BULL. AUSTRAL. MATH. SOC. VOL. 36 (1987) 215-226 57R 42, 57R25, 55S40

A NOTE ON IMMERSING MANIFOLDS

IN EUCLIDEAN SPACES

Ng Tze Beng

Let M be a closed, connected smooth and 3-connected mod 2 (that is $H_i(M;\mathbb{Z}_2) = 0$, $0 < i \leq 3$) manifold of dimension n = 7 + 8k. Using a combination of cohomology operations on certain cohomology classes of M and on the Thom class of the stable normal bundle of M we show that under certain conditions M immerses in \mathbb{R}^{2n-8} . This extends previously known results for such a general manifold when the number of 1's in the dyadic expansion of n is less than 8.

1. Introduction

Let M be a smooth, closed, connected and 3-connected mod 2 manifold, whose dimension n is congruent to 7 mod 8. By Massey-Peterson [5] $\tilde{w}_{n-i}(M) = 0$ for i = 1, 2, ..., 7 where $\tilde{w}_j(M)$ is the j-th mod 2 dual Stiefel-Whitney class of M. Then it is easily seen that Mimmerses in \mathbb{R}^{2n-5} . Following Ng [8, Theorem 1.2], if $\operatorname{Sq}^1 H^{n-5}(M) \subset$ $\operatorname{Sq}^2 H^{n-6}(M)$, then M immerses in \mathbb{R}^{2n-6} .

We shall show that with certain additional hypotheses we can immerse M in ${\mathcal R}^{2n-7}$ or ${\mathcal R}^{2n-8}$.

Received 16 September 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 \$A2.00 + 0.00. 215

Ng Tze Beng

Throughout this paper all cohomology will be ordinary cohomology with mod 2 coefficients unless otherwise specified. Let dim M = n.

2.

Let v be a stable normal bundle of M. Then v is classified by a map $g: M \Rightarrow Bspin_N$ for some sufficiently large $N \ge n+1$ where $Bspin_j$ is the classifying space for spin j-plane bundles.

Consider the obvious inclusion $Bspin_{n-k} + Bspin_N$ for k = 7 or β . Then if $n \ge 15 \ M$ immerses in \mathbb{R}^{2n-k} if and only if g lifts to $Bspin_{n-k}$ if and only if the geometric dimension of $\nu \le n-k$. Consider the *n*-modified Postnikov tower for $Bspin_{n-k} + Bspin_N$ for k = 7 or β . This is given in Table 1 or Table 2 of [7] where for $k = \beta$ we drop the k_4^2 when $n \equiv 7 \mod 16$. We list the results (only the *k*-invariants in the relevant dimensions) in Table 1 and Table 2. It is understood that if the need arises the tower is pulled back to $BSO_N < \beta >$ the classifying space for spin *N*-plane bundles ξ satisfying $w_d(\xi) = 0$.

Let ϕ_4 and $\widetilde{\phi}_5$ be the stable secondary cohomology operations associated with the following relations in the mod 2 Steenrod algebra A

$$\phi_{4}: \operatorname{sq}^{2}(\operatorname{sq}^{2}\operatorname{sq}^{1}) = 0 \quad \text{and}$$

$$\widetilde{\phi}_{5}: (\operatorname{sq}^{2}\operatorname{sq}^{1})(\operatorname{sq}^{2}\operatorname{sq}^{1}) + \operatorname{sq}^{3}\operatorname{sq}^{3} = 0 \quad \text{respectively.}$$

It is easily seen that ϕ_4 and $\widetilde{\phi}_5$ can be chosen to be spin trivial in the sense of [12]. That is to say for the Thom class U of the universal spin *j*-plane bundle over $Bspin_j$ for j > 4, $0 \in \phi_4(U)$ and $0 \in \widetilde{\phi}_5(U)$.

As in [12] we derive the following relation:

$$\tilde{\psi}_5$$
: $\operatorname{sq}^2 \phi_4 + \operatorname{sq}^2 \tilde{\phi}_5 = 0$.

Hence there is defined a stable tertiary operation $\widetilde{\Psi}_5$ associated with the above relation. Trivially $\widetilde{\Psi}_5$ is spin-trivial.

It is appropriate at this point to say that all the theorems in Ng [7] hold with the operation Ψ_5 replaced by $\widetilde{\Psi}_5$. This is readily deduced from the generating class theorem of Thomas [11] and the following proposition, which is inspired by Proposition 4.2 of [12].

PROPOSITION 2.1. (Thomas). Let w_{n-9} be the (n-9)-th mod 2 universal Stiefel-Whitney class considered as in H^{n-9} (Bspin_{n-7}). (a) $(0, 0) \in (\phi_4, \tilde{\phi}_5)(w_{n-9}) \subset H^{n-5}(Bspin_{n-7}) \oplus H^{n-4}(Bspin_{n-7})$.

(b)
$$0 \in \widetilde{\psi}_5(w_{n-9}) \subset H^{n-4}(Bspin_{n-7})$$
.

Proof. Part (a): Let $j: Bspin_{n-9} + Bspin_{n-7}$ be the inclusion. Then $j^*: H^*(Bspin_{n-7}) + H^*(Bspin_{n-9})$ is an epimorphism. In dimension $\leq n-5 j^*$ is a monomorphism while in dim n-4 Ker j^* is generated by $\{w_q, w_{n-8}\}$. Since $(\phi_q, \tilde{\phi}_5)$ is spin-trivial, $(0, 0) \in (\phi_q, \tilde{\phi}_5)(w_{n-9}) \subset$ $H^{n-5}(Bspin_{n-9}) \notin H^{n-4}(Bspin_{n-9})$. Therefore there are classes $v \in H^{n-5}(Bspin_{n-7})$ and $u \in H^{n-4}(Bspin_{n-7})$ such that $(v, u) \in$ $(\phi_{q}, \tilde{\phi}_5)(w_{n-9}) \subset H^{n-5}(Bspin_{n-7}) \notin H^{n-4}(Bspin_{n-7})$ and $j^*(v, u) = (0, 0)$. Thus v = 0 and $u = \omega w_q \cdot \omega_{n-8}$ for some $\alpha \in \mathbb{Z}_2$. But $\operatorname{Sq}^5 \omega_{n-9} =$ $\omega_q \cdot \omega_{n-8}$ and so by redefining $\tilde{\phi}_5$ as $\tilde{\phi}_5 + \alpha \operatorname{Sq}^5$ if need be we may assume that u = 0. Hence there is a choice of operation $(\phi_q, \tilde{\phi}_5)$ such that $(0, 0) \in (\phi_q, \tilde{\phi}_5)(\omega_{n-9}) \subset H^{n-5}(Bspin_{n-7}) \notin H^{n-4}(Bspin_{n-7})$. This proves part (a).

<u>Part (b)</u>: First we claim that $\operatorname{Indet}^{n-4}(\widetilde{\psi}_5, B\operatorname{spin}_{n-9}) = j^*\operatorname{Indet}^{n-4}(\widetilde{\psi}_5, B\operatorname{spin}_{n-7})$. Since $\operatorname{Sq}^1(w_4 \cdot w_{n-9}) = w_4 \cdot w_{n-8}$ it follows that $0 \in \widetilde{\psi}_5(w_{n-9}) \subset H^{n-4}(B\operatorname{spin}_{n-7})$. Now we shall establish the claim.

 $\operatorname{Indet}^{n-4}(\widetilde{\psi}_5,\operatorname{Bspin}_{n-9})$ is the range of a cohomology operation

defined on cohomology vectors $(x,y) \in H^{n-7}(Bspin_{n-9}) \times H^{n-7}(Bspin_{n-9})$ such that $\operatorname{Sq}^2 x = 0$ and $\operatorname{Sq}^2 \operatorname{Sq}^1 x + \operatorname{Sq}^3 y = 0$. Since j^* is an eqimorphism there are classes x' and y' in $H^{n-7}(Bspin_{n-7})$ such that $j^*(x',y') =$ (x,y). Since j^* is a monomorphism in dim n-5, $j^*(\operatorname{Sq}^2 x') = \operatorname{Sq}^2 x = 0$ implies that $\operatorname{Sq}^2 x' = 0$. Since $j^*(\operatorname{Sq}^2 \operatorname{Sq}^1 x' + \operatorname{Sq}^3 y') = 0$, $\operatorname{Sq}^2 \operatorname{Sq}^1 x' + \operatorname{Sq}^3 y' = \omega q \cdot \omega_{n-8}$ for some $\alpha \in \mathbb{Z}_2$. We shall show that $\omega_q \cdot \omega_{n-8} \notin \operatorname{Sq}^2 \operatorname{Sq}^1 \overset{n-7}{(Bspin_{n-7})} + \operatorname{Sq}^3 H^{n-7}(Bspin_{n-7})$ and so $\alpha = 0$. Thus $\operatorname{Indet}^{n-4}(\widetilde{\psi}_5, Bspin_{n-9}) = j^*\operatorname{Indet}^{n-4}(\widetilde{\psi}_5, Bspin_{n-7})$.

Consider the case n = 15 , that is n-7 = 8 . According to Quillen [9]

$$\begin{split} &H^*(B\text{spin}_{n-7}) = H^*(B\text{spin}_8) = \mathbb{Z}_2 \left[\omega_4, \omega_6, \omega_7, \omega_8 \right] \otimes \mathbb{Z}_2 \left[n_8 \right] \text{ and} \\ &H^*(B\text{spin}_{n-9}) = H^*(B\text{spin}_6) = \mathbb{Z}_2 \left[\omega_4, \omega_6 \right] \otimes \mathbb{Z}_2 \left[n_8 \right], \end{split}$$

where n_g corresponds to the vanishing of w_g . Therefore $H^{\mathcal{B}}(Bspin_{\mathcal{B}}) \approx \langle w_{\mathcal{A}}^2, n_{\mathcal{B}} \rangle$. Note that $Sq^{1}n_{\mathcal{B}} = 0 \in H^*(Bspin_{n-7})$. Clearly $Sq^{2}Sq^{1}w_{\mathcal{A}}^2 = Sq^{3}w_{\mathcal{A}}^2 = 0$. Now if $Sq^{3}n_{\mathcal{B}} = \omega w_{\mathcal{A}} w_{n-\mathcal{B}} = \omega w_{\mathcal{A}} \cdot w_{7} \in H^{11}(Bspin_{n-7})$, then $0 = Sq^{3}Sq^{3}n_{\mathcal{B}} = Sq^{3}(\omega w_{\mathcal{A}} \cdot w_{7}) = \omega w_{7}^{2}$ and so $\alpha = 0$. Thus for n = 15, Indet^{$n-4}(\tilde{\psi}_{5}, Bspin_{n-9}) = j*Indet^{n-4}(\tilde{\psi}_{5}, Bspin_{n-7})$.</sup>

Now assume n > 15. According to [9], $H^*(Bspin_{n-7})$ is a polynomial algebra in dimension $\le n-4$ generated by the universal mod 2 Stiefel-Whitney classes $A = \{w_i \mid 4 \le i \le n-7 \text{ and } i \text{ is not of the form } 2^p + 1, p \ge 0\}$ except possibly for a non-trivial relation $v_{2^k+1} = 0$ in dimension n-6 for n of the form $7+2^k$ corresponding to the vanishing of $v_{2^k+1} = \operatorname{Sq}^{2^{k-1}}\operatorname{Sq}^{2^{k-2}}\ldots\operatorname{Sq}^2\operatorname{Sq}^1 w_2$ in $H^*(Bspin_{n-7})$. Let F be the polynomial algebra over \mathbb{Z}_2 generated by A. For a monomial $y = x_1^{e_1} x_2^{e_2} \dots x_k^{e_k} \text{ in } F, k \ge 1, e_i \ge 1, x_i \in A, \text{ define the length}$ $k(y) \text{ of } y \text{ to the sum } e_1 + e_2 + \dots + e_k \text{ . Define for a sum of monomials}$ $y_1 + y_2 + \dots + y_j, \text{ where the } y_i'\text{s are distinct, the length to be}$ $k(y_1 + y_2 + \dots + y_j) = \max\{k(y_k), 1 \le k \le j\} \text{ . As convention we define}$ $k(0) = \infty \text{ . Consider } F \text{ as an } A \text{ algebra via the Wu formula, the relations}$ $v_{2^k+1} = 0, 1 < 2^k + 1 \le n-7 \text{ and } w_i = 0, i > n-7 \text{ . Then } F + H^*(B\text{spin}_{n-7})$ is an A-isomorphism in dimension $\le n-7$. Thus we can consider x' and y' as in F . Now $k(w_q, w_{n-8}) = 2$. Clearly if $k(x') \ge 3$ then $k(\operatorname{sq}^2\operatorname{sq}^1 x') \ge 3 \text{ . Similarly if } k(y') \ge 3 \text{ then } k(\operatorname{sq}^3 y') \ge 3 \text{ . So if}$ $k(x') \ge 3 \text{ or if } k(y') \ge 3 \text{ then } k(\operatorname{sq}^2\operatorname{sq}^1 x' + \operatorname{sq}^3 y') \ge 3 \text{ . So we may assume}$ that $k(x') = k(y') = 2 \text{ since } \operatorname{sq}^2\operatorname{sq}^1 w_{n-7} = \operatorname{sq}^3 w_{n-7} = 0 \in H^*(B\operatorname{spin}_{n-7}) \text{ .}$ Let G be the subalgebra of F generated by monomials of length 2 . Then by using the Wu formula we see that elements in $(\operatorname{Sq}^2\operatorname{Sq}^1 G)_{n-4}$ are of the form

$$w_{8k-4j+1}, w_{4j+2}, w_{8k-4j+2}, w_{4j+1}$$

where n-7 = 8k and $1 \le j \le (n-9)/4$. A similar analysis shows that the elements in $(\operatorname{Sq}^3 G)_{n-4}$ are of the form

$$\begin{split} & \overset{w}{\partial 8k-4j+3} \cdot \overset{w}{\partial 4j} + \overset{w}{\partial 8k-4j+2} \cdot \overset{w}{\partial 4j+1} + \overset{w}{\partial 8k-4j+1} \cdot \overset{w}{\partial 4j+2} + \overset{w}{\partial 8k-4j} \cdot \overset{w}{\partial 4j+3} , \\ & \text{where } 1 \leq j < (n-7)/4 . \text{ Thus } (\operatorname{Sq}^2 \operatorname{Sq}^1 G + \operatorname{Sq}^3 G)_{n-4} \text{ is generated by} \\ & \left\{ \overset{w}{\partial 8k-4j+1} \cdot \overset{w}{\partial 4j+2} + \overset{w}{\partial 8k-4j+2} \cdot \overset{w}{\partial 4j+1} , \overset{w}{\partial 8k-4j+3} \cdot \overset{w}{\partial 4j} + \overset{w}{\partial 8k-4j} \cdot \overset{w}{\partial 4j+3} , 1 \leq j < (n-7)/4 \right\}. \\ & \text{Here } \overset{w}{\partial 2}_{p+1} \text{ is thought of as in } F \text{ via the relations } v = 0 . \text{ Hence } \\ & 2^{j}+1 & 2^{j}+1 \\ & \text{we conclude that } w_4 \cdot w_{n-8} \text{ could not be in } \operatorname{Sq}^2 \operatorname{Sq}^1 H^{n-7} (B \operatorname{Spin}_{n-7}) + \\ & \operatorname{Sq}^3 H^{n-7} (B \operatorname{Spin}_{n-7}) , \text{ This completes the proof of part (b). \end{split}$$

Tab	le	1.	

The *n*-Postnikov tower for π : $Bspin_{n-7} \rightarrow Bspin_N$

k-invariant	Dimension	Defining Relation
k1 / 1	n-6	$k_1^1 = \delta w_{n-7}$
k_2^1	n-5	$k_2^1 = w_{n-5}$
k_3^1	n-3	$k_3^1 = w_{n-3}$
k_1^2	n-5	$sq^2k_1^2 = 0$
κ_2^2	n-4	$sq^2k_2^1 + sq^3k_1^1 = 0$
k_3^2	n-3	$(\operatorname{sq}^4 + w_4)k_1^1 = 0$
k ² 6	n	$(\operatorname{sq}^4 + w_4)k_3^1 = 0$
k_1^3	n-4	$sq^2k_1^2 = 0$
k_4^3	n	$(\chi sq^4 + w_4)k_3^2 + sq^2 sq^4 k_1^2 = 0$

Table 2

The *n*-Postnikov tower for π : $Bspin_{n-8} \neq Bspin_N$

k-invariant	Dimension	Defining Relation
k ¹	n-7	$k^1 = w_{n-7}$
k_1^2	n-5	$sq^2sq^1k^1 = 0$
k_2^2	n-3	$(\operatorname{Sq}^{4}+\omega_{4})\operatorname{Sq}^{1}k^{1} = 0$
$k_4^2(n \equiv 15(16))$	n	$(\mathrm{Sq}^{8}+\omega_{8})k^{1}=0$
k_1^3	n-4	$\operatorname{Sq}^2 k_1^2 = 0$
k_3^3	n	$sq^2sq^4k_1^2 + (\chi sq^4 + \omega_4)k_2^2$

Recall ζ_6 and ζ_8 (for $n \equiv 15 \mod 16$) are the stable cohomology operations of Hughes-Thomas type associated with the relations in the mod 2 Steenrod algebra,

$$\zeta_6 : \operatorname{sq}^4 \operatorname{sq}^{n-3} + \operatorname{sq}^2 (\operatorname{sq}^{n-3} \operatorname{sq}^2) + \operatorname{sq}^1 (\operatorname{sq}^{n-3} \operatorname{sq}^3 + \operatorname{sq}^{n-1} \operatorname{sq}^1) = 0$$

anđ

$$g_{g} : sq^{g}(sq^{n-7}) + sq^{4}(sq^{n-7}sq^{4}) + sq^{2}(sq^{n-3}sq^{2} + sq^{n-7}sq^{2}sq^{4}) + sq^{1}(sq^{n-1}sq^{1} + sq^{n-5}sq^{5} + sq^{n-3}sq^{3} + sq^{n-7}sq^{7}) = 0.$$

In [7] we have defined a stable tertiary operation Ω realizing the *k*-invariant k_4^3 of Table 1 or k_3^3 of Table 2. Let $\phi_{1,1}$ be the Adams basic operation associated with the relation $\operatorname{Sq}^2\operatorname{Sq}^2 + \operatorname{Sq}^3\operatorname{Sq}^1 = 0$. Then we have the following theorem.

THEOREM 2.2. Let N > n and η be an N-plane bundle over M with $w_4(\eta) = w_4(M)$. Suppose Indetⁿ⁻⁴($\tilde{\psi}_5$, M) = $Sq^2 H^{n-6}(M)$ (hence $Sq^1 H^{n-5}(M) \subset Sq^2 H^{n-6}(M)$).

- (a) (Case k = 7). Suppose $Sq^{2}H^{n-7}(M;\mathbb{Z}) = Sq^{2}H^{n-7}(M)$ and Indetⁿ $(k_{4}^{3}, M) \neq 0$, where k_{4}^{3} is defined by Table 1. Then the geometric dimension of $n \leq n-7$ if and only if $\delta w_{n-7}(n) = 0$, $w_{n-5}(n) = 0$, $0 \in \phi_{4}(w_{n-9}(n))$, $0 \in \phi_{1,1}(w_{n-7}(n))$, $\zeta_{6}(U(n)) = 0$ and $0 \in \widetilde{\psi}_{5}(w_{n-9}(n))$.
- (b) (Case k = 8). Suppose Indetⁿ $(k_3^3, M) \neq 0$ where k_3^3 is defined by Table 2.

(i) Suppose $n \equiv 7$ (16) with n > 7 and $Sq^2 H^{n-7}(M) = Sq^2 Sq^1 H^{n-8}(M)$. Then geometric dimension of $n \le n-8$ if and only if $w_{n-7}(n) = 0, \ 0 \in \phi_4(w_{n-9}(n))$ and $0 \in \widetilde{\psi}_5(w_{n-9}(n))$.

(ii) Suppose $n \equiv 15 \mod 16$ with n > 15 and $w_4(n) = 0$. Suppose <u>either</u> $w_8(n) = w_8(M)$ and $Sq^2H^{n-7}(M) = Sq^2Sq^1H^{n-8}(M)$ or

221

$$\begin{split} &Sq^2H^3(M)=0 \ . \ \ Then \ geometric \ dimension \ of \ n \leq n-8 \ \ if \ and \\ &only \ if \ w_{n-7}(n)=0, \ 0 \in \phi_4(w_{n-9}(n)), \ 0 \in \zeta_8(U(n)) \ \ and \\ &0 \in \widetilde{\psi}_5(w_{n-9}(n)) \ . \end{split}$$

Proof. Part (a) is a consequence of Proposition 2.1 and [7, Theorem 7.1] since all the *k*-invariants are stable. Part (b) follows from [7, Theorem 7.2] noting that we need only consider stable *k*-invariants.

For any bundle ξ over M classifed by a map g from M into $B\hat{SO}_j < 8 >$, $j \ge 4$, define $v_4(\xi)$ to be $g^*(v_4)$, where $v_4 \in H^4(B\hat{SO}_j < 8 >) \approx \mathbb{Z}_2$ is a generator. We can easily extend this definition to a stable bundle ξ satisfying $w_4(\xi) = w_2(\xi) \approx w_1(\xi) = 0$.

We have the following theorem when the top dimensional tertiary obstruction has trivial indeterminacy.

THEOREM 2.3. Let
$$N > n$$
 and n be an N-plane bundle over M with $w_4(n) = w_4(M) = 0$. Suppose $Sq^3(v_4(-n) + v_4(-\tau)) = 0$ and
Indetⁿ⁻⁴($\tilde{\psi}_5$, M) = Indetⁿ⁻⁴(k_1^3 , M), where k_1^3 is defined by Table 1 if
 $k = 7$ and by Table 2 if $k = 8$. (Hence $Sq^1H^{n-5}(M) \in Sq^2H^{n-6}(M)$).)
(a) (Case $k = 7$). Suppose $Sq^2H^{n-7}(M;\mathbb{Z}) = Sq^2H^{n-7}(M)$, and
Indetⁿ(k_4^3 , M) = 0, where k_4^3 is defined by Table 1. Then the
geometric dimension of $n \le n-7$ if and only if
 $\delta w_{n-7}(n) = 0$, $w_{n-5}(n) = 0$, $0 \in \phi_4(w_{n-9}(n))$, $0 \in \phi_{1,1}(w_{n-7}(n))$,
 $\zeta_6(U(n)) = 0$, $0 \in \tilde{\psi}_5(w_{n-9}(n))$ and $\Omega(U(n)) = 0$.

(b) (Case
$$k = 8$$
). Suppose $Sq^2 H^{n-7}(M) = Sq^2 Sq^1 H^{n-8}(M)$ and
Indetⁿ $(k_3^3, M) = 0$ where k_3^3 is defined by Table 2.

(i) Suppose $n \equiv 7 \mod 16$ with n > 7. Then the geometric dimension of $n \leq n-8$ if and only if $w_{n-7}(n) = 0$, $0 \in \phi_4(w_{n-9}(n))$, $0 \in \widetilde{\psi}_5(w_{n-9}(n))$ and $\Omega(U(n)) = 0$.

(ii) Suppose $n \equiv 15 \mod 16$ with n > 15 and either $w_g(n) = w_g(M)$ or $Sq^2H^5(M) = 0$. Then the geometric dimension of

$$\begin{split} &\eta \leq n-8 \quad \text{if and only if } \quad w_{n-7}(\eta) = 0, \ 0 \in \phi_4(w_{n-9}(\eta)) \ , \\ &0 \in \zeta_8(U(\eta)) \ , \ 0 \in \widetilde{\psi}_5(w_{n-9}(\eta)) \quad \text{and} \quad \Omega(U(\eta)) = 0 \ , \end{split}$$

Proof. Part (a) is a consequence of Proposition 2.1 and [7, Theorem 8.1] and Part (b) is a consequence of Proposition 2.1 and [7, Theorem 8.2].

3. Immersion Theorems

Let M' be a closed, connected and smooth spin manifold of dimension $n \equiv 7 \mod 8$ with n > 7. Following Massey-Peterson [5] we deduce that $\overline{w}_{n-i}(M') = 0$ for $i = 0, 1, 2, \ldots, 7$. In particular if the number of 1's in the dyadic expansion of $n \alpha(n)$ is greater than or equal to θ , then $\overline{w}_{n-\theta}(M') = 0$. If furthermore $w_4(M') = 0$ then $\overline{w}_{n-\theta}(M') = 0$ for $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$.

Take a Spivak normal bundle ν for M. Then the top class of the Thom space $T(\nu)$ is spherical. Therefore $\zeta_{\hat{\theta}}(U(\nu))$, $\zeta_{\hat{\theta}}(U(\nu))$ and $\Omega(U(\eta))$ whenever they are defined are all zero modulo zero indeterminacy.

Therefore applying Theorem 2.2 together with the preceding paragraph we have the following theorem.

THEOREM 3.1. Suppose Indetⁿ⁻⁴
$$(\tilde{\psi}_5, M) = Sq^2 H^{n-6}(M)$$
.
(a) Suppose $\alpha(n) \ge 6$, $Sq^2 H^{n-7}(M; \mathbb{Z}) = Sq^2 H^{n-7}(M)$ and $Indet^n(k_d^3(v), M) \ne 0$, where k_d^3 is defined by Table 1. Then M immerses in \mathbb{R}^{2n-7} .
(b) Suppose Indetⁿ $(k_3^3(v), M) \ne 0$ where k_3^3 is defined by Table 2 and $Sq^2 H^{n-7}(M) = Sq^2 Sq^1 H^{n-8}(M)$. Then M immerses in \mathbb{R}^{2n-8} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$.
Similarly from Theorem 2.3 we have THEOREM 3.2. Let $w_d(M) = 0$.

(a) Suppose
$$Sq^{2}H^{n-7}(M; \mathbb{Z}) = Sq^{2}H^{n-7}(M)$$
 and $Indet^{n-4}(\tilde{\psi}_{5}, M) =$
 $Indet^{n-4}(k_{1}^{3}(v), M)$, where k_{1}^{3} is defined by Table 1. Then M
immerses in \mathbb{R}^{2n-7} if $n \equiv 7 \mod 16$ and $\alpha(n) \geq 6$ or $n \equiv 15 \mod 16$.

(b) Suppose
$$Sq^2 H^{n-7}(M) = Sq^2 Sq^1 H^{n-8}(M)$$
 and $Indet^{n-4}(\tilde{\psi}_5, (M) = Indet^{n-4}(k_1^3(v), M)$, where k_1^3 is defined by Table 2. Then M immerses in \mathbb{R}^{2n-8} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or $n \equiv 15 \mod 16$ with $n > 15$.
Combining Theorem 3.1 and Theorem 3.2 we have the following theorem.
THEOREM 3.3. Suppose $w_4(M) = 0$ and $indet^{n-4}(\tilde{\psi}_5, M) = Sq^2 H^{n-6}(M)$.

(a) Suppose
$$Sq^2H^{n-7}(M;\mathbb{Z}) = Sq^2H^{n-7}(M)$$
. Then M immerses in \mathbb{R}^{2n-7} if $n \equiv 7 \mod 16$ and $\alpha(n) \geq 6$ or if $n \equiv 15 \mod 16$.

(b) Suppose
$$Sq^2 H^{n-7}(M) = Sq^2 Sq^1 H^{n-8}(M)$$
. Then M immerses in \mathbb{R}^{2n-8}
if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or if $n \equiv 15 \mod 16$ and $n > 15$.
If M is 4-connected mod 2 then $\operatorname{Indet}^n(k_4^3(v), M) = 0$. Thus by

Theorem 3.2 we have the following immediate corollary.

COROLLARY 3.4. Suppose M is 4-connected mod 2.

(a) Suppose
$$Sq^2H^{n-7}(M;\mathbb{Z}) = Sq^2H^{n-7}(M)$$
. Then M immerses in \mathbb{R}^{2n-7} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or if $n \equiv 15 \mod 16$.

(b) Suppose
$$Sq^2 H^{n-7}(M) = Sq^2 Sq^1 H^{n-8}(M)$$
. Then M immerses in \mathbb{R}^{2n-8} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or if $n \equiv 15 \mod 16$ and $n > 15$.
Assume now $w_4(M) = 0$. From the definition of $\tilde{\psi}_5$ we deduce that

if either $\operatorname{Sq}^{3}H^{n-7}(M) = 0$ or $\operatorname{Sq}^{2}\operatorname{Sq}^{1}H^{n-7}(M) = 0$ or equivalently if either $\operatorname{Sq}^{2}\operatorname{Sq}^{1}H^{4}(M) = 0$ or if $\operatorname{Sq}^{3}H^{4}(M) = 0$, then $\operatorname{Indet}^{n-4}(\widetilde{\psi}_{5},M) = \phi_{3}D^{n-7} + \ldots \zeta_{3}\widetilde{D}^{n-7}$, where ϕ_{3} and ζ_{3} are stable operations associated with the relations

$$\phi_3: \operatorname{Sq}^2 \operatorname{Sq}^2 + \operatorname{Sq}^1(\operatorname{Sq}^2 \operatorname{Sq}^1) = 0 \text{ and}$$

$$\varsigma_3: \operatorname{Sq}^1 \operatorname{Sq}^3 = 0 \text{ respectively};$$

 $D^{n-7} = \{x \in H^{n-7}(M) \mid \operatorname{sq}^2 x = \operatorname{sq}^2 \operatorname{sq}^1 x = 0\} \text{ and } \widetilde{D}^{n-7} = \{x \in H^{n-7}(M) \mid \operatorname{sq}^3 x = 0\}.$ We can choose ζ_3 to be $\phi_{0,0} \circ \operatorname{sq}^2$ where $\phi_{0,0}$ is the operation associated with the relation $\operatorname{sq}^1 \operatorname{sq}^1 = 0$. If $H_6(M; \mathbb{Z})$ has no 2torsion then $\operatorname{Sq}^{3} \operatorname{v}_{4}(-\tau) = 0$ and so $\operatorname{Indet}^{n}(k_{4}^{3}, M) = 0$ by *S*-duality. If further $\operatorname{sq}^{1} H^{n-5}(M) \subset \operatorname{Sq}^{2} H^{n-6}(M)$ and $\operatorname{Sq}^{2} H^{5}(M) = 0$ then $\operatorname{Indet}^{n-4}(\widetilde{\psi}_{5}, M) =$ $\operatorname{Indet}^{n-4}(k_{1}^{3}, M)$, where k_{1}^{3} is defined by Table 1. If in addition that $H_{7}(M; \mathbb{Z})$ has no free parts and its 2-torsion elements are all of order 2, then $\operatorname{Indet}^{n-4}(\widetilde{\psi}_{5}, M) = \operatorname{Indet}^{n-4}(k_{1}^{3}, M)$, where k_{1}^{3} is defined by Table 2. Thus we have from Theorem 3.2

THEOREM 3.5. Suppose $w_4(M) = 0$, $Sq^2H^5(M) = 0$, $Sq^1H^{n-5}(M) \subset Sq^2H^{n-6}(M)$ and $H_6(M,\mathbb{Z})$ has no 2-torsion elements. Then

- (a) M immerses in \mathbb{R}^{2n-7} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or $n \equiv 15 \mod 16$.
- (b) Suppose $H_7(M;\mathbb{Z})$ has no free parts and its 2-torsion elements are at most of order 2. Then M immerses in \mathbb{R}^{2n-8} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or $n \equiv 15 \mod 16$ and n > 15.

Suppose now $\operatorname{Sq}^{1}H^{4}(M) = 0$ and $\phi_{0,0}H^{4}(M) = 0$. By Poincaré daulity one readily deduces that $\phi_{0,0}H^{n-5}(M) = 0$. As for Theorem 3.5 we deduce from Theorem 3.2 the following:

COROLLARY 3.6. Suppose $w_4(M) = 0$, $Sq^2H^4(M) = 0$, $\phi_{0,0}H^4(M) = 0$ and $H_6(M;\mathbb{Z})$ has no 2-torsion elements.

- (a) M immerses in \mathbb{R}^{2n-7} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or $n \equiv 15 \mod 16$.
- (b) Suppose $H_7(M;\mathbb{Z})$ has no free parts and its 2-torison elements are at most of order 2. Then M immerses in \mathbb{R}^{2n-8} if $n \equiv 7 \mod 16$ and $\alpha(n) \ge 6$ or $n \equiv 15 \mod 16$ and n > 15.

References

 J. Adem and S. Gitler, "Secondary characteristic classes and the immersion problem", Bol. Soc. Mat. Mexicana, 8 (1963), 53-78.

- [2] M.F. Atiyah, "Thom complexes", Proc. London Math. Soc. (3) 11 (1961), 29-310.
- [3] S. Gitler and M.E. Mahowald, "The geometric dimension of real stable vector bundles", Bol. Soc. Mat. Mexicana, 11 (1960), 85-106.
- [4] M.W. Hirsch, "Immersion of manifolds", Trans. Amer. Math. Soc. 93 (1959), 242-276.
- [5] W.S. Massey and F.P. Peterson, "On the dual Stiefel-Whitney classes of a manifolds:, Bol. Soc. Mat. Mexicana (2) 8 (1963), 1-13.
- [6] Tze-Beng Ng, "The existence of 7-fields and 8-fields on manifolds", Quart. J. Math. Oxford Ser. (2) 30 (1979), 197-221.
- [7] Tze-Beng Ng, "Frame fields on manifolds", Canad. J. Math. 38 (1986), 232-256.
- [8] Tze-Beng Ng, "Vector bundles over (8k+3) dimensional manifolds", Pacific J. Math. vol. 121 (1986), 427-443.
- [9] D. Quillen, "The mod 2 cohomology rings of extra-special 2-groups and the spinor groups", Math. Ann. 194 (1971), 197-212.
- [10] D. Randall, "Some immersion theorems for manifolds", Trans. Amer. Math. Soc. 156 (1971), 45-58.
- [11] E. Thomas, "Postnikov inveriants and higher order cohomology operations", Ann. of Math. (2) 85 (1967), 184-217.
- [12] E. Thomas, "Real and complex vector fields on manifolds", J. Math. Mech. 16 (1967), 1183-1205.
- [13] E. Thomas, "The span of a manifold", Quart. J. Math Oxford Ser. (2) 19 (1968), 225-244.

Department of Mathematics National University of Singapore Kent Ridge Singapore 0511