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A NOTE ON IMMERSING MANIFOLDS

IN EUCLIDEAN SPACES

Ne Tze Bene

Let M be a closed, connected smooth and J3-connected mod 2

(that is Hi(M;ZZZ) =0, 0 <71 £ 3 ) manifold of dimension

n =7 + 8k. Using a combination of cohomology operations on
certain cohomology classes of M and on the Thom class of the
stable normal bundle of M we show that under certain conditions

. . on-8 . .
M immerses in R . This extends previously known results

for such a general manifold when the number of I's in the

dyadic expansion of #n 1is less than 8 .
1. Introduction

Let M be a smooth, closed, connected and 3-connected mod 2
manifold, whose dimension 7 is congruent to 7 mod 8§ . By Massey-

Peterson [5] zEn_i(M) =0 for 1 =1,2,..,7 where u-)j(M) is the j-th

mod 2 dual Stiefel-Whitney class of M , Then it is easily seen that M

immerses in R2rz-5 . Following Ng [8, Theorem 1.2], if Sqlﬁn_S(M) c

B2n—6

SqZHn_s(M) , then M immerses in

We shall show that with certain additional hypotheses we can

immerse M in "7 or rn-8 .
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Throughout this paper all cohomology will be ordinary cohomology

with mod 2 coefficients unless otherwise specified. Let dim M =7 .
2.

Let v be a stable normal bundle of M . Then Vv is classified
by a map g: M > BspinN for some sufficiently large N 2 n+l where
Bspinj is the classifying space for spin j-plane bundles.

Consider the obvious inclusion Bspinn_k +> BspinN for k =7 or 8.
Then if n 215 M immerses in l?gn_k if and only if g 1lifts to
Bspinn_k if and only if the geometric dimension of v < n-k . Consider
the n-modified Postnikov tower for Bspinn_k > BspinN for k=7 or 8.
This is given in Table 1 or Table 2 of [7] where for k = 8 we drop the
ki when 7 2 7 mod 16 . We list the results (only the Kk-invariants in the
relevant dimensions) in Table 1 and Table 2, It is understood that if the
need arises the tower is pulled back to B§0N<8> the classifying space
for spin WN-plane bundles & satisfying w4(£) =0 .

Let ¢4 and 35 be the stable secondary cohomology operations

associated with the following relations in the mod 2 Steenrod algebra A
$4° qu(SqZSql) =0 and
;5: (SqZSql)(Sq2Sq1) + SqSng = (0 respectively.

it is easily'seen that ¢4 and $5 can be chosen to be spin trivial in
the sense of [12]. That is to say for the Thom class [ of the universal
spin j-plane bundle over Bspinj for g >4, 0c¢ ¢4(U) and 0 € ES(U).
As in [12] we derive the following relation:
ES: Sq2¢4 + Sq1$5 =0.
Hence there is defined a stable tertiary operation $5 associated with

the above relation, Trivially w5 is spin-trivial.

https://doi.org/10.1017/50004972700026496 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700026496

Immersion in Euclidean spaces 217

It is appropriate at this point to say that all the theorems in Ng
[7] hold with the operation ws replaced by ES . This is readily

deduced from the generating class theorem of Thomas [/1] and the following

proposition, which is inspired by Proposition 4.2 of [12].

PROPOSITION 2.1. (Thomas). Let W, _g be the (n-9)-th mod 2

wniversal Stiefel-Whitney class considered as in 79 (Bspinn_7) .
~ -5 . -4 .
(@) (0, 0) € (¢, $)w ) < H (Bspin,_,) & H' " (Bspin _,)
~ -4 .
()  0eVw o) < H "(Bspin, _,) .

Proof. Part (a): Let J: Bspinn_g > Bspinn_7 be the inclusion.
Then j*: H*(Bspinn_7) > H*(Bspinn_g) is an epimorphism. In dimension
< n-5 j* is a monomorphism while in dim n-4 Ker j* is generated by

{ } . since (¢4,$5) is spin-trivial, (0,0) ¢ (¢4,$5)ﬁvn_9) c

Wyt g

Hn_5(Bspinn_9) & Hn-4(Bspinn ) . Therefore there are classes

-9

Ve Hn‘5(Bspinn ) and u € Hn-4(Bspinn ) such that (v,u) €

-7 -7

(¢4,$5)(wn_9) c Hn-S(Bspinn_7) ® Hn_4(Bspinn ) and j*(v,u) = (0,0) .

-7

5
Thus v =0 and u = w4'wn-8 for some a € Zz. But Sq wn-9 =

w4'wn—8 and so by redefining 35 as 55 + aSq5 if need be we may assume

that u = 0 . Hence there is a choice of operation (¢4,¢5) such that

(0,0) € (¢4,$5)(wn_9) c Hn_S(Bspinn_7) @ Hn—4(Bspinn ) . This proves

-7

part (a).

Part (b): First we claim that Indetn_4($5, Bspinn ) =

-9

. 1 =
) . since Sq (w4.wn ) =w

i n-4 ~ .
J *Indet (ws,Bsplnn -9

W 8 it follows that

-7 4" 'n-

0 € ﬁs(wn_g) c Hn—4(Bspinn_7) . Now we shall establish the claim.

Indetn_4($5,Bspinn_9) is the range of a cohomology operation
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defined on eohomology vectors (x,y) € Hn-7(BsPinn 9) XHn_7(Bspinn 9) such

2 2.1 3 .
that Sqx =0 and Sq SQx + Sqy =0 . Since j* is an egimorphism

_7) such that Jj*(z',y')=

there are classes x' and y' in Hn-7(Bspinn
. cx s . . . ke Bty el

(x,y) . Since j* is a monomorphism in dim n-5, j*(sq x') = sq"xz = 0

o 2, . cere 2 1, 3,

implies that Sq x' = 0 . Since j*(sq'sqz’ +sSqy')=0,

Sq2Sq1x' + quy' = ow for some a ¢ Z,. We shall show that

4'wn-8

2,1 n-7 . dn-7 . =
Wyw, g ¢ Sq sq (Bsplnn_7) +Sq i (Bsplnn_7) and so a = 0 . Thus
Indetn_4($ Bspin_ ,) = j*Indetn_4($ Bspin_ )
5 n-9 5° n-7""
Consider the case n = 15 , that is n-7 = 8 ., According to

Quillen [9]

M ,
H (Bsp:.nrz )

g* (Bsping)

7 ZZ [w4,w6,w7,w8] ] ZZZ [n8] and

)

[

4 : # ; =
H (Bsplnn H (Bsplné.) 22 [w4,w6] ] ZZ [ng] 3

-9
L 8 .
where Ng corresponds to the vanishing of Wy - Therefore H (Bsplné.) 2

2 1 s 2,12 _
<wWysng> . Note that Sg' ng = 0eH (Bsplnn_7) . Clearly Sq Sqw, =

Sq3w2=0. Now if Sq3n8=w4wn_8=w,w

4 g% ) , then

11 .
€ H (BSPlnn— 7

0 = qusq3n8 = ng(u.wg.w7) = ouoi and so a = 0 . Thus for n = 1§,

n-4,~ . e n-4 ~ .
Indet (\b5,Bsp1nn_9) = j*Indet (11)5,Bsplnn_7)
Now assume 7 > 15 . According to [91] , H*(Bspinn_7) is a poly-

nomial algebra in dimension < n-4 generated by the universal mod 2

Stiefel-Whitney classes 4 = {wi | 4 <% <n-7 and i is not of the form

2p+1, p 2 0} except possibly for a non-trivial relation v k.= 0
27+1
in dimension #n-6 for n of the form 7+2k corresponding to the vanish-
27(—1 2k-2 P

ing of v = Sq 5q ...8¢"sqw, in H*(Bspin_,) . Let F be

k 2 n-7

27+1
the polynomial algebra over Z generated by A . For a monomial

2
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e; e, e
Yy =2 %y Taixy in F, k=21, e, = 1, z; € A , define the length
2(y) of y to the sum e,*ey,+ ... +e, . Define for a sum of monomials
y1-+y2-+....-+yj » Wwhere the yi's are distinct, the length to be

2(y1-+y2-+... +yj) = max{l(yk) » 1sk<j} . BAs convention we define

2(0) = », Consider F as an A algebra via the Wu formula, the relations

v =0, 1« 2k-+1 <n-7? and w. =0, © > n-7 ., Then F -+ H*(Bspin_ )
k 1 n-7
2°+1

is an A-isomorphism in dimension < n-7 . Thus we can consider x' and

y' as in F . Now 2(w4.wn_8) = 2 . Clearly if &(x') 2 3 then

l(ngsqzx') 2 3. similarly if 2(y') 2 3 then R(quy') 23, Soif

2(x') 2 3 or if (y') 2 3 then Q(SqZSqlx’+Sq3y') 2 3. So we may assume

1

2 3
14 —_ 4 — : =
that &(x') = 2(y'}) = 2 since Sq Sq w,_,=Sqw, _, ) .

M .
0 ¢ H (Bsplnn_7

Let G be the subalgebra of F generated by monomials of length 2 .

Then by using the Wu formula we see that elements in (SqZSqu)n_4 are of

the form
Yok-a5+1"Vaj+27V 8k-25+2"V 4541
where n-7? = 8k and 1 < j < (n-9)/4 . A similar analysis shows that the

elements in (Sq3G)n_ are of the form

4

Vor-2+3"Y45 * Vok-a5+2Y45+1 * Vok-a5+1"Y 4542 T Vor-25"Y45+3 *

where 1 < j < (n-?)/4 . Thus (SqZSqu + SqSG)n_ is generated by

4

W gjr1Vajsa™ sk-aj12 45410 Vok-4j48 045V k-25"V ajs50 15T < (n-7)/4).
Here w is thought of as in F wvia the relations v , =0 . Hence
+1 2']+1
we conclude that w4'wn-8 could not be in qusqlﬂn-7(Bspinn_7) +*

quﬁn_7(Bspinn_7) . This completes the proof of part (b),
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Table 1.

The n-Postnikov tower for w : Bspinn_7 > BspinN

k-invariant Dimension Defining Relation

ké n-6 k§ = Sw _7

x; n-5 Ko=w

xL n-3 S

k2 -5 sak) = 0

kz n-4 quké + ngk; =0

k2 n-3 (sq’ )i} = 0

K2 n (sq*# i =0

x5 n-4 sk? = 0

K n (xSq 0 J¥E + sa¥sa®kZ = 0

Table 2
The n-Postnikov tower for m : Bspinn_g +> BspinN

k-invariant Dimension Defining Relation

k! n-7 eu

k? "5 se?sdi? = 0

k2 n-3 (sa*w Jsalk? = 0

k2(n=15(16)) n (sl = 0

x5 n-4 sa’k? = 0

kg n Sq25q4kf + ()(Sq4+w4)k§ =0
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Recall and ;8 (for n =15 mod 16) are the stable cohomology

%6
operations of Hughes-Thomas type associated with the relations in the mod 2

Steenrod algebra,

Zg ¢ sq?sq™ % + sa® s %sq®) + sql(sq? %sq® + s Tsql) = 0
and
Ty sq®(sq™7) + sa® (s 7sq?) + sa@(sq? 5sq® + sq™ 7 sa®sq?)
+ Sql (Sqn-JSql + Sqn_SSqS + S<{"3Sq'3 + Sqn_7Sq7) =0 .

In [7] we have defined a stable tertiary operation Q realizing the
k-invariant ki of Table 1 or kg of Table 2. Let ¢, ; be the Adams
3

basic operation associated with the relation Sq25q2 + Sq3Sq1 = (¢ , Then

we have the following theorem.
THEOREM 2.2, Let N >n and n be an N-plane bundle over M with

wy(n) = w,(M). Suppose Indetn_[‘z(@'s, M) = quHn-s(M) (hence Squn"S(M) c

s’ Cm)) .
2.n-7 2Hn-7
(a) (Case k=7). Suppose Sq°H' ' (M;Z) = Sq (M) and
Indetn(kg, M) # 0 , where kz is defined by Table 1. Then the
geometric dimension of n € n-7 if and only if

sw__(n) =0,

17 (n) =0, 0 ¢ ¢4.(wn_9(n)), 0 ¢ ¢1’1(wn_7(n)) R

wn-5

Lg(UM)) =0 and 0¢ Ylw, o(n)) .

(b) (Case k=8). Suppose Indetn(kg, M) # 0 where k'; is defined by

Table 2.
(i) Suppose n=7 (16) with n>7 and Sq2Hn_7(M)=Sq28q1Hn-8(M).

Then geometric dimension of n s n-8 if and only if

w, ,(0) =0, 0 ¢, 0w _g(n) and 0 bglw, o(n) .
(ii) Suppose n = 15 mod 16 with n > 15 and w4(n) =0 . Suppose

either wg(n) = w,(M) and SqZHn_7(M) = SqZSqun—B(M) or
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SqZHS(M) = 0 . Then geometric dimension of n < n-8 1if and
only if wn_7(n) =0, 0c¢ ¢4(wn_9(n)), 0 € cgw(n)) and

0ebglw o(n)) .

Proof. Part (a) is a consequence of Proposition 2,1 and [7, Theorem
7.1] since all the k-invariants are stable, Part (b) follows from [7,
Theorem 7.2] noting that we need only consider stable k-invariants.

For any bundle & over M classifed by a map g from M into
B§OJ.<8> » J 24, define \)4(5) to be g*(v4) » where v, € H4(BSOJ<8>) S
Z2 is a generator. We can easily extend this definition to a stable
bundle £ satisfying w4(5) = hb(&) = wl(g) =0 .

We have the following theorem when the top dimensional tertiary

obstruction has trivial indeterminacy.
THEOREM 2.3. Let N >n and n be an N-plane bundle over M with
w4(n) = w4(M) =0 . Suppose qu(v4(—n) + \)4(-1)) =0 and

n-4, 3

Indet™ ¥ (4, M) = Indet’™* (x5, M), where k3 is defined by Table 1 if

k =7 and by Table 2 if k = 8 . (Hence SqJHn-S(M) c SqZHn_6(M)).)
(a) (Case k=7). Suppose SqZHn_7(M;Z) = Sq2Hn_7(M) , and
Indetn(k’z,M) = 0 , where kz is defined by Table 1. Then the

geometric dimension of n s n-7 if and only if

8w (n) =0, w .(n) =0, 0c¢ ¢4(wn_9(n)), 0€ ¢, l(wn_7(n)) R

n-7 n-5
25(UMM)) =0, 0 € Yslw, o(n)) and Q(U(W)) =0 .

(b) (Case k=28). Suppose SqZHn'7(M) =Sq25q1Hn_8(M) and
Indet™ (K3, M) = 0 where k5 is defined by Table 2.

(i) Suppose n=7 mod 16 with n > 7 . Then the geometric
dimension of n < n-8 <if and only if wn_7(n) =0,

0 € o, 0w, o(n)) , 0 Vlu s(n)) and &(UMN) =0 .
(i) Suppose n=15 mod 16 with n > 15 and either wa(n) =

w8(M) or SqZHs(M) = 0 . Then the geometric dimension of
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n £ n-8 if and only if wn_7(n) =0, 0 ¢ ¢4ﬁdn_9(n)) R

0 € g Un) , 0 bW g(n)) and QGO =0,

Proof. pPart (a) is a consequence of Proposition 2.1 and [7, Theorem

8.1] and Part (b) is a conseguence cf Propesition 2.1 and [7, Theorem 8.2].
3. Immersion Theorems

Let M' be a closed, connected and smooth spin manifold of dimension
n =7mod 8 with n > 7 . Following Massey~Peterson [5] we deduce that
ﬁn i(Mf)= 0 for 1 =0,1,2,...,7 . In particular if the number of I's
in the dyadic expansion of n a(n) 1is greater than or equal to 6 , then

w (M') = 0 . If furthermore w,(M') =0 then ®» (M') = 0 for
n-9 4 n-9

v

n=15mod 16 or n = 7 mod 16 and aln) 2 6 .
Take a Spivak normal bundle v for M . Then the top class of the
Thom space T(v) is spherical. Therefore §6(U(v)), §8(U(v)) and Q(U(n))

whenever they are defined are all zero modulo zero indeterminacy.
Therefore applying Theorem 2.2 together with the preceding paragraph

we have the following theorem.
THEOREM 3.1. Suppose Indet™™*(y M) = sq’i*m) .
(a) Suppose a(n) 2 6, Sg°H" (M; Z) = S"H" () and Indet™ (K3(v),m) #

0, where kj ig defined by Table 1. Then M immerses in 7

(b}  Suppose Indetn(kg(v),M) # 0 where k2 is defined by Table 2 and

3

-7 2 -
quHn (M) = Sq Squn S). Then M immerses in "8

n=7mod 16 and aln) =2 6 .

if

Similarly from Theorem 2.3 we have

THEOREM 3.2. Let w4(M) =0.

(a)  Suppose SqZHn_7Uﬁ z) = Sq2Hn_7(M) and Indetn_4($5,M) =

Indetn-4(kj(v),hﬁ, where kg is defined by Table 1, Then M

on-7

immerses in IR if n=7mod 16 and aln) 26 or n = 15 mod 16.
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(b)  Suppose SqZHnJ(M) = SqZSqun-B(M) and Indetn—4('u75, (M) =

Indet" *(k3(v),m) , vhere k5 is defined by Table 2. Then M

. . n-8
immerses in IR

16 with n > 15 .

if n=7mod 16 and aln) 26 or n = 15 mod

Combining Theorem 3.1 and Theorem 3.2 we have the following theorem.
THEOREM 3.3. Suppose w,(M) = 0 and indet"'4($5,m) = 5?6 .
(a)  Suppose SqZHn_7(M;z)= SqZHn.'7(M) . Then M immerses in RV if

ns7mod 16 and o(n) 2 6 or if n = 15 mod 16,
(b)  Suppose ngHn_7(M) = ngsqun-a(M) . Then M immerses in W8
if n=7mod 16 and o(n) 26 or if n = 15 mod 16 and n > 15 .
If M is 4-connected mod 2 then Indetn(kz(\)),M) =0 . Thus by

Theorem 3,2 we have the following immediate corollary.

COROLLARY 3.4. Suppose M 1is 4-connected mod 2.

(a)  Suppose SqZHn-7(M;Z)= SqZHn'7(M) . Then M immerses in RZV7 if
n=7mod 16 and aln) 26 or if n = 15 mod 16.

(b)  Suppose SqZHn-7(M) = SqZSqZHn'g(M). Then M immerses in R0 if
n=7mod 16 and oln) 26 or if n = 15 mod 16 and n > 15 .
Assume now w4(M) = 0 . From the definition of EJS we deduce that

if either Sq3Hn-7(M) =0 or SqZSqJHn_7OW) = 0 or equivalently if either
sq?sa?m?tM) = 0 or if sqB (M) = 0, then 1ndet"'4($5,M) = ¢30"'7 +
;3ﬁn-7 , where ¢3 and 63 are stable operations associated with the
relations

$z¢ Sq2Sq2 + Sql(ququ) =0 and

3

Lz® SqJSq 0 respectively;
Dn—7 = {x € 77 ) | Sq2x = SqZSqu =0} and En-7 = {ern—7(M)|Sq3a:=0}.

We can choose CS to be ¢0 0° Sq2 where is the operation
Ed

%,0

associated with the relation SqJSqJ =0 . 1If H6(M; Z) has no 2-
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torsion then qu v4(—r) = 0 and so Indetn(k'z,M) = 0 by S-duality. If

further SqZHn_'E(M) c qulfi-e(M) and SqZHS(M) = 0 then Indetn_4($5,M) =

Indetn_4(k§,M) , where kj is defined by Table 1, If in addition that
H7(M,'Z) has no free parts and its 2-torsion elements are all of order Z,

then Indetn-4(’lz5,M) = Indetn-4(k§,M) , where ki is defined by Table 2.

Thus we have from Theorem 3.2
THEOREM 3.5. Suppose w, (M) = 0, 5q°8°) = 0 , sg’#* °w) <

SqZHn—g(M) and H,(M,Z) has no 2-torsion elements. Then

(a) M immerses in mZn—? if n=7mod 16 and oln) 26 or n = 15
mod 16
(b)  Suppose H7(M;Z) has no free parts and its 2-torsion elements are

2n-8

at most of order 2. Then M <immerses in IR if n =7 mod 16

and a(n) 26 or n = 15mod 16 and n > 15 .

Suppose now Sq1H4(M) = (0 and ¢0 0H4(M) =0 . By Poincare daulity
3

one readily deduces that ¢, UHn_'S(M) = 0 . As for Theorem 3.5 we deduce
k]

from Theorem 3.2 the following:

COROLLARY 3.6. Suppose w,(M) = 0 , Sq'#*(M) =0, ¢, H*(M) = 0
and HG(M;Z) has no 2-torsion elements.
(a) M immerses in 77 if n=7mod 16 and ofn) 26 or n = 15
mod 16,
(b)  Suppose H7(M;Z) has no free parts and its 2-torison elements are

n-8

at most of order 2, Then M <immerses in JR2 if n =7 mod 16

and a(n) 26 or n = 15 mod 16 and n > 15.
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