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ON THE GAUSS MAP OF MINIMAL SURFACES WITH
FINITE TOTAL CURVATURE

MiN Ru

We prove that if a nonflat complete regular minimal surface immersed in Rn is
of finite total curvature, then its Gauss map can omit at most (n — l)(n + 2)/2
hyperplanes in general position in P" - 1(C).

1. INTRODUCTION

There have been several results devoted to studying the "value distribution" prop-
erties of the Gauss map of a nonflat complete regular minimal surface. In [3], Fujimoto
proved that the Gauss map of a nonflat complete regular minimal surface immersed
in R3 can omit at most four points of the sphere. With the additional condition of
finite total curvature, Osserman [6] showed that the Gauss map can omit at most three
points of the sphere. For the Gauss map of a nonflat complete regular minimal surface
immersed in Rn, the author [7] has shown that it can omit at most n(n + l) /2 hyper-
planes in general position in Pn~1(C), while the "nondegenerate of the Gauss map"
case is due to Fujimoto (see [4]). The purpose of this paper is to improve on a theorem
of Chern and Osserman [2]. We shall show that the nondegenerate condition in the
Theorem 4 of [2] can be removed by using the powerful tool called "Nochka weights".
The theorem will be stated in Section 2.

2. FACTS CONCERNING MINIMAL SURFACES IN Rn AND THE

STATEMENT OF RESULTS

We shall recall some basic facts concerning minimal surfaces immersed in Rn. For

further details, we refer to Chern and Osserman [2].

Let So be a Riemann surface and let a i , . . . , a n be analytic differentials on So,

which we assume to be not all identically zero. Suppose that in terms of a local param-

eter (, we have a* = <j>kd(, 1 ^ k ^ n. Then under the condition

(2.1)
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226 MinRu [2]

the surface x(jp): So —* Rn, defined by

(2.2) xk=Refak

is called a generalised minimal surface assuming the integrals to have single-valued real
parts. If furthermore

£(2.3)

then the surface is called a regular minimal surface.
If we set £ = £1 + ifa t then we have

. dxk .dxk(2.4)

and if we denote by
dx dx

the coefficients of the first fundamental form of the surface (2.2), then condition (2.1)
becomes

(2.6)

meaning that
the form

(2.7)

where

(2.8)

511 - 522 - 27012 = 0

are isothermal parameters. This condition may also be written in

gij = A2*,,- A = A«)

dx_

The

(2.9)

where

(2.10)

and

(2.11)

Gaussian curvature is

J f c :

\4>A4

given by

A log A

A2

\'\2 = y

\4>r
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[3] Gauss map of minimal surfaces 227

Let D be a domain in the £-plane, and denote by S the corresponding part of the
surface (2.2). Then the area of S is

(2.12) A(S) =

and the total curvature of S is

(2.13) C(S) = ff kdA = ff
JJD JJD

= - 2f fcAd6<£6 = -2 / / ^ f
JD JJD \</>\

The generalised Gauss map is the map

(2.14) G-.So-tQn-tCP^iC)

with homogeneous coordinates <f>i(C), • • • > <£n(C)> where

Qn_! = {[Zl : . . . : zn] C P " " 1 ^ ) | z\ + . . . + z\ - 0}.

We have the following theorem:

MAIN THEOREM. Let 5 be a nonHat complete regular minimal surface in Rn

defined by a map (2.2) on a Riemann surface So, with the Gauss map defined by

(2.14). Suppose that S is of finite total curvature. Then Go(So) can fail to intersect

at most (n — l)(n + 2)/2 hyperplanes in general position in P n - 1 (C) .

3. PLUKER FORMULAS FOR ALGEBRAIC CURVE AND NOCHKA WEIGHTS FOR

HYPERPLANES IN SUBGENERAL POSITION

(A) PLUKER FORMULAS.

We state the Pluker formulas for an algebraic curve in a complex projective space;
see [8], pp.41—65. Let W be a compact Riemann surface of genus g and let f: W —>
Pm(C) be a nondegenerate algebraic curve (that is, f{W) is not contained in any
hyperplane in Pm(C)). For a suitable choice of homogeneous coordinates £o> • • •, Cm
in Pm(C), the equations of the curve can be put locally into the normal form

(3.1)

Cm = tSm + • • •

where

(3.2) O = So<S1<...<Sm,
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and where t is a local parameter on W. The integers

(3.3) vk = Sk+i -Sk-1 O O ^ m - 1

are called the stationary indices of order k at the point t = 0. The stationary point,
that is, points with non-zero stationary index, are isolated and hence are finite in
number. We will denote by crk the sum of all stationary indices of order k. Let dk,
O ^ A ^ m — l , b e the order of rank k of the algebraic curve; geometrically this is
the order of the associated curve of rank k, that is, the curve formed by the osculating
space of dimension k. Then Pliiker formulas are

(3.4) o-k=2dk-dk+1-dk-i+2(g-l), l O ^ m - 1

with the convention d-i = dm — 0. From (3.4), it follows that

(3.5) ^2 (m + 1 - h)o-h-i = (m + l)<£0 + Tn{m + l)(g - 1).

(B) NOCHKA WEIGHTS.

We consider q hyperplanes Hj (1 ^ j ^ q) in Pm(C) which are given by

for Aj € C m + 1 — {0}, where q > N ̂  m and (A, W) means aoWo + • • • + anwn for a

vector A = (ao, . . . , om) and homogeneous coordinates W = [too, • • • > <"„].

According to Nochka [5] and Chen [1], we give the following definition.

DEFINITION 3.1: We say that hyperplane Hi, ..., Hq are in iV-subgeneral posi-
tion if, for every 1 ̂  j 0 < • • • < JN < 9, Aj0, ..., AjN generate Cm+l. If N = m,
then we say that Hi, ..., Hq are in general position.

It is easy to check that if Hi, ..., Hq are hyperplanes in general position in
P"- 1 (C) , and we embed P*(C) as the subspace of Pn"1(C) for 1 ̂  Jfc < n - 1,
then Hi n P*(C) (1 < i < q) are in (n - l)-subgeneral position in Pk(C).

Nochka [5] and Chen [1] have given the following lemmas to prove Cartan's con-
jecture.

LEMMA 3 . 2 . Let Hi, ..., Hq be hyperplanes in Pm(C) Jocated in N-subgeneral
position, where q > 2N — m + 1. Then there exists some constants w(l), . . . , w(g) and
6 satisfying the following conditions:

(i) 0 < w(j)0 < 1 (1 < j ^ q)

(ii) 6 ( £) u(j) - m - 1 ] =q-2N + m-l

(iii) (N + l ) / (m + 1) < 0 ^ (2N - m + l ) / (m + 1).
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[5] Gauss map of minimal surfaces 229

For the proof, see [5] or Chen [1, Theorem 0.3]. We call the constants w(j)
(1 ^ J ^ q) and 0 in the above lemma the Nochka weights and the Nochka constant
for Hi, ..., Hq respectively.

The following lemma is crucial to the proof of the main theorem using Nochka
weights.

LEMMA 3 . 3 . Let Hi, ..., Hq be hyperplanes in Pm(C) located in N-subgeneral
position, where q > 2N — m + 1. Let u(j) (1 ^ j ^ q) be their Nochka. weights. Take
A C {1, 2, . . . , q}, with 0 < #A - N + 1. Let Ej (1 < j < q) be real numbers with
Ej ^ 1. Then there exists a subindex set {jo, • • -jm} C A such that

i=0

and the hyperplanes Hj0 , ..., Hjm are in general position in Pm(C) .

For the proof, see Chen [1, Theorem 1.2].

4. SOME THEOREMS PROVED BY CHERN AND OSSERMAN

We recall some theorems proved by Chern and Osserman [2].

DEFINITION 4.1: The Gauss map (2.14) is called algebraic if the surface So is
conformally equivalent to a region D on a compact Riemann surface W, and if, when
the differentials a* are considered as analytic differentials on D, the ratios ak/am

extend to meromorphic functions on W, whenever am ^ 0.

THEOREM A . Let S be a minimal surface defined by (2.2) on a Riemann surface
So . If S is a complete regular minimal surface, then the following four statements are
equivalent:

(a) S has finite total curvature;
(b) there exists an integer N such that the image of So under the Gauss map

intersects at most N times all hyperplanes which do not contain it;
(c) the Gauss map of So is algebraic;
(d) the surface So is conformally equivalent to a compact surface W punc-

tured at a finite number of points pi, ..., pr, and the differentials a* are
either regular or have a pole at each pj .

For the proof, see [2], Theorem 1.

THEOREM B. Let S be a complete regular minimal surface with Euler character-
istic x and r boundary components. Then

(4.1) (7(5) < 2 * ( X - r ) .

For the proof, see [2], Theorem 2.
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THEOREM C . The total curvature of a complete regular minimal surface is either
—oo or —2TTN where N is the integer in statement (b) of Theorem A.

For the proof, see [2] Corollary.

5. PROOF OF THE MAIN THEOREM

PROOF OF THE MAIN THEOREM: Under the hypotheses of the main theorem, it
follows from Theorem A that So is conformally equivalent to a compact Riemann surface
W punctured at the points pj, 1 ^ j ^ r, and that the Gauss map G extends to
an antiholomorphic map of W into i"*~1(C). Take a number m, 1 ^ TO ^ n — 1
such that G(W) is contained in Pm(C) but none of lower dimension. Then G is a
non-degenerate algebraic curve in Pm(C) . Let it,, 1 ^ i ^ q, be hyperplanes in
general position in Pn~1(C) which do not intersect G(S0). Let Hi = TT,- n Pm(C).
Then Hi, 1 ^ i ^ q, are hyperplanes in Pm(C) in (n — l)-subgeneral position, and
do not intersect G(So) • Then Hi intersects G(W) at certain of the points pj, with a
multiplicity which we denote by mj . We have

(5.1)

where do is the order of the algebraic curve G(W).

Because the hyperplanes are in (n — l)-subgeneral position in Pm(C), at most
n - 1 of the hyperplanes Hi can intersect G(W) at pj. It follows that there exists a
subset Ac. {1,2, . . . , q}, #A = n such that

(5.2)

where w(i), 1 ^ i ^ q, are Nochka weights for hyperplanes Hi, 1 ^ t ^ q.

Applying Lemma 3.3 with Ei — e^'i, it follows that there exists a subindex set

{to, . . . , *m} C A such that

and the H^j, ..., Himj are hyperplanes in general position in Pm(C). Hence

(5-4) E
ieA k=0

Since H^j, ..., Himj are in general position in P"*(C), we can adopt Chern and
Osserman's argument [2, p.30].
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Let (3.1) be the equations of G(W) at pj, whose parameter value is t = 0. At pj
the maximum possible value of /x<i;- is 6m-\{jpj), and that for the unique hyperplane
£m_i = 0 . A second hyperplane can intersect G(W) at pj with multiplicity at most
^m-2(Pi), and a third, if in general position with respect to the first two, at most
Sm-3(pj), etc. It follows that at most m of the hyperplanes Hikj, 0 ^ k ^ m , can
intersect G(W) at pj and we have

(5-5) ]T inki < 61(Pj) + ... + Sm(pj)

Combining this with (5.4) and (5.2), we have

(5.6)

By (3.3) the right side is equal to

Combining this with (3.5), (5.1), we get

(5.7)

On the other hand, by Theorem B and Theorem C

(5.8) d0 > 2 ( r + S - l ) .

Eliminating g in the inequalities (5.7) and (5.8), we get

(5.9) im(m+l)r ^ J I ( m + l)(m + 2) -
I l

So

i J i + 2)0 -m(m + l)rfl ^ J

where 6 is the Nochka constant. By Lemma 3.2 (ii)
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We have

(5.11)

-m(m + \)rO < {-(m + l)(m + 2)9 - q + 2(n - 1) - m + 1 - 6(m + l)}d0

^ \ -m(m + 1)0 - 1 + 2(n - 1) - m + 1 I d0

by Lemma 3.2 (iii) 6 ̂  (2(n - 1) - m + l)/(m + 1) (5.11) becomes

(5.12) ±rn(m + l)rO ^ | Q m + 1^ (2(n - 1) - m + 1) - q\ do

For 1 < m < n - 1, (2n - m - l)(m + 2)/2 < n(n + l)/2 therefore

(5.13) \™(rn + I)r6 < j in(n + 1) - q\ d0.

Since the left-hand side is strictly positive, this gives

g < - n ( n + l)

which proves the theorem. D
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