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Flow control of a plunging cylinder based on
resolvent analysis
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We design an open-loop active flow control for separated flows around a plunging circular
cylinder based on resolvent analysis. The cylinder is plunging at a Strouhal number of
0.36 and a Reynolds number of 500. A linear time-periodic system for control is obtained
by linearizing the non-inertial incompressible vorticity equation in the cylinder-fixed
frame about a time-averaged base flow. Using the Lyapunouv–Floquet transformation,
the linear time-periodic system is transformed into a similar linear time-invariant system,
whose resolvent is analysed to obtain an optimal actuating Strouhal number of 0.1464 for
the transformed linear system. Simulations show that the active control with tangential
actuations is capable of reducing the lift fluctuation by up to 25.7 % when the flow is
actuated near the predicted harmonic and subharmonic frequencies.

Key words: flow control

1. Introduction

The resolvent, the transfer function of a linear system with constant coefficients, describes
the response of such a system to sustained perturbations or forcing inputs. The analysis of
a resolvent provides insights of the dominant directions in which the perturbation can be
amplified (Trefethen & Embree 2005). Trefethen et al. (1993) applied resolvent analysis
to laminar Poiseuille flows to study the subcritical laminar–turbulent transition caused
by the significant transient growth in perturbation energy. McKeon & Sharma (2010)
extended the resolvent analysis for turbulent pipe flow, where the flow is linearized about
the statistically stationary turbulent mean flow and regarded the retaining nonlinear terms
as an internal forcing. By analysing the resolvent of the linearized system, they proposed a
reduced-order model to capture the coherent structures in wall-bounded turbulence. Later
in several studies (Moarref et al. 2013; Sharma & McKeon 2013; Karban et al. 2022)
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similar approaches have been taken following this resolvent formulation for analysing the
coherent structures in the wall turbulence in a channel. The resolvent analysis of turbulent
jets has also been investigated (Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018;
Pickering et al. 2021) for studying the corresponding coherent structures and jet noise.
Skene et al. (2022) developed a sparsity-promoting resolvent formulation to determine
the actuation locations for external turbulent flow control by revealing spatially localized
structures sensitive to energy amplification.

Due to the capability of providing dominant and subdominant modes of flow to construct
a reduced-order model, resolvent analysis is often used to design an effective flow control
technique for the flow over a stationary body or boundary such as flows over a cavity
(Rowley et al. 2006; Gómez et al. 2016; Gómez & Blackburn 2017; Liu et al. 2021)
or flows over a stationary body (Yeh & Taira 2019; Jin, Illingworth & Sandberg 2020).
Luhar, Sharma & Mckeon (2014) applied opposition control on turbulent channel flow
using the resolvent analysis framework. Brunton & Noack (2015) reviewed the progress
of closed-loop turbulence control and selected resolvent-analysis-based control as one of
the successful closed-loop flow controls. Yeh & Taira (2019) applied resolvent analysis
to design an active control for separated flow of NACA0012 airfoils with fixed angles of
attack. The control successfully makes the separated flow reattach, which leads to a drag
reduction of 38 % for the best case. Jin et al. (2020) investigated feedback control of vortex
shedding of a cylinder at low Reynolds numbers based on a reduced-order transfer function
modelled from the resolvent operator. The resulting feedback controllers are capable of
stabilizing the system up to Re = 100 but their performance deteriorates rapidly with
increasing Reynolds number. Liu et al. (2021) implemented a resolvent-analysis-based
design tool for unsteady control of supersonic turbulent flow in a fixed cavity. The
designed control manages to reduce the pressure fluctuation in the cavity by 52 %.
Martini et al. (2022) applied the resolvent-based method to the Wiener–Hopf problem
and developed optimal estimation and control techniques for the application of flow
over backward-facing steps. Besides application in active control, Pfister, Fabbiane &
Marquet (2022) applied resolvent analysis to the investigation of boundary layer instability
attenuation by viscoelastic patches.

The resolvent was originally derived from the frequency response of a linear
time-independent (LTI) system. In order to extend resolvent analysis to a linear
time-dependent system, the time convolution between the state and the linear operator
needs to be simplified when performing Fourier transform on the linear time-dependent
system (Padovan, Otto & Rowley 2020; Yeh, Gopalakrishnan Meena & Taira 2021).
Yeh et al. (2021) developed a modal analysis technique based on the Katz centrality to
investigate a time-evolving network of vortical interactions on time-varying base flow. By
perturbing the flow with the resulting broadcast mode, the evolution of a two-dimensional
decaying isotropic turbulence is effectively modified. Padovan et al. (2020) studied the
input–output characteristics of systems linearized about a time-periodic base flow via the
harmonic resolvent, which utilizes truncated Fourier series with a fundamental harmonic
frequency to express the response of such a linear time-periodic (LTP) system. They
applied harmonic resolvent analysis to the flow over an airfoil at a near-stall angle of
attack and introduced a small-amplitude sinusoidal vertical motion at the vortex shedding
frequency to the airfoil as the near-body periodic forcing. Padovan & Rowley (2022)
further extended harmonic resolvent analysis to study subharmonic dynamics of a forced
incompressible axisymmetric jet. Since in the above two studies the vortex shedding
frequency is the only dominant frequency, the harmonic resolvent is able to describe
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Figure 1. A cylinder plunging in a free stream with localized body forces as actuators.

accurately the flow structures developed in response to periodic forcing. However, for a
LTP system with more than one dominant frequency, it is difficult to determine not only a
specific frequency for the harmonic resolvent but also the number of terms in the expansion
that are needed to capture important flow dynamics. In this case, Wereley (1991) provided
a mathematically equivalent theory based on the Floquet theory.

In this study, we propose a general resolvent analysis framework inspired by Wereley
(1991) and Yeh & Taira (2019) for a LTP system with complex dynamics that has more
than one dominant frequency based on the Floquet theory. A demonstrative example of
the flow around a sinusoidal plunging cylinder is selected to develop a design tool for flow
control using this Floquet resolvent analysis. In this framework, the Lyapunov–Floquet
transformation is used to transform the LTP system to a similar LTI system, which retains
all important dynamics. Then the resolvent-analysis-based design tool developed by Yeh
& Taira (2019) for a LTI system can be implemented on the transformed LTI system to
formulate an input–output process in frequency space and design an effective active flow
control for the flow around a sinusoidal plunging cylinder.

2. Problem set-up

2.1. Problem description
We consider a circular cylinder plunging in an unbounded free stream at a low Reynolds
number Re = U∞D/ν = 500 as shown in figure 1, where U∞ is the free-stream velocity,
D is the diameter of the cylinder and ν is the kinematic viscosity. Since the Reynolds
number is low, the flow around the cylinder is assumed to be quasi-two-dimensional.
The analysis is therefore performed on a two-dimensional cross-section of the cylinder.
The cylinder undergoes a sinusoidal plunging motion with an amplitude of 0.1D at a
frequency of fp. The Strouhal number of the plunging motion is set to be Stp = fpD/U∞ =
0.36, which is 1.5 times the natural shedding frequency at Re = 500. Therefore, the
dimensionless plunging velocity of the cylinder scaled by U∞ can be expressed as
U(t) = 0.1ωp cos(ωpt)ŷ, where ωp = 2πStp is the dimensionless angular velocity, ŷ is
the transversal unit vector and t is the dimensionless time scaled by D/U∞. The above
parameters are selected based on Bao et al. (2012) so that the resulting flow does not lock
in with the plunging motion and results in a high lift fluctuation, which is aimed to be
reduced in this study.
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2.2. Resolvent analysis domain and flow control set-up
In order to extend the resolvent analysis, which only applies to stationary
bodies/boundaries, to a moving body, the analysis and simulations are done in a frame
of reference fixed on the centre of the cylinder. As shown in figure 1, the resolvent analysis
is performed in a limited domain of 7D × 3D around the cylinder in the cylinder-fixed
frame, which is located respectively at 1D and 1.5D from the left and bottom boundary. In
order to mimic the actual actuators, two body forces, each in the dimensionless form of

f a = A
[
1 − cos

(
ω+t

)]
g (xa, ξ) êa, (2.1)

are placed at xa = (r, θ) = (0.5 + 6ξ/D, ±105◦), where A is the amplitude of the body
force, ω+ = 2πSt+ is the dimensionless angular velocity of the actuation, St+ is the
Strouhal number of the actuation, r is the dimensionless distance from the cylinder
centre scaled by D, θ is the angle between the actuation location and the leading edge,
g(xa, ξ) is the Gaussian function with a width of ξ located at xa and êa is the unit
vector in the actuating direction. The amplitude A and the width of the Gaussian ξ can
be adjusted to generate a certain value of the momentum coefficient, which is defined as
Cμ = u2

jetξ/(1
2 U2∞D), where ujet is the time-averaged jet speed measured in the absence

of free stream.

2.3. Simulation set-up and the base flow
In order to simulate the incompressible flow and perform resolvent analysis in the
cylinder-fixed frame, the following incompressible vorticity equation and boundary
conditions in the cylinder-fixed frame derived by Lin, Hsieh & Tsai (2021) are used:

∂ω

∂t
= ∇ × [(u − U) × ω] + 1

Re
∇2ω + ∇ ×

(∑
f a

)
, in the fluid,

u = U, on the cylinder,

u → x̂, ω → 0, at infinity,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where u and ω scaled respectively by U∞ and U∞/D are the dimensionless
laboratory-frame flow velocity and vorticity, U is the plunging velocity described in § 2.1,
x̂ is the unit vector in the streamwise direction and ∇ × (

∑
f a) collects the external

forcing inputs. In general, (2.2) can be extend to flows around a body undergoing any
rigid-body motion by replacing U with the combination of translational and rotational
velocity of the motion. Therefore, the current analysis can be easily extended to analyse
flows around a body undergoing not only periodic plunging motion, but also periodic
surging, or pitching motions.

Equation (2.2) is solved using the immersed boundary projection method (IBPM)
developed by Colonius & Taira (2008), which uses a nullspace approach and multi-domain
far-field boundary conditions, but now with the convective term being replaced by
∇ × [(u − U) × ω]. In all simulations, the IBPM is implemented in six domains with
the domain being magnified and the grid being coarsened by a factor of 2 at each grid
level, and the first (smallest, finest) domain coincides with the resolvent analysis domain
and is discretized on a two-dimensional Cartesian staggered grid with equal grid spacing
�x = �y = 0.01D. The resulting number of discrete disturbed vorticities in one domain
is n = 699 × 299 = 209 001. The width of the Gaussian ξ for the body force described in
§ 2.2 and the spacing between two adjacent immersed boundary points are set to be equal
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Figure 2. (a) Vorticity field time-averaged from t = 10T to 15T . Positive and negative vorticity contour levels
are plotted respectively in solid and dash-dotted curves. (b) The lift and drag coefficients of plunging and
stationary cylinders in t ∈ [10T, 15T]. (c) The spectrum of the lift coefficient. (d) The phase plot of the lift
coefficient and the transversal displacement.

to the grid spacing. The time increment �t is set to keep the Courant–Friedrichs–Lewy
number less than 0.4.

Figure 2(a) shows the vorticity field time-averaged from t = 10T to 15T , where T =
1/Stp is the dimensionless plunging period scaled by D/U∞. This time-averaged flow
serves as a time-independent base flow for linear analysis of (2.2). The time-averaged
flow in figure 2(a) should be symmetric; however, in this case the convergence is slow
to achieve symmetry within a practical run time. Figure 2(b) shows the lift and drag
coefficients of the plunging and stationary cylinders in the corresponding time period.
The fluctuation in lift coefficient is greater for a plunging cylinder than a stationary one,
while the drag coefficients for plunging and stationary cylinders vary roughly in the same
range. Therefore, this study focuses on designing an effective active control to reduce
the lift fluctuation using resolvent analysis. Figure 2(c) depicts the spectrum of the lift
coefficient of the plunging cylinder. Therefore, the flow around the plunging cylinder
is quasi-periodic with three dominant frequencies at St = 0.36, 0.216 and 0.072, which
correspond respectively to the frequencies of plunging motion, vortex shedding and the
envelope of those two waves. Figure 2(d) reveals the phase plot between the lift coefficient
of the plunging cylinder and the transversal displacement of the plunging motion, which
shows that the flow does not lock in to the plunging motion.
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3. Resolvent analysis for a plunging cylinder

3.1. Derivation of the LTP system
First, we apply the Reynolds decompositions u = ū + u′ and ω = ω̄ + ω′ to (2.2), where
ū and ω̄ are respectively the velocity and vorticity fields of the time-independent base flow
described in § 2.3 and u′ and ω′ are respectively the disturbed velocity and vorticity fields.
Equation (2.2) yields

∂ω′

∂t
= ∇ × [L(ω′) + F

]
, in the fluid,

u′ = U − ū, on the cylinder,

u′ → 0, ω′ → 0, at infinity,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where L(ω′) = (ū − U) × ω′ + u′ × ω̄ − (1/Re)∇ × ω′ collects the linear operations for
ω′, f int = (ū − U) × ω̄ + u′ × ω′ − (1/Re)∇ × ω̄ collects the nonlinear operations for
ω′ and the base-flow terms, f ext = ∑

f a collects the external control forcing and F =
f int + f ext. Since U is T-periodic and ū and ω̄ are time-independent, the linear operator
L(ω′) is T-periodic. Here, unlike in the traditional Floquet stability analysis, (3.1) does not
come from linearizing (2.2) about a phase-averaged base flow. As discussed in § 2.3, the
base flow is only quasi-periodic and its period is not T either. Therefore, the linear operator
L(ω′) will not be T-periodic if (2.2) is linearized about the base flow phase-averaged over
one plunging period.

McKeon & Sharma (2010) treated equation (3.1) as a linear system of ω′ with ∇ × F
as a forcing input. Moreover, f int is interpreted as the internal forcing input due to the
nonlinear and viscous interaction in the flow. Again, (3.1) can be solved using the IBPM
developed by Colonius & Taira (2008) with the convective term being replaced by ∇ ×
[(ū − U) × ω′ + u′ × ω̄] and the addition of the forcing term ∇ × F . From (3.1), Yeh &
Taira (2019) were able to obtain the resolvent of the linear system directly by expanding
the disturbed flow quantities as the sum of Fourier modes because the operator L(ω′) in
their system is time-independent. However, (3.1) is now time-periodic for the flow around a
plunging cylinder so that an additional similarity transformation, the Lyapunouv–Floquet
transformation, is required to transform equation (3.1) into a similar linear system with
time-invariant coefficients in order to apply the resolvent analysis.

3.2. Derivation of the LTI system
We discretize equation (3.1) spatially on the Cartesian staggered grid described in § 2.3,
which yields

dx
dt

= A(t)x + g, in the fluid,

C(CTC)−1x = CT+
x = U − ū, on the cylinder,

CT+
x → 0, x → 0, at infinity,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

where x(t) is the discrete disturbed vorticity in the resolvent analysis domain and A(t)x and
g are respectively the spatial discretization of ∇ × L(ω′) and ∇ × F . The operator C is the
discrete curl operator used in Colonius & Taira (2008) and the operator CT+ = C(CTC)−1

is the right pseudo-inverse of CT , which maps the discrete vorticity to the corresponding
discrete velocity. The operation q = C(CTC)−1x is equivalent to first solving the Poisson
equation CTCs = x (the discretization of ∇ × ∇ × ψ = ω′) for the discrete streamfunction
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s, and then taking the curl of the discrete streamfunction to obtain the discrete velocity, i.e.
q = Cs (the discretization of ∇ × ψ = u). Since the linear operator L(ω′) is T-periodic,
the linear coefficient matrix A(t) is also T-periodic, i.e. A(t + T) = A(t).

Let X (t) be the fundamental solution matrix of (3.2) and therefore X (t) satisfies equation
(3.2) with g = 0 and homogeneous boundary conditions on the cylinder. Based on the
Floquet theory, when the linear system is T-periodic, X (t) satisfies the relation

X (t + T) = X (t)C, (3.3)

where C is a unique constant matrix called the monodromy matrix. Moreover, by taking
t = 0 and X (0) = I , the identity matrix, in (3.3), the monodromy matrix can be expressed
as C = X (T) = Φ(T, 0), where Φ(T, 0) is the state-transition matrix from t = 0 to t = T .
In other words, the monodromy matrix can be built column by column through a series
of simulations of (3.2) in the absence of the forcing input g with homogeneous no-slip
condition on the cylinder and x(0) being one of the columns of I . The eigenvalues
λ1, λ2, . . . , λn of C are called Floquet multipliers, which characterize the behaviours of
X (t) after one period of evolution based on (3.3), and the corresponding eigenvectors are
called Floquet modes. The Floquet multiplier of a growing Floquet mode has a magnitude
greater than 1. The Floquet theory further decomposes X (t) as the product of two matrices:

X (t) = P(t)eBt, (3.4)

where P(t + T) = P(t) is a T-periodic matrix and B is a constant matrix. From (3.3) and
(3.4), the constant matrix B can be determined by solving the matrix equation

C = eBT . (3.5)

The eigenvalues μ1, μ2, . . . , μn of B are called Floquet exponents, which satisfy
the relationships λ1 = eμ1T , λ2 = eμ2T , . . . , λn = eμnT according to (3.5). The Floquet
exponents are clearly not unique since e(μ+i2πk/T)T = eμT , where k is an integer. However,
when a non-zero k is selected, it is equivalent to shifting the spectrum of P(t) by a
corresponding frequency in order to acquire a unique X (t). For simplicity, we focus only
on the Floquet exponents with k = 0 in the following analysis. Again, the Floquet exponent
of a growing Floquet mode has a positive real part.

By introducing the Lyapunov–Floquet transformation, y(t) = P(t)−1x(t), (3.2) can be
rewritten as the following non-homogeneous linear system with constant coefficients:

dy
dt

= By + G, (3.6)

where G(t) = P(t)−1g(t) is the forcing term of the transformed system. The long-time
dynamics of the transformed linear system is therefore characterized by the Floquet
exponents. Figure 3(a) shows the 50 largest-magnitude Floquet multipliers of (3.2) and the
corresponding Floquet exponents are displayed in figure 3(b). Only one pair of unstable
Floquet multipliers is observed and the corresponding unstable Floquet mode is shown in
figure 3(c). We notice that the lack of symmetry in the time-independent base flow leads to
an undesired lack of symmetry in the Floquet mode. Since the modal structure resembles
the pattern of the von Kármán vortex street, the unstable Floquet mode is a dominant wake
mode based on the conclusions of Trefethen & Embree (2005). Therefore, in this study
the non-normality of the flow is not strong and no shear-layer mode is observed because
the flow is two-dimensional and at a low Reynolds number. Since (3.6) is a linear system
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Figure 3. (a) The 50 largest-magnitude Floquet multipliers of (3.1) and (b) the corresponding Floquet
exponents. The dashed curve represents the neutral stability margin, and the red diamonds and blue dots are
respectively the unstable and stable eigenvalues. (c) The unstable Floquet mode. Positive and negative vorticity
contour levels are plotted respectively in solid and dash-dotted curves.

with time-invariant coefficients, we are able to obtain its resolvent by expanding y(t) and
G(t) as the sum of Fourier modes and further analyse the pseudo-spectral behaviour of the
transformed system.

3.3. Resolvent analysis of the LTI system

We consider the Fourier transform [y(t), G(t)] = ∫ ∞
−∞[ŷ, Ĝ]e−iωt dω and express the

relationship between y(t) and G(t) in frequency space as

ŷ = H (ω) Ĝ, (3.7)

where the linear operator H(ω) = (−iωI − B)−1 is referred to as the resolvent, which
serves as the transfer function of (3.6). It is shown in Appendix A that (3.7) retains
the same amount of information as (3.2). Moreover, when there is only one dominant
frequency in the LTP system, the harmonic resolvent formulation used by Padovan et al.
(2020) can be derived from (3.7) by expressing x(t) and y(t) as linear combinations of the
harmonic functions with a fundamental harmonic frequency of the dominant frequency.

By taking CT+ of (3.7) and defining the operator Hq = CT+HCT , an alternative form
of (3.7) in the basis of the discrete velocity is obtained:

ŷq = Hq (ω) Ĝq, (3.8)
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where ŷq = CT+ŷ and Ĝq = CT+Ĝ are the corresponding discrete velocity of ŷ and Ĝ
respectively. Therefore, by defining the inner product

〈
ŷ1, ŷ2

〉
E = ŷ∗

1(CTC)−1ŷ2 = ŷ∗
q,1ŷq,2 = 〈

ŷq,1, ŷq,2
〉
, (3.9)

a proper energy norm for the current resolvent can be handled within the 2-norm
framework of Hq, i.e.

max
〈HĜ′,HĜ

〉
E = 〈HqĜ′

q,HqĜq
〉
, subject to

〈
Ĝ′, Ĝ

〉
E = 〈

Ĝ′, Ĝ
〉 = 1. (3.10)

Therefore, by seeking the 2-norm of Hq, which is also the leading singular value of
H, the pseudo-spectrum of B is depicted over the complex ω plane through the singular
value decomposition of the resolvent, H = UΣV∗. The columns u1, u2, . . . , un of unitary
matrix U are the left-singular vectors, the columns v1, v2, . . . , vn of unitary matrix V are
the right-singular vectors and the diagonal elements σ1, σ2, . . . , σn of diagonal matrix
Σ are the singular values in descending order. The superscript ∗ denotes the Hermitian
transpose. With the singular value decomposition of H, (3.7) can be expressed as (u∗

i ŷ) =
σi(v

∗
i Ĝ), for i = 1, 2, . . . , n. Therefore, the resolvent analysis interprets respectively the

left-singular vectors, the right-singular vectors and the singular values as the response
modes, the forcing modes and the gains for the corresponding response–forcing pair. If
σ1 	 σ2 (McKeon & Sharma 2010; Gómez et al. 2016), then the contributions from
the higher-order modes are neglected and the system response ŷ to the forcing Ĝ is
approximated as ŷ ≈ u1σ1(v

∗
1Ĝ), which is referred to as the rank-1 assumption.

Figure 4(a) shows the pseudo-spectra of B by depicting σ1 of H over the complex ω

plane. The second singular value σ2 is also presented over the same complex ω plane to
show that σ1 is generally an order of magnitude greater than σ2 so that the aforementioned
rank-1 assumption of ŷ is valid. On the pseudo-spectra, the gain contour levels fan
out about the unstable mode and its strength attenuates rapidly along the real axis and
gradually along the imaginary axis. Therefore, if σ1 is evaluated along St = Re(ω)/(2π)

at various Im(ω) > max(Re(μi)), which action is interpreted as analysing the dominant
transient growth over various finite-time horizons according to Jovanović (2004), then the
corresponding σ1(St) at various Im(ω) are observed to have peaks at the same Strouhal
number of 0.1464 as shown in figure 4(b). Therefore, the disturbances generated by the
active control can be greatly magnified if the active control is designed to excite the
transformed system at an optimal Strouhal number, St∗ = 0.1464.

Based on the suggestion of Yeh & Taira (2019), a finite-time horizon corresponding to
Im(ω) = 0.1, which is greater than the imaginary part of the unstable Floquet exponent,
is selected to observe the leading resolvent modes. Figure 5 shows the vorticity fields of
the leading resolvent response and forcing modes at various St with Im(ω) = 0.1. Again,
the undesired lack of symmetry in the resolvent modes is due to the lack of symmetry
in the time-independent base flow. Due to the lack of non-normal effect in this case,
all response modes look similar to the Floquet mode in figure 3(c). From the response
modes, the transformed system responds in the boundary layer and in the near wake when
actuating at St ≤ St∗, and in the far wake when actuating at St > St∗. The forcing modes
reveal similar boundary-layer structures over the cylinder and wake structures behind the
cylinder at all actuating frequencies, and the wake structures extend farther downstream
except actuating at St = St∗. Based on the rank-1 assumption, this forcing mode structure
implies that actuation introduced near the separation points is more effective due to the
amplification from the input–output process.
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Figure 4. (a) The pseudo-spectra of B. The black dot marks the unstable Floquet exponent. (b) Plot of σ1
versus St = Re(ω)/2π at various Im(ω). In both panels, the red dashed line marks the optimal actuating
Strouhal number, St∗ = 0.1464, which is the Strouhal number of the unstable Floquet mode.

Response mode, u1 Forcing mode, v1

(b)

(a)
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(d )

Figure 5. The leading resolvent response and forcing modes at St/St∗ = (a) 0.5, (b) 1.0, (c) 1.5 and (d) 2.0
with a finite-time horizon corresponding to Im(ω) = 0.1. Positive and negative vorticity contour levels are
plotted respectively in solid and dash-dotted curves.
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Flow control of a plunging cylinder

4. Simulations of controlled flows

Active flow controls on the flow around a plunging cylinder with normal and tangential
actuations are simulated. For actuations in each direction, actuators are placed at
θ = ±105◦ and three different momentum coefficients Cμ = 0.01, 0.02 and 0.04 are
examined. In each case, the actuation starts at t = 10T and remains active over the control
horizon t ∈ [10T, 15T]. We evaluate the lift fluctuation by the root-mean-square deviation

in lift coefficient, σL =
√

(1/5T)
∫ 15T

10T (CL(t) − CL)2 dt, where CL is the mean of the
lift coefficient over the control horizon. The effectiveness of the active flow control is
evaluated by the relative lift fluctuation reduction R = (σL,controlled − σL,base)/σL,base at
various actuating frequencies, where σL,base and σL,controlled are σL measured in the base
flow and the controlled flow respectively.

4.1. Harmonic and subharmonic frequencies for actuations
Due to the Lyapunov–Floquet transformation, the discrete vorticity and the forcing term
need to multiply with the T-periodic matrix P(t) or its inverse in order to transform
between (3.1) and (3.6), which results in convoluting the frequency of the control input or
of the flow with the plunging frequency. This leads to multiple possible frequencies for the
active flow control to effectively excite the transformed system at the optimal frequency.
First, if we consider only the forcing input from the sinusoidal external forcing shown in
(2.1), which has a discrete spectrum at ω = 0 and ±ω+, then the resulting transformed
forcing input Gext(t) = P−1(t)gext(t) has a discrete spectrum at ω = kωp and kωp ± ω+,
where k is an integer. Similarly, the flow induced by the external forcing, xext = Pyext,
responds to the actuation at the same frequencies ω = kωp and kωp ± ω+ based on the
rank-1 assumption. Since σ1 reaches its peak value at ω = ±ω∗, the control actuating at

ω+ = kωp ± ω∗, (4.1)

which we refer to as the harmonic frequencies, is capable of effectively influencing the
transformed system at ω = ±ω∗.

Next, if we consider the internal forcing generated by the induced flow, gint(xext),
which has a discrete spectrum at ω = kωp, kωp ± ω+ and kωp ± 2ω+ due to the
quadratic nonlinearity in flow velocity, then the resulting transformed forcing input
Gint(t) = P−1(t)gint(t) has a discrete spectrum also at ω = kωp, kωp ± ω+ and kωp ±
2ω+. Again, because σ1 has a peak at ω = ±ω∗, besides the frequencies listed in (4.1), the
active control actuating at

ω+ = k
2
ωp ± 1

2
ω∗, (4.2)

which we refer to as the 1/2-subharmonic frequencies, can also excite the transformed
system effectively at ω = ±ω∗. Similarly, the 1/m-subharmonic frequencies, ω+ =
(k/m)ωp ± (1/m)ω∗, where k and m are integers, are also candidates for actuating
frequency when high-order interactions are considered.

At first glance, the Floquet resolvent analysis seems to predict too many possible
actuating frequencies. However, if the high-order interaction in the internal forcing is
not excited and P(t) is assumed to have a low band spectrum, then only a few low-order
subharmonic frequencies and their low-wavenumber shifted frequencies will be on the
shortlist for the optimal actuating frequency.
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Figure 6. The relative lift fluctuation reductions with (a) normal and (b) tangential actuations. In both panels,
the blue dashed lines, the red dash-dotted lines and the magenta dotted lines respectively mark the harmonic,
the 1/2-subharmonic and the 1/4-subharmonic frequencies, and α = St∗/Stp ≈ 0.4067.

4.2. Effects of the actuating conditions on the lift fluctuation
In figures 6(a) and 6(b), the relative lift fluctuation reductions with normal and tangential
actuations at various actuating Strouhal numbers are plotted respectively. In both figures,
the blue dashed lines, the red dash-dotted lines and the magenta dotted lines mark
respectively some of the harmonic, the 1/2-subharmonic and the 1/4-subharmonic
frequencies. First of all, when the corresponding R reaches its local minimum, the flow is
usually actuated near one of the harmonic and subharmonic frequencies, which suggests
the current Floquet resolvent method successfully predicts possible actuating frequencies
for effective control. However, actuating at the predicted harmonic or subharmonic
frequency does not necessarily result in a low lift fluctuation so that one still needs to
try those actuating frequencies one by one.

Another observation is that the tangential actuations are more effective in reducing lift
fluctuation than the normal ones by comparing the magnitudes of R that they can achieve.
While the tangential actuations near the harmonic and the 1/2-subharmonic frequencies
can achieve a relative lift fluctuation reduction up to 21.2 %, the normal actuations only
reduce the lift fluctuation by less than 3.5 %. This huge difference in lift fluctuation
reduction is caused by the fact that the tangential actuation near the separation point
accelerates the fluids near the shear layer into the wake, and the normal actuation pushes
the fluids away from the surface into the shear layer. Therefore, in a way the tangential
actuation serves as a suction actuator to the shear layer, which slows down the growth
of the shear layer and further disrupts the formation of high-strength vortices from the
shear layer; while the normal actuation serves as a blowing actuator, which destabilizes
the growth of the boundary layer and enhances the lift fluctuation instead.

Moreover, from the greater variations in R near the harmonic and subharmonic
frequencies for both normal and tangential actuations with increasing Cμ, we can see that
the actuation with a larger Cμ is capable of exciting higher-order interactions between the
induced flows and a higher-order interaction leads to a lower lift fluctuation. For example,
for the normal actuations with Cμ = 0.04, when actuating at the 1/2-subharmonic
frequency St+/Stp = 1.2967, a maximum lift fluctuation reduction of 3.5 % is observed.
Also, for the tangential actuations with Cμ = 0.04, a lift fluctuation reduction of 25.7 %
is observed near St+/Stp = 0.8889, which corresponds to one of the 1/4-subharmonic
frequencies.
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Figure 7. The relative lift fluctuation reductions with tangential actuations located at θ = 90◦, 105◦ or 120◦.
The blue dashed lines, the red dash-dotted lines and the magenta dotted lines respectively mark the harmonic,
the 1/2-subharmonic and the 1/4-subharmonic frequencies, and α = St∗/Stp ≈ 0.4067.

Finally, the relative lift fluctuation reductions with tangential actuations with a strength
of Cμ = 0.04 located at θ = ±90◦ (upstream of the separation points), ±105◦ (the
separation points) and ±120◦ (downstream of the separation points) are plotted in figure 7.
When St+/Stp < 1 − α, the actuations at all positions behave poorly in reducing the
lift fluctuation by at best a 10 % reduction. They even enhance the lift fluctuation at
some actuating frequencies. Overall, actuations at θ = ±90◦ perform better than those
at θ = ±105◦, and they both perform better than those at θ = ±120◦. When St+/Stp >

1 − α, the situation is reversed. Overall, the performance of actuations at θ = ±120◦
becomes better than that at θ = ±105◦ except at a few subharmonic frequencies such
as St+/Stp = 1/2 + α/2, 1 − α/4 and 1 + α, and performances of actuations at both
θ = ±105◦ and ±120◦ are better than that at θ = ±90◦. Since the resolvent forcing mode
at St = St∗ has a wake-like structure, actuations at the separation points or a location
further downstream have a better chance to be aligned with the leading forcing mode.
Again, a maximum relative lift fluctuation reduction of 25.7 % is observed when the flow
is actuated with St+/Stp = 1 − α/4 at the separation points.

4.3. Comparison between the baseline flow and the controlled flows
A comparison between the lift coefficients of the baseline flow and controlled flows with
tangential actuations placed at θ = ±105◦ and actuating at St+/Stp = 0.8889 and 1.2222
over the control horizon is shown in figure 8(a). For both controlled flows, the active flow
control is able to reduce the lift fluctuation by more than 20 %. The vorticity snapshots
of the baseline flow and the controlled flows at t/T = 13.5, 14, 14.5 and 15 are plotted
in figures 8(b)–8(e) respectively. The evolutions of the baseline flow and the controlled
flows can be viewed better in a movie (see supplementary movie available at https://doi.
org/10.1017/jfm.2023.526). Both active controls start to lower the mean and reduce the
fluctuations of the lift coefficients in 0.3T from the beginning of the control horizon. By
comparing the snapshots of the controlled flows and the baseline flow, we can see the
interaction between the actuation and the shear layer in the controlled flows makes the
shear layer develop close to the cylinder surface and disrupts the growth of vortices as in

967 A41-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.526
https://doi.org/10.1017/jfm.2023.526
https://doi.org/10.1017/jfm.2023.526


C.-T. Lin, M.-L. Tsai and H.-C. Tsai

6

4

2

0

–2

CL

–4
10 11

Baseline flow

Baseline flow

Controlled flow

St+/Stp = 0.8889

St+/Stp = 0.8889

Controlled flow

St+/Stp = 1.2222

St+/Stp = 1.2222

12 13 14 15
t/T

(b)

(a)

(c)

(e)

(d )

(b) (e)(c) (d )

Figure 8. (a) Comparison between the lift coefficients of the baseline flow (black curve) and controlled flows
with tangential actuations at St+/Stp = 0.8889 (red curve) and 1.2222 (blue curve) over the control horizon.
Vorticity snapshots of the baseline flow and the controlled flows at t/T = (b) 13.5, (c) 14, (d) 14.5 and
(e) 15. Positive and negative vorticity contour levels are plotted respectively in solid and dash-dotted curves.
The evolutions of the baseline flow and the controlled flows can be seen in the supplementary movie.
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Flow control of a plunging cylinder

the baseline flow, which results in a smaller lift fluctuation in the controlled flow than in
the baseline flow.

The correspondence between control efficacy and mode structures can be observed in
two ways. For the traditional resolvent analysis of the LTI system, the control is expected
to be most effective when the control forcing inputs (especially the internal forcing that
causes the nonlinear interaction of the disturbed flow) are aligned with the rank-1 forcing
mode. At the same time, the largest response in the flow is expected to be in the rank-1
response mode. Unfortunately, due to the limit of the Lyapunov–Floquet transformation,
this correspondence can only be observed indirectly. First, the mode structures of the
baseline flow and the controlled flows are compared. As a result of y(t) = P(t)−1x(t),
ŷ(ω) can be expressed as the infinite sum of the weighted periodic replications of x̂(ω),
i.e. ŷ(ω) = ∑∞

n=−∞ P̂−1
n x̂(ω + nωp), where P̂−1

n are the Fourier coefficients of P(t)−1.
In figure 9, x̂(ω) near ω = |ω∗ + nωp| (St/Stp = |St∗/Stp + n|) with n = 0, ±1 and ±2
for the baseline flow and the controlled flows with St+/Stp = 0.8889 and 1.2222 are
plotted. Both the baseline flow and the controlled flows have a finer structure at a higher
frequency. The structure of the baseline flow is nearly symmetric about the centreline at
all the frequencies examined. For n = 1 and ±2, the structures of the controlled flows
show only minor differences from that of the baseline flow. However, for n = 0 (figure 9a)
and −1 (figure 9b), actuations in both controlled flows induce a Kárman-vortex-street-like
structure that qualitatively agrees with the leading resolvent response mode at St = St∗
(figure 5b).

Next, the mode structures of the internal forcing of the baseline flow and
the controlled flows are compared. Similarly, as a result of G(t) = P(t)−1g(t),
Ĝ(ω) = ∑∞

n=−∞ P̂−1
n ĝ(ω + nωp). In figure 10, ĝint(ω) near ω = |ω∗ + nωp| (St/Stp =

|St∗/Stp + n|) with n = 0, ±1 and ±2 for the baseline flow and the controlled flows
with St+/Stp = 0.8889 and 1.2222 are plotted. The structure of the internal forcing of
the baseline flow is nearly symmetric about the centreline and has a larger magnitude in
the shear layer than in the wake except at n = 2. Nevertheless, the mode structures of the
internal forcing of the baseline flow are mostly aligned with the leading resolvent forcing
mode at St = St∗ (figure 5b), which is a wake-like structure. In both controlled flows,
the actuations focus the internal forcing more into the wake region, where the leading
resolvent forcing mode at St = St∗ has the largest magnitude. In particular, the controlled
flow with St+/Stp = 0.8889, in which in our theory the second-order interaction has been
excited, can be observed to have a more compact internal forcing in the wake region than
the controlled flow with St+/Stp = 1.2222 that excites only the first-order interaction.

5. Conclusion

In this study, a design tool for the active flow control of a plunging circular cylinder is
developed by combining resolvent analysis and the Floquet theory. In order to extend
the stationary-boundary-based resolvent analysis to a moving boundary, the analysis is
performed in the cylinder-fixed frame, where the incompressible flow linearized about a
time-averaged base flow yields a LTP system for control. The corresponding monodromy
matrix, which characterizes the system dynamics after a period of the plunging motion,
can be built from the simulations of the homogeneous LTP system based on the Floquet
theory. Using the Lyapunouv–Floquet transformation, the LTP system is transformed
into a similar LTI system, whose resolvent depends on the principal matrix logarithm
of the monodromy matrix. By examining the largest singular value of the resolvent over
the complex frequency plane, the resulting pseudo-spectrum reveals the existence of an
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Figure 9. The mode structures of the flow at St/Stp = (a) 0.4, (b) 0.6, (c) 1.4, (d) 1.6 and (e) 2.4 for the baseline
flow and the controlled flows with St+/Stp = 0.8889 and 1.2222. Positive and negative vorticity contour levels
are plotted respectively in solid and dash-dotted curves.

optimal actuating Strouhal number of 0.1464 to excite the transformed linear system,
which leads to multiple harmonic and subharmonic frequencies for effective actuations
of the flow around a plunging cylinder. Simulations show that the active control is more
effective with tangential actuations than normal ones in reducing the lift fluctuation of a
plunging cylinder. When the flow is actuated tangentially near the predicted harmonic and
subharmonic frequencies at the separation points, the lift fluctuation of a plunging cylinder
can be reduced by up to 25.7 % by efficiently slowing the growth of the boundary layer and
disrupting the formation of vortices in the shear layer. The modal analysis shows that the
actuation results in an internal nonlinear forcing that is aligned with the leading resolvent
forcing mode; while the controlled flow demonstrates the largest response that is aligned
with the leading resolvent response mode as expected.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.526.
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Figure 10. The mode structures of the internal forcing at St/Stp = (a) 0.4, (b) 0.6, (c) 1.4, (d) 1.6 and (e) 2.4 for
the baseline flow and the controlled flows with St+/Stp = 0.8889 and 1.2222. Positive and negative vorticity
contour levels are plotted respectively in solid and dash-dotted curves.
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Appendix A. Derivation of the harmonic resolvent from the LTI system resolvent
obtained by the Lyapunov–Floquet transformation

Consider a forced T0-periodic linear system dx/dt = A(t)x + g, where A(t + T0) = A(t).
Based on the Floquet theory, the fundamental solution matrix X (t) can be decomposed
as the product of two matrices, X (t) = P(t)eBt, where P(t + T0) = P(t) is a T0-periodic
matrix and B is a constant matrix. Since X (t) satisfies the equation dX/dt = A(t)X , P(t)
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satisfies the equation
dP

dt
+ PB = AP. (A1)

Moreover, we consider the Fourier series of the periodic matrices [A(t), P(t)] = ∑∞
n=0

[Ân, P̂n]e−inω0t, where n is an integer and ω0 = 2π/T0, then (A1) becomes

− inω0P̂n + P̂nB =
∞∑

α=−∞
Ân−αP̂α. (A2)

As illustrated in §§ 3.2 and 3.3, by introducing the Lyapunov–Floquet transformation
y(t) = P(t)−1x(t) and G(t) = P(t)−1g(t), the LTI system dy/dt = By + G is obtained. We
can further consider the Fourier transform [x(t), g(t), y(t), G(t)] = ∫ ∞

−∞[x̂(ω), ĝ(ω), ŷ(ω),
Ĝ(ω)]e−iωt dω and express the relationship between y(t) and G(t) in frequency space as

ŷ(ω) = (−iωI − B)−1 Ĝ(ω) = H (ω) Ĝ(ω), (A3)

where the linear operator H(ω) = (−iωI − B)−1 is the resolvent of the LTI system. Again,
using the Fourier series of P(t), the relationships between x̂(ω) and ŷ(ω), and between
ĝ(ω) and Ĝ(ω) are

x̂(ω) =
∞∑

n=−∞
P̂nŷ(ω − nω0) and ĝ(ω) =

∞∑
n=−∞

P̂nĜ(ω − nω0). (A4a,b)

From (A2), (A3) and (A4a,b), it can be shown that x̂(ω) satisfies

− iωx̂(ω) =
∞∑

s=−∞
Âsx̂(ω − sω0) + ĝ(ω), (A5)

which is consistent with the Fourier transform of the LTP system. From the above
derivation we can see that the transformed LTI system retains the same amount of
information as the LTP system. However, in real application truncation is needed in
(A4a,b) to lower the computational cost of obtaining sufficiently accurate dynamics of
the LTP system.

If we further assume x(t), g(t), y(t), G(t) are formed by harmonic functions with
a fundamental harmonic frequency of ω0, i.e. their spectra are formed by distinct
Fourier coefiicients [x̂(ω), ĝ(ω), ŷ(ω), Ĝ(ω)] = ∑∞

n=−∞[x̂n, ĝn, ŷn, Ĝn]δ(ω − nω0), then
the relationships between x̂n and ŷn, and between ĝn and Ĝn are

x̂n =
∞∑

m=−∞
P̂n−mŷm and ĝn =

∞∑
m=−∞

P̂n−mĜm. (A6a,b)

Moreover, x̂n satisfies the equation

− inω0x̂n =
∞∑

m=−∞
Ân−mx̂m + ĝn, (A7)

which is the harmonic resolvent formulation used by Padovan et al. (2020). Therefore,
when the LTP system has multiple dominant frequencies, (A7) may not be valid since x(t)
could have a different fundamental harmonic frequency from that of A(t).
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