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Van der Waals (vdW) heterostructures of two-dimensional materials have attracted considerable research 

interest [1]. We report the observation of a large blue shift in the π+σ plasmon peak of the electron energy 

loss spectrum of a hexagonal boron nitride (h-BN)/graphene vdW heterostructure with regard to those of 

single-layer graphene, single-layer h-BN, and bilayer h-BN.   

 

Samples for this study have been grown by an atmospheric-pressure chemical vapor deposition process 

modified from previous work [2].  First, graphene is grown on a copper foil substrate, followed by a 

hydrogen etch step that result in fresh zigzag-oriented edges of graphene islands and holes in the islands.  

Ammonia borane (NH3BH3) is then used as the precursor to grow h-BN. In contrast to previous work, 

where the precursor charge was controlled to ensure the synthesis of strictly in-plane heterojunctions of 

graphene and h-BN, the precursor charge is significantly increased to result in the formation of bilayer h-

BN and h-BN/graphene double layer regions, along with areas of single-layer graphene and single-layer 

h-BN on the same sample.  Atomic-resolution imaging and electron energy loss spectroscopy (EELS) of 

the samples is accomplished using a state-of-the-art fifth order aberration-corrected scanning transmission 

electron microscope (STEM) Nion UltraSTEM100, with the capability to obtain high-angle annular dark 

field (HAADF) images that can distinguish intensity differences between low-Z elements (e.g. N, B, and 

C).  Images are acquired with an accelerating voltage of 60 kV, and EELS performed with an energy 

dispersion of 0.3 eV/channel and an energy resolution of 0.6 eV.   

 

Figures 1A, B, C, and D show typical HAADF images of single-layer graphene, single-layer h-BN, bilayer 

h-BN, and an h-BN/graphene double layer, along with their respective electron energy loss spectra.  The 

spectra are fit with both Lorenztian and Gaussian distributions to obtain a noise-free representation of the 

spectra and give confident peak positions and widths. Table 1 shows that the π plasmon peaks of the h-

BN/graphene double layer are within 0.1 eV from those of graphene, single-layer h-BN, and bilayer h-

BN.  While the π+σ plasmon peaks of graphene, single- and bilayer h-BN are consistent with those 

reported in the literature [3,4], the π+σ plasmon peak of the h-BN/graphene double layer, a vdW 

heterostructure, is appreciably blue shifted with regard to each of graphene, single- and bilayer h-BN.  

This suggests that the in-plane  bonds of the two two-dimensional sheets interact, resulting in alteration 

of the electronic structure.          
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Figure 1. HAADF images (2 nm  2 nm) and EELS of (A) graphene, (B) single-layer h-BN, (C) double-

layer h-BN (C), and (D) h-BN/graphene double-layer. EELS plots graph the experimental data (red 

lines/fluctuating spectrum), model data (blue lines/ smooth spectrum) (summation of all of the Lorenztian 

and Gaussian peaks used to fit experimental data) and the noise (orange line/fluctuates around the x-axis) 

(difference between experimental and model data). The dashed line is an indicator to aid in recognizing 

peak shift.  

 

Table 1.  Peak positions of π and π+σ surface plasmons for all four types of regions in Fig. 1. 
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