 Bessel Functions, §352.
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§ 3. Expansion in a series of Lommel's functions.

3 1 . We s tar t from1

™ (t) dt = (p-\)X H$> (A) ̂ _ ! , _! (A) + A fl»> (A) SMi 0 (A), (10)

and put in this formula2

<sM,, (A) = v , (A) + 2^-1 r (|/x - iv + i) r (^ + jv + j )

X [ S i n £ (/Ll - V) 77 . Jv (A) - COS | ( / X - V) 7T . ^ ( A ) ] . ( 1 1 )

Here

denotes Lommel's function3.

Putting (11) into (10) we obtain after some algebra

f K ,
o

this formula being valid for H (fi) > — 1.

3-2. Now, in virtue of (3),

F (A, 9) = a - * - j ± - J ain 9. f ^ (0 i

term by term integration being permissible by reason of the absolute
and uniform convergence of 2 (it cos 8)n/n\ in 0 ̂  t ^ A, and of the
absolute convergence of each of the integrals in the last equation.

Using (13) in the last equation we arrive at

F (A, 6) = e-*«-» { / _ X\ sin 6 fl{f> (A) S ^ - V c o s - 0 «„_!,_! (A)
m = 0

- J A sin 6 Hi1' (A) S —. cos" 6» 5n> 0 (A) I . (14)

iVncttww, § 1074 (5). We have used further ifl1,' (A.) = - R^ (\).

Functions, § 1071 (3).
3.BesseZ Functions, § 107 (10).
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100 A. ERDELYI

Both infinite series in (14) converge absolutely and uniformly in every
finite domain of the complex variables A and 9. (14) is useful for
calculating F (A, 9) for values of 9 near \TT.

In order to judge the rapidity of the convergence of the two
infinite series in (14), we remark, that, according to (12), for fixed A
and large values of n

and

Hence the series of the moduli of the terms of both infinite series in
(14) converge like

» | A cos 6 \" « IA cos 91"
n=o (n + 1)! a n ' ]

nZo(n + l)(n+ 1)!

respectively, that is to say, like the power series of exp | A cos 9 | .

3-3. From (14) we obtain especially

F (A, |w) = J + J A#£' (A) s_h _t (A) - iAtfi1' (A) «0> 0 (A). (15)

I t is important to remark that in this formula only tabulated functions
occur.

Indeed, if the two parameters of Lommel's function happen to
be equal, Lommel's function is expressible in terms of Struve's
function H_. For (12) yields

but1

and therefore

«,,,(A) = 2T( - ! ) r (v + i)H,(A). (16)

In particular

So,o(A)=|7rHo(A) (17)
and

s_a, _x (A) = - \* H_x (A) = J,r Hi (A) - 1. (18)

1 Bessel Functions, § 10 4 (2).
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In (18) the recurrence formula of Struve functions1

with v = 0 was used.

Thus we can write instead of (15)

F (A, \-n) = | - \m^ (A) + irrA {#£> (A) E1 (A) - tf'1' (A) Ho (A)}. (19)

Tables of Struve's functions occurring here are found in Watson's
Bessel Functions2 and in Jahnke-Emde's Tables of functions3.

3-4. A few words more may be said concerning the computation of
F (X, 6) for any values of 6 from (14). I t is only necessary to deal
with the computation of sv+Ki „ (A) (v = 0, 1; n = 0, 1, 2 ).

We have seen that «„„ (A) can be computed by the aid of tables
of Struve's functions. Having this, the recurrence formula4 of
Lommel's functions

«̂ +2, „ (A) = A^1 - [(/i + I)2 - v2] «Mi „ (A) (20)

furnishes us successively with sv+2> „ (A), s,,+4 „ (A), . . . .

Again,

«,+i,,(A) = — jTj.-F2(l; 2, v+2; — £A2) = A"-2"r (v + 1) J,(A). (21)

From this equation, in connection with (20), sv+1,,{X), s,,+sjV(A), . . . .
can be computed.

For small values of A, or 8 near to £77, only a few terms of the
infinite series in (14) are to be taken in account.

§ 4. Expansions in ascending powers of sin $8.

4 1 . Watson obtained the expansions

F (A; 8) = J cos \B S /„ (A) s in 2 ^ 1 \8
n=0

and

G (A; 8) = I cos\6 2 gn[X) sin2" \8,

1 Bessel Functions, §10-4(5).
2 Pp. 666-97.
3 Third Edition (1938), 218-23.
4 Bessel Functions, § 1072 (1).
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102 A. EKDELYI

in which /„ and gn are defined by the integrals

(22)
'o

and
2 r „ „,„ ( 2 3 )

I propose to show that /„ and gn can be expressed in terms of
Whittaker's confluent hypergeo metric function Wk<m{z).

4-2. Both /„ (A) and gn (A) can be expressed in terms of the function

fa (Z) = — f e-*
2<"sh< c o s h - 4 " ^ ^ . (24)

77 Jo

This integral is absolutely convergent if | arg z \ < | TT.

The substitution cosht = 2ti + L in (24) yields the integral

representation
2 f°°

fa{z) = —e-#\ e~vzu-t(u+ l)-4-2"cZw. (25)

Comparing this with the definition of Whittaker's Wky m-iunction1

[H ( | — jfc -j- m) > 0], we immediately see that (26)

+A*)=-$-*'-iW_rf-Az).
•\/TT

4-3. Now the equations

/»(A) = & + , „ ( - 2<A) = - ? - ( - a»A)5» ^ _ , _ i n , _ s _ j n ( - 2»A) (28)
V7 7

and

0»(A) = «̂ i + S» ( - 2*A) = 4 - ( - 2*^)*"-* ^ - l - ! » . -*-»»(- 2*A) (29)

at once follow. In both of these equations | arg (— 2iA) | < rr is to be

taken.

Thus, the coefficients in Watson's expansions can be expressed

*E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge, 1927), §16-12.
To compare (25) and (26) put t = uz.
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in terms of Whittaker's function. The connection of f_1 with Bessel
functions, namely

and the recurrence formulae

(2n + l)/n(A) = (2n + 4iA)/n_1 (A) - 4i\fn_2 (A)
and

2n gn (A) = (2n - 1 + 4»A) ?„_! (A) - 4iA£nl2 (A),

obtained by Watson, at once follow from the theory of the Wkm

function.
It is easily seen that the functions gn (A) are expressible in terms

of the Error function and its derivatives1.

§ 5. Expression of O (A, 6) in terms of the Error function.

5-1. I conclude by noticing that 0 (A, 6) itself is expressible in terms
of Gauss's Error function

Erfc(a;)=[ e~ts dt

with complex argument.
To exhibit the connection between G (A, 0) and the Error function

we put in (2)

coshi = 1 + i— ,
A

v being the new variable of integration. This substitution yields,
rotating the path of integration through a right angle,

2,T cos|0 Jo \ — 2iXcos

, ' i \ - i />tA sin2 W
* A ) \ '

according to (26).
Now2,

Erfc (a.) = \x~l e~ix' W_h ± i (a;2),
and hence

i X e ( f (30))= — e-AcoSe f e - ' 2 ^ .
V f V(-2iA).cos!9

1 See also Modern Analysis, § 16'2.
2 Modern Analysis, § 1602.
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104 A. ERDELYI '

I t does not seem to be very easy to deduce (30) directly from (2).
So far as I see either double (improper) integrals or fractional integra-
tion by parts must be used.

5-2. There seems to be no equally simple expression for F (A, 6). I
only succeeded in expressing this function in terms of a certain kind
of confluent hypergeometric function of two variables. I omit the
deduction of this expression, however, because it does not seem to be
of any use in the computation of ^(A, 6).

THE MATHEMATICAL INSTITUTE,

16 CHAMBERS STREET, EDINBURGH, 1.
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