A NOTE ON IMMERSING MANIFOLDS

in EUCLIDEAN SPACES

ng Tze Beng

Let M be a closed, connected smooth and 3 -connected mod 2 (that is $\left.H_{i}\left(M ; \mathbb{Z}_{2}\right)=0,0<i \leq 3\right)$ manifold of dimension $n=7+8 k$. Using a combination of cohomology operations on certain cohomology classes of M and on the Thom class of the stable normal bundle of M we show that under certain conditions M immerses in $R^{2 n-8}$. This extends previously known results for such a general manifold when the number of 1 's in the dyadic expansion of n is less than 8 .

1. Introduction

Let M be a smooth, closed, connected and 3-connected mod 2 manifold, whose dimension n is congruent to $7 \bmod 8$. By MasseyPeterson [5] $\bar{w}_{n-i}(M)=0$ for $i=1,2, \ldots, 7$ where $\bar{w}_{j}(M)$ is the j-th mod 2 dual Stiefel-Whitney class of M. Then it is easily seen that M immerses in $R^{2 n-5}$. Following $\mathrm{Ng}\left[8\right.$, Theorem 1.2], if $\mathrm{Sq}^{1} H^{n-5}(M) \subset$ $\mathrm{Sq}^{2} H^{n-6}(M)$, then M immerses in $\mathbb{R}^{2 n-6}$.

We shall show that with certain additional hypotheses we can immerse M in $\mathbb{R}^{2 n-7}$ or $\mathbb{R}^{2 n-8}$.

Received 16 September 1986.

[^0]Throughout this paper all cohomology will be ordinary cohomology with mod 2 coefficients unless otherwise specified. Let $\operatorname{dim} M=n$.

$$
2
$$

Let v be a stable normal bundle of M. Then v is classified by a map $g: M \rightarrow B \operatorname{spin}_{N}$ for some sufficiently large $N \geq n+1$ where Bspin j is the classifying space for spin j-plane bundles.

Consider the obvious inclusion $B \operatorname{spin}_{n-k} \rightarrow B \operatorname{spin}_{N}$ for $k=7$ or 8 . Then if $n \geq 15 M$ immerses in $\mathbb{R}^{2 n-k}$ if and only if g lifts to $B_{s p i n}^{n-k}$ if and only if the geometric dimension of $v \leq n-k$. Consider the n-modified Postnikov tower for $B \operatorname{spin}_{n-k} \rightarrow B \operatorname{spin}_{N}$ for $k=7$ or 8 . This is given in Table 1 or Table 2 of [7] where for $k=8$ we drop the k_{4}^{2} when $n \equiv 7 \bmod 16$. We list the results conly the k-invariants in the relevant dimensions) in Table 1 and Table 2. It is understood that if the need arises the tower is pulled back to $\hat{B S O} O_{N}\langle 8\rangle$ the classifying space for spin N-plane bundles ξ satisfying $w_{4}(\xi)=0$.

Let ϕ_{4} and $\tilde{\phi}_{5}$ be the stable secondary cohomology operations associated with the following relations in the mod 2 Steenrod algebra A

$$
\begin{aligned}
& \phi_{4}: \quad \mathrm{Sq}^{2}\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=0 \quad \text { and } \\
& \tilde{\phi}_{5}: \quad\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)+\mathrm{Sq}^{3} \mathrm{Sq}^{3}=0 \quad \text { respectively. }
\end{aligned}
$$

It is easily' seen that ϕ_{4} and $\tilde{\phi}_{5}$ can be chosen to be spin trivial in the sense of [12]. That is to say for the Thom class U of the universal $\operatorname{spin} j$-plane bundle over $B \operatorname{spin}_{j}$ for $j>4,0 \in \phi_{4}(U)$ and $0 \in \tilde{\phi}_{5}(U)$. As in [12] we derive the following relation:

$$
\tilde{\psi}_{5}: \quad \mathrm{sq}^{2} \phi_{4}+\mathrm{sq} \tilde{\phi}_{5}=0
$$

Hence there is defined a stable tertiary operation $\tilde{\Psi}_{5}$ associated with the above relation. Trivially $\tilde{\Psi}_{5}$ is spin-trivial.

It is appropriate at this point to say that all the theorems in Ng [7] hold with the operation ψ_{5} replaced by $\tilde{\psi}_{5}$. This is readily deduced from the generating class theorem of Thomas [11] and the following proposition, which is inspired by Proposition 4.2 of [12].

PROPOSITION 2.1. (Thomas). Let w_{n-9} be the ($n-9$)-in mod 2 universal StiefeZ-Whitney class considered as in H^{n-9} (Bspin ${ }_{n-1}$). (a) $(0,0) \in\left(\phi_{4}, \widetilde{\phi}_{5}\right)\left(w_{n-9}\right) \subset H^{n-5}\left(\operatorname{Bspin}_{n-7}\right) \oplus H^{n-4}\left(\operatorname{Bspin}_{n-7}\right)$. (b) $\quad 0 \in \tilde{\Psi}_{5}\left(w_{n-9}\right) \subset H^{n-4}\left(\right.$ Bspin$\left._{n-7}\right)$.

Proof. Part (a): Let $j: B \operatorname{spin}_{n-9} \rightarrow B \operatorname{spin}_{n-7}$ be the inclusion. Then $j^{*}: H^{*}\left(B \operatorname{spin}_{n-7}\right) \rightarrow H^{*}\left(B \operatorname{spin}_{n-9}\right)$ is an epimorphism. In dimension $\leq n-5 j^{*}$ is a monomorphism while in $\operatorname{dim} n-4$ Ker j^{*} is generated by $\left\{w_{4} \cdot w_{n-8}\right\}$. since $\left(\phi_{4}, \tilde{\phi}_{5}\right)$ is spin-trivial, $(0,0) \in\left(\phi_{4}, \tilde{\phi}_{5}\right)\left(w_{n-9}\right) \subset$ $H^{n-5}\left(B \operatorname{spin}_{n-9}\right) \oplus H^{n-4}\left(B \operatorname{spin}_{n-9}\right)$. Therefore there are classes $v \in H^{n-5}\left(B \operatorname{spin}_{n-7}\right)$ and $u \in H^{n-4}\left(B \operatorname{spin}_{n-7}\right)$ such that $(v, u) \epsilon$ $\left(\phi_{4}, \tilde{\phi}_{5}\right)\left(w_{n-9}\right) \subset H^{n-5}\left(B \operatorname{spin}_{n-7}\right) \oplus H^{n-4}\left(B \operatorname{spin}_{n-7}\right)$ and $j *(v, u)=(0,0)$. Thus $v=0$ and $u=\alpha w_{4} \cdot w_{n-8}$ for some $\alpha \in \mathbb{Z}_{2}$. But $\operatorname{Sq}^{5} w_{n-9}=$ $w_{4} \cdot w_{n-8}$ and so by redefining $\tilde{\phi}_{5}$ as $\tilde{\phi}_{5}+\alpha S q^{5}$ if need be we may assume that $u=0$. Hence there is a choice of operation $\left(\phi_{4}, \tilde{\phi}_{5}\right)$ such that $(0,0) \in\left(\phi_{4}, \tilde{\phi}_{5}\right)\left(w_{n-9}\right) \subset H^{n-5}\left(B \operatorname{spin}_{n-7}\right) \oplus H^{n-4}\left(B\right.$ spin $\left._{n-7}\right)$. This proves part (a).

Part (b): First we claim that Indet $^{n-4}\left(\tilde{\psi}_{5}, B \operatorname{spin} n-9\right)=$ $j *$ Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, B \operatorname{spin} n_{n-7}\right)$. Since $\operatorname{sq}^{1}\left(w_{4} \cdot w_{n-9}\right)=w_{4} \cdot w_{n-8}$ it follows that $0 \in \tilde{\Psi}_{5}\left(w_{n-9}\right) \subset H^{n-4}\left(B \operatorname{spin}_{n-7}\right)$. Now we shall establish the claim.

$$
\text { Indet }{ }^{n-4}\left(\tilde{\psi}_{5}, B \operatorname{spin}_{n-9}\right) \text { is the range of a cohomology operation }
$$

defined on cohomology vectors $(x, y) \in H^{n-7}\left(B \operatorname{spin}_{n-9}\right) \times H^{n-7}\left(B \operatorname{spin}_{n-9}\right)$ such that $\mathrm{Sq}^{2} x=0$ and $\mathrm{Sq}^{2} \mathrm{Sq}^{1} x+\mathrm{Sq}^{3} y=0$. Since j^{*} is an eqimorphism there are classes x^{\prime} and y^{\prime} in $H^{n-7}\left(B \operatorname{spin}_{n-7}\right)$ such that $j^{*}\left(x^{\prime}, y^{\prime}\right)=$ (x, y). Since j^{*} is a monomorphism in $\operatorname{dim} n-5, j^{*}\left(\operatorname{Sq}^{2} x^{\prime}\right)=\operatorname{Sq}^{2} x=0$ implies that $\mathrm{Sq}^{2} x^{\prime}=0$. Since $j^{*}\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1} x^{\prime}+\mathrm{Sq}^{3} y^{\prime}\right)=0$, $\mathrm{Sq}^{2} \mathrm{Sq}{ }^{1} x^{\prime}+\mathrm{Sq}^{3} y^{\prime}=\alpha w_{4} \cdot w_{n-8}$ for some $\alpha \in \mathbb{Z}_{2}$. We shall show that $w_{4} \cdot w_{n-8} \notin \mathrm{sq}^{2} \mathrm{Sq}^{1}{ }^{n-7}\left(B \operatorname{spin}_{n-7}\right)+\mathrm{Sq}^{3} H^{n-7}\left(B \operatorname{spin}_{n-7}\right)$ and so $\alpha=0$. Thus Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, \operatorname{Bspin}_{n-9}\right)=j^{*}$ Indet $^{n-4}\left(\tilde{\psi}_{5}, B \operatorname{spin}_{n-7}\right)$.

Consider the case $n=15$, that is $n-7=8$. According to Quillen [9]

$$
\begin{aligned}
& H^{*}\left(B \operatorname{spin}_{n-7}\right)=H^{*}\left(B \operatorname{spin}_{8}\right)=\mathbb{Z}_{2}\left[w_{4}, w_{6}, w_{7}, w_{8}\right] \otimes \mathbb{Z}_{2}\left[n_{8}\right] \text { and } \\
& H^{*}\left(B \operatorname{spin}_{n-9^{\prime}}\right)=H^{*}\left(B \operatorname{spin}_{6}\right)=\mathbb{Z}_{2}\left[w_{4}, w_{6}\right] \otimes \mathbb{Z}_{2}\left[n_{8}\right]
\end{aligned}
$$

where η_{8} corresponds to the vanishing of ω_{g}. Therefore $H^{8}\left(B \operatorname{spin}_{6}\right) \simeq$ $<w_{4}^{2}, n_{8}$. Note that $\operatorname{sq}^{1} n_{8}=0 \in H^{*}\left(B \operatorname{spin}_{n-7}\right)$. Clearly $\operatorname{sq}^{2} \operatorname{Sq}^{1} w_{4}^{2}=$ $\mathrm{Sq}^{3} w_{4}^{2}=0$. Now if $\operatorname{sq}^{3} n_{8}=\alpha w_{4} w_{n-8}=\alpha w_{4} \cdot w_{7} \in H^{11}\left(B \operatorname{spin}{ }_{n-7}\right)$, then $0=\mathrm{Sq}^{3} \mathrm{Sq}^{3} \eta_{8}=\mathrm{Sq}^{3}\left(\alpha w_{4} \cdot w_{7}\right)=\alpha w_{7}^{2}$ and so $\alpha=0$. Thus for $n=15$, Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, B \operatorname{spin}{ }_{n-9}\right)=j * \operatorname{Indet}{ }^{n-4}\left(\tilde{\psi}_{5}, B \operatorname{spin}_{n-7}\right)$.

Now assume $n>15$. According to $[9], H^{*}\left(B \operatorname{spin}_{n-7}\right)$ is a polynomial algebra in dimension $\leq n-4$ generated by the universal mod 2 Stiefel-Whitney classes $A=\left\{w_{i} \mid 4 \leq i \leq n-7\right.$ and i is not of the form $\left.2^{p}+1, p \geq 0\right\}$ except possibly for a non-trivial relation $v_{2^{k}+1}=0$ in dimension $n-6$ for n of the form $7+2^{k}$ corresponding to the vanishing of $v_{2^{k+1}}=\mathrm{Sq}^{2 k-1} \mathrm{Sq}^{2^{k-2}} \ldots \mathrm{Sq}^{2} \mathrm{Sq}^{1} w_{2}$ in $H^{*}\left(B \operatorname{spin}_{n-7}\right)$. Let F be the polynomial algebra over \mathbb{Z}_{2} generated by A. For a monomial
$y=x_{1}{ }^{e_{1}} x_{2}{ }^{e_{2}} \ldots x_{k}{ }^{e_{k}}$ in $F, k \geq 1, e_{i} \geq 1, x_{i} \in A$, define the length $\ell(y)$ of y to the $\operatorname{sum} e_{1}+e_{2}+\ldots+e_{k}$. Define for a sum of monomials $y_{1}+y_{2}+\ldots+y_{j}$, where the y_{i}^{\prime} s are distinct, the length to be $\ell\left(y_{1}+y_{2}+\ldots+y_{j}\right)=\max \left\{\ell\left(y_{k}\right), 1 \leq k \leq j\right\}$. As convention we define $\ell(0)=\infty$. Consider F as an A algebra via the Wu formula, the relations $v_{2^{k}+1}=0,1<2^{k}+1 \leq n-7$ and $w_{i}=0, i>n-7$. Then $F \rightarrow H^{*}\left(B \operatorname{spin}_{n-1}\right)$ is an A-isomorphism in dimension $\leq n-7$. Thus we can consider x^{\prime} and y^{\prime} as in F. Now $\ell\left(w_{4} \cdot w_{n-8}\right)=2$. Clearly if $\ell\left(x^{\prime}\right) \geq 3$ then $\ell\left(\operatorname{Sq}^{2} \mathrm{Sq}^{1} x^{\prime}\right) \geq 3$. Similarly if $\ell\left(y^{\prime}\right) \geq 3$ then $\ell\left(\mathrm{Sq}^{3} y^{\prime}\right) \geq 3$. So if $\ell\left(x^{\prime}\right) \geq 3$ or if $\ell\left(y^{\prime}\right) \geq 3$ then $\ell\left(S q^{2} \operatorname{Sq}^{1} x^{\prime}+\operatorname{Sq}^{3} y^{\prime}\right) \geq 3$. So we may assume that $\ell\left(x^{\prime}\right)=\ell\left(y^{\prime}\right)=2$ since $\operatorname{Sq}^{2} \operatorname{Sq}^{1} w_{n-7}=\operatorname{Sq}^{3} w_{n-7}=0 \in H^{*}\left(B \operatorname{spin} n_{n-7}\right)$. Let G be the subalgebra of F generated by monomials of length 2 . Then by using the Wu formula we see that elements in $\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1} G\right) n-4$ are of the form

$$
w_{8 k-4 j+1} \cdot w_{4 j+2}^{+w_{8 k-4 j+2}} w_{4 j+1}
$$

where $n-7=8 k$ and $1 \leq j \leq(n-9) / 4$. A similar analysis shows that the elements in $\left(\mathrm{Sq}^{3} G\right)_{n-4}$ are of the form

$$
w_{8 k-4 j+3} \cdot w_{4 j}+w_{8 k-4 j+2} \cdot w_{4 j+1}+w_{8 k-4 j+1} \cdot w_{4 j+2}+w_{8 k-4 j} \cdot w_{4 j+3},
$$

where $1 \leq j<(n-7) / 4$. Thus $\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1} G+\mathrm{Sq}^{3} G\right)_{n-4}$ is generated by

$$
\left\{w_{8 k-4 j+1} \cdot w_{4 j+2}+w_{8 k-4 j+2} \cdot w_{4 j+1}, w_{8 k-4 j+3} \cdot w_{4 j}+w_{8 k-4 j} \cdot w_{4 j+3}, 1 \leq j<(n-7) / 4\right\}
$$

Here $w_{2} p_{+1}$ is thought of as in F via the relations $v_{2^{j}+1}=0$. Hence we conclude that $w_{4} \cdot w_{n-8}$ could not be in $\operatorname{Sq}^{2} \operatorname{Sq}^{1} H^{n-7}\left(B \operatorname{spin}_{n-7}\right)+$ $\mathrm{Sq}^{3} H^{n-7}\left(\mathrm{Bspin}_{n-7}\right)$, This completes the proof of part (b).

Table 1.
The n-postnikov tower for $\pi: B \operatorname{spin}_{n-7} \rightarrow \operatorname{Bspin}_{N}$

k-invariant	Dimension	Defining Relation
k_{1}^{1}	$n-6$	$k_{1}^{1}=\delta \omega_{n-7}$
k_{2}^{1}	$n-5$	$k_{2}^{1}=w_{n-5}$
k_{3}^{1}	$n-3$	$k_{3}^{1}=w_{n-3}$
k_{1}^{2}	$n-5$	$\mathrm{Sq}^{2} k_{1}^{1}=0$
k_{2}^{2}	$n-4$	$\mathrm{Sq}^{2} k_{2}^{1}+\mathrm{sq}^{3} k_{1}^{1}=0$
k_{3}^{2}	$n-3$	$\left(\mathrm{sq}^{4}+w_{4}\right) k_{1}^{1}=0$
k_{6}^{2}	n	$\left(\mathrm{sq}^{4}+w_{4}\right) k_{3}^{1}=0$
k_{1}^{3}	$n-4$	$\mathrm{Sq}^{2} k_{1}^{2}=0$
k_{4}^{3}	n	$\left(\mathrm{xSq}^{4}+w_{4}\right) k_{3}^{2}+\mathrm{sq}^{2} \mathrm{sq}^{4} k_{1}^{2}=0$

Table 2
The n-postnikov tower for $\pi: B \operatorname{spin}_{n-8} \rightarrow B \operatorname{spin}_{N}$

k-invariant	Dimension	Defining Relation
k^{1}	$n-7$	$k^{1}=w_{n-7}$
k_{1}^{2}	$n-5$	$\mathrm{sq}^{2} \mathrm{Sq}^{1} k^{1}=0$
k_{2}^{2}	$n-3$	$\left(\mathrm{Sq}^{4}+w_{4}\right) \mathrm{sq}^{1} k^{1}=0$
$k_{4}^{2}(n=15(16))$	n	$\left(\mathrm{Sq}^{8}+w_{8}\right) k^{1}=0$
k_{1}^{3}	$n-4$	$\mathrm{Sq}^{2}{ }^{2}{ }_{1}^{2}=0$
k_{3}^{3}	n	$\mathrm{Sq}^{2} \mathrm{Sq}^{4} k_{1}^{2}+\left(\mathrm{xSq}^{4}+w_{4}\right) k_{2}^{2}=0$

Recall ζ_{6} and ζ_{8} (for $n \equiv 15 \bmod 16$) are the stable cohomology operations of Hughes-Thomas type associated with the relations in the mod 2 Steenrod algebra,

$$
\zeta_{6}: \mathrm{Sq}^{4} \mathrm{Sq}{ }^{n-3}+\mathrm{Sq}^{2}\left(\mathrm{sq}^{n-3} \mathrm{Sq}^{2}\right)+\mathrm{Sq}^{1}\left(\mathrm{Sq}^{n-3} \mathrm{Sq}^{3}+\mathrm{Sq}^{n-1} \mathrm{Sq}^{1}\right)=0
$$

and

$$
\begin{aligned}
\zeta_{8} & : \mathrm{Sq}^{8}\left(\mathrm{Sq}^{n-7}\right)+\mathrm{Sq}^{4}\left(\mathrm{Sq}^{n-7} \mathrm{Sq}^{4}\right)+\mathrm{Sq}^{2}\left(\mathrm{Sq}^{n-3} \mathrm{Sq}^{2}+\mathrm{Sq}^{n-7} \mathrm{Sq}^{2} \mathrm{Sq}^{4}\right) \\
& +\mathrm{Sq}^{1}\left(\mathrm{Sq}^{n-1} \mathrm{Sq}^{1}+\mathrm{Sq}^{n-5} \mathrm{Sq}^{5}+\mathrm{Sq}^{n-3} \mathrm{Sq}^{3}+\mathrm{Sq}^{n-7} \mathrm{Sq}^{7}\right)=0
\end{aligned}
$$

In [7] we have defined a stable tertiary operation Ω realizing the k-invariant k_{4}^{3} of Table 1 or k_{3}^{3} of Table 2 . Let $\phi_{1,1}$ be the Adams basic operation associated with the relation $\mathrm{Sq}^{2} \mathrm{Sq}^{2}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}=0$. Then we have the following theorem.

THEOREM 2.2. Let $N>n$ and n be an N-plane bundle over M with $w_{4}(n)=w_{4}(M) . \quad$ Suppose Indet $^{n-4}\left(\tilde{\psi}_{5}, M\right)=S q^{2} H^{n-6}(M)$ (hence $S q^{1} H^{n-5}(M) \subset$ $\left.S q^{2} H^{n-6}(M)\right)$.
(a) (Case $k=7$). Suppose $S q^{2} H^{n-7}(M ; \mathbb{Z})=S q^{2} H^{n-7}(M)$ and Indet ${ }^{n}\left(k_{4}^{3}, M\right) \neq 0$, where k_{4}^{3} is defined by Table 1. Then the geometric dimension of $n \leq n-7$ if and only if
$\delta w_{n-7}(n)=0, w_{n-5}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(\eta)\right), 0 \in \phi_{1,1}\left(w_{n-7}(\eta)\right)$, $\zeta_{6}(U(n))=0$ and $0 \in \tilde{\psi}_{5}\left(w_{n-9}(n)\right)$.
(b) (Case $k=8$). Suppose Indet ${ }^{n}\left(k_{3}^{3}, M\right) \neq 0$ where k_{3}^{3} is defined by Table 2.
(i) Suppose $n \equiv 7$ (16) with $n>7$ and $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$. Then geometric dimension of $n \leq n-8$ if and only if $w_{n-7}(n)=0,0 \in \phi_{4}\left(w_{n-9}(n)\right) \quad$ and $0 \in \tilde{\psi}_{5}\left(w_{n-9}(\eta)\right)$.
(ii) Suppose $n \equiv 15$ mod 16 with $n>15$ and $w_{4}(\eta)=0$. Suppose either $w_{8}(n)=w_{8}(M)$ and $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$ or
$S q^{2} H^{5}(M)=0$. Then geometric dimension of $n \leq n-8$ if and only if $\omega_{n-7}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(n)\right), 0 \in \zeta_{8}(U(\eta))$ and $0 \in \tilde{\psi}_{5}\left(\omega_{n-9}(\eta)\right)$.

Proof. Part (a) is a consequence of Proposition 2.1 and [7, Theorem 7.1] since all the k-invariants are stable. Part (b) follows from [7, Theorem 7.2] noting that we need only consider stable k-invariants.

For any bundle ξ over M classifed by a map g from M into $B \hat{S} O_{j}<8>, j \geq 4$, define $v_{4}(\xi)$ to be $g^{*}\left(\nu_{4}\right)$, where $\nu_{4} \in H^{4}\left(B \hat{S} O_{j}<8>\right) \approx$ \mathbb{Z}_{2} is a generator. We can easily extend this definition to a stable bundle ξ satisfying $w_{4}(\xi)=w_{2}(\xi)=w_{1}(\xi)=0$.

We have the following theorem when the top dimensional tertiary obstruction has trivial indeterminacy.

THEOREM 2.3. Let $N>n$ and η be an N-plane bundle over M with $\omega_{4}(n)=\omega_{4}(M)=0$. Suppose $S q^{3}\left(v_{4}(-\eta)+v_{4}(-\tau)\right)=0$ and Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, M\right)=$ Indet $^{n-4}\left(k_{1}^{3}, M\right)$, where k_{1}^{3} is defined by Table 1 if $k=7$ and by Table 2 if $k=8$. (Hence $S q^{1} H^{n-5}(M) \subset S q^{2} H^{n-6}(M)$).)
(a) (Case $k=7$). Suppose $S q^{2} H^{n-7}(M ; \mathbb{Z})=S q^{2} H^{n-7}(M)$, and Indet ${ }^{n}\left(k_{4}^{3}, M\right)=0$, where k_{4}^{3} is defined by Table 1. Then the geometric dimension of $n \leq n-7$ if and only if $\delta \omega_{n-7}(n)=0, w_{n-5}(n)=0,0 \in \phi_{4}\left(w_{n-9}(n)\right), 0 \in \phi_{1,1}\left(w_{n-7}(n)\right)$, $\zeta_{6}(U(n))=0,0 \in \tilde{\psi}_{5}\left(\omega_{n-9}(n)\right)$ and $\Omega(U(n))=0$.
(b) (Case $k=8$). Suppose $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$ and Indet ${ }^{n}\left(k_{3}^{3}, M\right)=0$ where k_{3}^{3} is defined by Table 2.
(i) Suppose $n \equiv 7 \bmod 16$ with $n>7$. Then the geometric dimension of $n \leq n-8$ if and only if $\omega_{n-7}(n)=0$, $0 \in \phi_{4}\left(w_{n-9}(n)\right), 0 \in \tilde{\psi}_{5}\left(w_{n-9}(n)\right)$ and $\Omega(U(n))=0$.
(ii) Suppose $n \equiv 15$ mod 16 with $n>15$ and either $w_{8}(\eta)=$ $w_{8}(M)$ or $S q^{2} H^{5}(M)=0$. Then the geometric dimension of

$$
\begin{aligned}
& \eta \leq n-8 \text { if and only if } w_{n-7}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(n)\right), \\
& 0 \in \zeta_{8}(U(\eta)), 0 \in \tilde{\psi}_{5}\left(w_{n-9}(n)\right) \text { and } \Omega(U(n))=0 .
\end{aligned}
$$

Proof. Part (a) is a consequence of Proposition 2.1 and [7, Theorem 8.1] and Part (b) is a consequence of proposition 2.1 and [7, Theorem 8.2].

3. Immersion Theorems

Let M^{\prime} be a closed, connected and smooth spin manifold of dimension $n \equiv 7$ mod 8 with $n>7$. Following Massey-Peterson [5] we deduce that $\bar{w}_{n-i}\left(M^{\prime}\right)=0$ for $i=0,1,2, \ldots, 7$. In particular if the number of $I^{\prime} s$ in the dyadic expansion of $n \alpha(n)$ is greater than or equal to 6 , then $\bar{w}_{n-9}\left(M^{\prime}\right)=0$. If furthermore $w_{4}\left(M^{\prime}\right)=0$ then $\bar{w}_{n-9}\left(M^{\prime}\right)=0$ for $n \equiv 15 \bmod 16$ or $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$.

Take a Spivak normal bundle v for M. Then the top class of the Thom space $T(v)$ is spherical. Therefore $\zeta_{6}(U(v)), \zeta_{8}(U(v))$ and $\Omega(U(n))$ whenever they are defined are all zero modulo zero indeterminacy.

Therefore applying Theorem 2.2 together with the preceding paragraph we have the following theorem.

THEOREM 3.1. Suppose Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, M\right)=S q^{2} H^{n-6}(M)$.
(a) Suppose $\alpha(n) \geq 6, S q^{2} H^{n-7}(M ; \mathbb{Z})=S q^{2} H^{n-7}(M)$ and $\operatorname{Indet}^{n}\left(k_{4}^{3}(v), M\right) \neq$ 0, where k_{4}^{3} is defined by Table 1. Then M imerses in $\mathbb{R}^{2 n-7}$.
(b) Suppose $\operatorname{Indet}^{n}\left(k_{3}^{3}(v), M\right) \neq 0$ where k_{3}^{3} is defined by Table 2 and $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$. Then M imnerses in $I R^{2 n-8}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$.

Similarly from Theorem 2.3 we have
THEOREM 3.2. Let $w_{4}(M)=0$.
(a) Suppose $S q^{2} H^{n-7}(M ; \mathbb{Z})=S q^{2} H^{n-7}(M) \quad$ and $\operatorname{Indet}^{n-4}\left(\tilde{\Psi}_{5}, M\right)=$ Indet ${ }^{n-4}\left(k_{1}^{3}(v), M\right)$, where k_{1}^{3} is defined by Table 1. Then M immerses in $\mathbb{R}^{2 n-7}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15 \bmod 16$.
(b) Suppose $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$ and Indet ${ }^{n-4}\left(\tilde{\psi}_{5},(M)=\right.$ Indet ${ }^{n-4}\left(k_{1}^{3}(\nu), M\right)$, where k_{1}^{3} is defined by Table 2. Then M immerses in $\mathbb{R}^{2 n-8}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15 \bmod$ 16 with $n>15$.
Combining Theorem 3.1 and Theorem 3.2 we have the following theorem.
THEOREM 3.3. Suppose $\omega_{4}(M)=0$ and indet ${ }^{n-4}\left(\tilde{\psi}_{5}, M\right)=S q^{2} H^{n-6}(M)$.
(a) Suppose $S q^{2} H^{n-7}(M ; \mathbb{Z})=S q^{2} H^{n-7}(M)$. Then M inmerses in $\mathbb{R}^{2 n-7}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or if $n \equiv 15 \bmod 16$.
(b) Suppose $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$. Then M immerses in $R^{2 n-8}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or if $n \equiv 15 \bmod 16$ and $n>15$. If M is 4 -connected mod 2 then $\operatorname{Indet}^{n}\left(k_{4}^{3}(v), M\right)=0$. Thus by Theorem 3.2 we have the following immediate corollary.

COROLLARY 3.4. Suppose M is 4-connected mod 2.
(a) Suppose $S q^{2} H^{n-7}(M ; \mathbb{Z})=S q^{2} H^{n-7}(M)$. Then M immerses in $\mathbb{R}^{2 n-7}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or if $n \equiv 15 \bmod 16$.
(b) Suppose $S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)$. Then M immerses in $\mathbb{R}^{2 n-8}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or if $n \equiv 15 \bmod 16$ and $n>15$. Assume now $\omega_{4}(M)=0$. From the definition of $\tilde{\psi}_{5}$ we deduce that if either $\mathrm{Sq}^{3} H^{n-7}(M)=0$ or $\mathrm{Sq}^{2} \mathrm{Sq}^{1} H^{n-7}(M)=0$ or equivalently if either $\mathrm{Sq}^{2} \mathrm{Sq}^{1} H^{4}(M)=0$ or if $\mathrm{Sq}^{3} H^{4}(M)=0$, then Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, M\right)=\phi_{3} D^{n-7}+$ $\zeta_{3} \tilde{D}^{n-7}$, where ϕ_{3} and ζ_{3} are stable operations associated with the relations

$$
\begin{gathered}
\phi_{3}: \mathrm{Sq}^{2} \mathrm{Sq}^{2}+\mathrm{Sq}^{1}\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=0 \text { and } \\
5_{3}: \mathrm{Sq}^{1} \mathrm{Sq}^{3}=0 \text { respectively; } \\
D^{n-7}=\left\{x \in H^{n-7}(M) \mid \mathrm{Sq}^{2} x=\mathrm{Sq}^{2} \mathrm{Sq}^{1} x=0\right\} \text { and } \tilde{D}^{n-7}=\left\{x \in H^{n-7}(M) \mid \mathrm{sq}^{3} x=0\right\}
\end{gathered}
$$ We can choose ζ_{3} to be $\phi_{0,0}{ }^{\circ} \mathrm{Sq}^{2}$ where $\phi_{0,0}$ is the operation associated with the relation $\mathrm{Sq}^{1} \mathrm{Sq}^{1}=0$. If $H_{6}(M ; \mathbb{Z})$ has no 2 -

torsion then $\mathrm{Sq}^{3} v_{4}(-\tau)=0$ and so $\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right)=0$ by S-duality. If further $\mathrm{Sq}^{1} H^{n-5}(M) \subset \mathrm{Sq}^{2} H^{n-6}(M)$ and $\mathrm{Sq}^{2} H^{5}(M)=0$ then $\operatorname{Indet}^{n-4}\left(\tilde{\psi}_{5}, M\right)=$ Indet ${ }^{n-4}\left(k_{1}^{3}, M\right)$, where k_{1}^{3} is defined by Table 1 . If in addition that $H_{7}(M ; Z)$ has no free parts and its 2 -torsion elements are all of order 2, then Indet ${ }^{n-4}\left(\tilde{\psi}_{5}, M\right)=$ Indet $^{n-4}\left(k_{1}^{3}, M\right)$, where k_{1}^{3} is defined by Table 2 . Thus we have from Theorem 3.2

THEOREM 3.5. Suppose $\omega_{4}(M)=0, S q^{2} H^{5}(M)=0, S q^{1} H^{n-5}(M) \subset$ $S q^{2} H^{n-6}(M)$ and $H_{6}(M, \mathbb{Z})$ has no 2 -torsion elements. Then
(a) M inmerses in $\mathbb{R}^{2 n-7}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15$ $\bmod 16$.
(b) Suppose $H_{7}(M ; \mathbb{Z})$ has no free parts and $i t s$ 2-torsion elements are at most of order 2. Then M immerses in $T^{2 n-8}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15 \bmod 16$ and $n>15$.

Suppose now $\mathrm{Sq}^{1} H^{4}(M)=0$ and $\phi_{0, O^{H}}(M)=0$. By Poincaré daulity one readily deduces that $\phi_{0, O^{H-5}}(M)=0$. As for Theorem 3.5 we deduce from Theorem 3.2 the following:

COROLLARY 3.6. Suppose $w_{4}(M)=0, S q^{1} H^{4}(M)=0, \phi_{0,} 0^{H^{4}}(M)=0$ and $H_{6}(M ; \mathbb{Z})$ has no 2 -torsion elements.
(a) M immerses in $\mathbb{R}^{2 n-7}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15$ $\bmod 16$.
(b) Suppose $H_{7}(M ; \mathbb{Z})$ has no free parts and its 2-torison elements are at most of order 2. Then M immerses in $\mathbb{R}^{2 n-8}$ if $n \equiv 7 \bmod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15 \bmod 16$ and $n>15$.

References

[1] J. Adém and S. Gitler, "Secondary characteristic classes and the immersion problem", Bol. Soc. Mat. Mexicana, 8 (1963), 53-78.
[2] M.F. Atiyah, "Thom complexes", Proc. London Math. Soc. (3) 11 (1961), 29-310.
[.3] S. Gitler and M.E. Mahowald, "The geometric dimension of real stable vector bundles", Bol. Soc. Mat. Mexicana, 11 (1960), 85-106.
[4] M.W. Hirsch, "Immersion of manifolds", Trans. Amer. Math. Soc. 93 (1959), 242-276.
[5] W.S. Massey and F.P. Peterson, "On the dual Stiefel-Whitney classes of a manifolds:, BoZ. Soc. Mat. Mexicana (2) 8 (1963), 1-13.
[6] Tze-Beng Ng, "The existence of 7-fields and 8-fields on manifolds", Quart. J. Math. Oxford Ser. (2) 30 (1979), 197-221.
[7] Tze-Beng Ng, "Frame fields on manifolds", Canad. J. Math. 38 (1986), 232-256.
[8] Tze-Beng Ng, "Vector bundles over ($8 k+3$) - dimensional manifolds", Pacific J. Math. vol. 121 (1986), 427-443.
[9] D. Quillen, "The mod 2 cohomology rings of extra-special 2-groups and the spinor groups", Math. Ann. 194 (1971), 197-212.
[10] D. Randall, "Some immersion theorems for manifolds", Trans. Amer. Math. Soc. 156 (1971), 45-58.
[11] E. Thomas, "Postnikov inveriants and higher order cohomology operations", Ann. of Math. (2) 85 (1967), 184-217.
[12] E. Thomas, "Real and complex vector fields on manifolds", J. Math. Mech. 16 (1967), 1183-1205.
[13] E. Thomas, "The span of a manifold", Quart. J. Math Oxford ser. (2) 19 (1968), 225-244.

Department of Mathematics
National University of Singapore
Kent Ridge
Singapore 0511

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ \mathrm{~A} 2.00+0.00$.

