
Acta Numerica (2023), pp. 675–747 Printed in the United Kingdom
doi:10.1017/S0962492922000113

Linear optimization over
homogeneous matrix cones

Levent Tunçel
Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada
E-mail: levent.tuncel@uwaterloo.ca

Lieven Vandenberghe
Department of Electrical and Computer Engineering, UCLA,

Los Angeles, CA 90095-1594, USA
E-mail: vandenbe@ucla.edu

A convex cone is homogeneous if its automorphism group acts transitively on the
interior of the cone. Cones that are homogeneous and self-dual are called sym-
metric. Conic optimization problems over symmetric cones have been extensively
studied, particularly in the literature on interior-point algorithms, and as the founda-
tion of modelling tools for convex optimization. In this paper we consider the less
well-studied conic optimization problems over cones that are homogeneous but not
necessarily self-dual.
We start with cones of positive semidefinite symmetric matrices with a given

sparsity pattern. Homogeneous cones in this class are characterized by nested block-
arrow sparsity patterns, a subset of the chordal sparsity patterns. Chordal sparsity
guarantees that positive define matrices in the cone have zero-fill Cholesky factoriz-
ations. The stronger properties that make the cone homogeneous guarantee that the
inverse Cholesky factors have the same zero-fill pattern. We describe transitive sub-
sets of the cone automorphism groups, and important properties of the composition
of log-det barriers with the automorphisms.
Next, we consider extensions to linear slices of the positive semidefinite cone, and

review conditions that make such cones homogeneous. An important example is
the matrix norm cone, the epigraph of a quadratic-over-linear matrix function. The
properties of homogeneous sparse matrix cones are shown to extend to this more
general class of homogeneous matrix cones.
We then give an overview of the algebraic theory of homogeneous cones due

to Vinberg and Rothaus. A fundamental consequence of this theory is that every
homogeneous cone admits a spectrahedral (linear matrix inequality) representation.

© The Author(s), 2023. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0962492922000113

676 L. Tunçel and L. Vandenberghe

We conclude by discussing the role of homogeneous structure in primal–dual sym-
metric interior-point methods, contrasting this with the well-developed algorithms
for symmetric cones that exploit the strong properties of self-scaled barriers, and
with symmetric primal–dual methods for general convex cones.
2020 Mathematics Subject Classification: Primary 90-02, 90C25

Secondary 15B48, 65K05, 90C22, 90C51

CONTENTS
1 Introduction 676
2 Homogeneous chordal sparsity 681
3 Homogeneous sparse matrix cones 689
4 Logarithmic barriers 694
5 Homogeneous matrix cones 698
6 Algebraic structure of homogeneous cones 706
7 Primal–dual interior-point methods 718
8 Conclusion 724
A Background on homogeneous chordal graphs 725
B Matrix algorithms for homogeneous chordal sparsity 732
References 742

1. Introduction
The conic programming framework has been used extensively in the development of
convex optimization theory, applications, algorithms and modelling (Nesterov and
Nemirovskii 1994, Ben-Tal and Nemirovski 2001, Boyd and Vandenberghe 2004).
As with any optimization problem, a fundamental step in a successful treatment of
large-scale conic programs is the identification and efficient exploitation of special
structure. In this paper we discuss convex cones represented as slices of the positive
semidefinite cone, i.e. as intersections

 = V ∩ S#+ (1.1)

of S#+ (the cone of symmetric positive semidefinite #×# matrices) and a subspace
V , and we examine the special structure of V that makes a homogeneous convex
cone. A convex cone is homogeneous if, for every pair of points in its interior,
there exists an automorphism of the cone that maps one point to the other.
Inequalities with respect to slices of the positive semidefinite cone arise in

non-symmetric formulations of semidefinite programming problems. Consider a
semidefinite program (SDP) in inequality form

minimize 2>H
subject to

∑<
8=1 H8�8 + - = �

- � 0

(1.2a)

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 677

and its dual problem

maximize −〈�, (〉
subject to 〈�8 , (〉 + 28 = 0, 8 = 1, . . . , <

(� 0.

(1.2b)

The primal variables are H ∈ R<, - ∈ S# . The dual variable is (∈ S# . The
inequalities - � 0, (� 0 mean that -, (∈ S#+ . The positive semidefinite
matrix cone S#+ is a symmetric cone, i.e. self-dual and homogeneous, and the
special properties of symmetric cones are key to the design and implementation of
primal–dual interior-point algorithms for semidefinite optimization.
If the matrices �1, . . . , �<, � all belong to a subspace V of S# , the problems

(1.2) are equivalent to the pair of conic optimization problems

minimize 2>H
subject to

∑<
8=1 H8�8 + - = �

- ∈

(1.3a)

and

maximize −〈�, (〉
subject to 〈�8 , (〉 + 28 = 0, 8 = 1, . . . , <

(∈ ∗,

(1.3b)

where is defined in (1.1), ∗ is the dual cone of , and the variables -, (
are matrices in V . The formulation (1.3) is of interest for large-scale algorithm
development because the subspace V can be of much lower dimension than S# ,
possibly as low as the dimension of the span of the coefficient matrices V̄ =

span {�1, . . . , �<, �}. However, the efficiency of algorithms for handling the
conic inequalities with respect to and ∗ depends on more properties of V than
just the dimension, and this may require embedding V̄ in a higher-dimensional
subspace. The standard choice in current primal–dual interior-point methods is to
embed V̄ in a space of block-diagonal matrices with dense diagonal blocks. For
this choice of V , the cone is symmetric. For almost all other subspaces V ,
the cone and its dual ∗ are not equal; hence they are not symmetric cones.
(The exceptions are semidefinite representations of the small number of symmetric
cones, for example direct products of second-order cones.) However, and ∗may
still be homogeneous. Homogeneous convex cones were algebraically classified in
the 1960s by Vinberg (1965b) and are the subject of a large literature in algebra
and statistics (Letac and Massam 2007, Andersson and Wojnar 2004, Boutouria,
Hassairi and Massam 2011, Khare and Rajaratnam 2011). The conditions for a
matrix cone of the form (1.1) to be homogeneous have been studied by Letac and
Massam (2007) and Ishi (2013, 2015). Homogeneous cones have several important
properties in common with symmetric cones. One can note, for example, that
their definition contains two fundamental concepts in primal–dual interior-point

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

678 L. Tunçel and L. Vandenberghe

Table 1.1. Four classes of sparse positive semidefinite matrix cones, classified by
type of sparsity, the linear algebra tools available for their analysis, and fundamental
properties of the cones.

Sparsity pattern Linear algebra Convex cone

dense spectral theory symmetric
homogeneous chordal zero-fill Cholesky factor

and inverse factor
homogeneous

chordal zero-fill Cholesky factor slice of PSD cone
general sparse Cholesky factor slice of PSD cone

algorithms for optimization over symmetric cones. The automorphisms of a cone
(invertible linear transformations that leave the cone invariant) are the scalings
used in interior-point methods, for example the positive diagonal scalings of the
non-negative orthant in algorithms for linear programming. The second property,
that the automorphisms act transitively in the interior of the cone, implies that
any given pair of primal and dual iterates can be mapped to the same point by
a cone automorphism, as we will discuss in Section 4. Hence homogeneous
cones are a natural subject of study in conic optimization. However, with some
notable exceptions (Güler 1996, Güler and Tunçel 1998, Truong and Tunçel 2004,
Chua 2009), work on algorithms for homogeneous conic optimization appears to be
quite limited. It is the purpose of this article to describe properties of homogeneous
matrix cones that are useful in algorithms for optimization problems of the form
(1.3). We also discuss specific examples and structural properties that may be
useful for optimization modelling tools.
In Sections 2–4 we first consider matrix subspaces V defined by sparsity pat-

terns. If the coefficient matrices �1, . . . , �<, � in problem (1.2) have a common
(aggregate) sparsity pattern, then the subspace V in (1.3) can be defined as the set
of symmetric # × # matrices with that pattern, or any extension of the aggregate
sparsity pattern. The primal cone is the cone of positive semidefinite matrices
with a given sparsity pattern; the dual cone ∗ is the cone of symmetric matrices
with the same sparsity pattern that have a positive semidefinite completion. The
non-symmetric conic formulation (1.3) has been studied in recent approaches to
exploit sparsity in sparse semidefinite optimization (Fukuda, Kojima, Murota and
Nakata 2000/01, Benson, Ye and Zhang 2000, Andersen, Dahl and Vandenberghe
2010a, Srijuntongsiri and Vavasis 2004, Burer 2003). Table 1.1 summarizes the
definitions that relate this paper to existing literature on semidefinite programming.
It distinguishes sparse positive semidefinite matrix cones by type of sparsity. At the
top level we have the dense positive semidefinite cones (i.e. without any restriction

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 679

on the sparsity pattern). The dense positive semidefinite cone is symmetric (self-
dual and homogeneous). Symmetric primal–dual algorithms for them rely heavily
on eigenvalue and generalized eigenvalue decompositions of symmetric positive
semidefinite matrices (e.g. for computing the matrix geometric mean, or for joint
diagonalization of positive definite matrices). At the lowest level of the table we
have the positive semidefinite matrix cones with a general, unstructured sparsity
pattern. They form lower-dimensional slices of the positive semidefinite cone.
Such cones are convex, but not homogeneous or self-dual. Implementations of
non-symmetric interior-point algorithms for these cones, for example dual barrier
algorithms (Benson et al. 2000), benefit from the possibility of computing sparse
Cholesky factors, using fill-reducing ordering heuristics. Level three in the table
is occupied by the positive semidefinite matrices with chordal sparsity patterns.
Chordal sparsity has been studied intensively in sparse semidefinite optimization
(see Vandenberghe and Andersen 2014, Zheng, Fantuzzi and Papachristodoulou
2021 for recent surveys). The chordal structure can be exploited to formulate
efficient algorithms for key computations needed in semidefinite programming al-
gorithms, such as the evaluation of primal and dual barrier functions and their
derivatives, and finding maximum-determinant or minimum-rank positive semi-
definite completions (Griewank and Toint 1984, Agler, Helton, McCullough and
Rodman 1988, Grone, Johnson, Sá and Wolkowicz 1984). All of these algorithms
can be derived from the basic property that positive semidefinite matrices with a
chordal sparsity pattern have zero-fill Cholesky factorizations. The second row of
the table is the focus of Sections 2–4 of this paper. The sparsity patterns that are re-
ferred to here as ‘homogeneous chordal’ define matrix cones that are homogeneous
but not necessarily symmetric. These sparsity patterns have been characterized by
Letac and Massam (2007, Theorem 2.2) and Ishi (2013, Theorem A). As we will
discuss in Sections 2 and 3, they are block-arrow sparsity patterns and recursive
generalizations of block-arrow structures. They form a subset of the chordal pat-
terns, with the additional useful property that the inverse Cholesky factor has the
same, zero-fill, sparsity pattern as the Cholesky factor itself.
Note that any class of semidefinite programming problems on a higher level

in the table includes the lower ones. Without loss of generality, one can always
extend a general sparsity pattern to make it chordal, or a chordal pattern to make it
homogeneous chordal, or a homogeneous chordal sparsity pattern to make it dense.
However, there is an obvious trade-off. The higher levels come with stronger
results and more powerful techniques from linear algebra, and with more efficient
primal, dual or primal–dual conic optimization algorithms. They also embed the
optimization problem in higher-dimensional spaces and exploit less of the detailed
structure in the sparsity pattern.
The three sections on homogeneous sparsematrix cones are organized as follows.

Section 2 is a survey of results and algorithms from sparse matrix and graph theory
related to chordal and homogeneous chordal sparsity patterns. In Section 3 we
show that the positive semidefinite cone with a homogeneous chordal pattern and

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

680 L. Tunçel and L. Vandenberghe

the associated dual cone are homogeneous. We establish a transitive subset of the
automorphism group constructed from congruences with sparse lower-triangular
matrices. In Section 4 we derive implications for the log-det barrier function and
its conjugate. We show that the Hessians of the logarithmic barrier functions can
be factorized as a composition of a cone automorphism and its adjoint. This leads
to a generalization of the Nesterov–Todd scaling point for symmetric cones.

In Section 5 we then turn to more general homogeneous slices of the positive
semidefinite matrix cone, with subspaces V that can be defined by other linear
relations than the sparsity pattern. The properties of V that make the cone (1.1)
homogeneous are described by Ishi (2015). The results in this section will parallel
the properties of homogeneous sparse matrix cones. In particular, Cholesky factors
and inverse Cholesky factors inherit the structure of the subspace V .
Section 6 reviews the general, algebraic classifications of all homogeneous cones

and connects these theories to the earlier sections. An important result is that
every homogeneous cone has a semidefinite representation, that is, it is linearly
isomorphic to a slice of the positive semidefinite cone.
We conclude the paper with a survey of recent work on interior-point methods for

non-symmetric conic optimization, and point out the potential benefits of exploiting
the special properties of homogeneous cones (Section 7). The two appendices
contain background material from graph theory and algorithmic details.
The paper is primarily intended as a survey. Its main contributions are the

following.
• We identify a class of conic optimization problems (based on homogeneous
sparse matrix cones, called homogeneous chordal cones) which lie strictly
between SDPs and homogeneous cone programming problems (in the context
of the set of convex cones allowed in the optimization problems (1.3)). In
this context, the class of convex optimization problems over homogeneous
chordal cones provides a generalization of second-order cone programming
that has important computational advantages over semidefinite programming.
• We build on results from convex optimization and analysis, graph theory,
data structures and algorithms, sparse matrix computation and theory, and
abstract algebra and show how to perform fundamental linear algebra opera-
tions in an efficient way for many families of algorithms for our class of conic
optimization problems.
• We show how to compute primal and dual scalings that are automorphisms
of the underlying cones, and in so doing we solve an open problem about the
existence of automorphism-based primal–dual scalings for pairs of interior
points in homogeneous cones and in their duals.
• Weextend the results fromhomogeneous sparsematrix cones to homogeneous
matrix cones defined by slices of the positive semidefinite cone. Constraints
of this type are important in semidefinite representations of the spectral matrix
norm and the trace norm.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 681

2. Homogeneous chordal sparsity
We let S# denote the space of # × # symmetric matrices with real entries, let S#+
be the convex cone of positive semidefinite matrices in S# , and let S#++ ≔ int(S#+)
be the cone of positive definite matrices in S# . For -,. ∈ S# , the inequalities
- � . and - � . mean that - − . ∈ S#+ and - − . ∈ S#++, respectively. The
standard trace inner product is used for S# :

〈-,.〉 = Tr(-.) =
#∑
8=1

#∑
9=1

-8 9.8 9 .

The set of # × # lower-triangular matrices with real entries is denoted by T# .

2.1. Sparse matrices

An # × # symmetric sparsity pattern is represented by a simple undirected graph
� = (+, �) with vertex set + = {1, 2, . . . , #} and edge set � . An edge connecting
vertices 8 and 9 is denoted by {8, 9}. A matrix - ∈ S# is said to have sparsity
pattern � if -8 9 = - 98 = 0 whenever 8 ≠ 9 and {8, 9} ∉ � . The diagonal entries and
the entries indexed by � are called the non-zeros in the pattern. The other entries
(indexed by the complement of �) are the zeros. The set of symmetric # × #
matrices with sparsity pattern � is denoted by S#

�
:

S#� ≔ {- ∈ S# : -8 9 = - 98 = 0 if 8 ≠ 9 and {8, 9} ∉ �}.

We useΠ� to denote orthogonal projection on S#
�
. For - ∈ S# , the matrixΠ� (-)

is the matrix in S#
�

with non-zero entries given by (Π� (-))8 9 = -8 9 if 8 = 9 or if
8 ≠ 9 and {8, 9} ∈ � .

The cone of positive semidefinite matrices in S#
�
is the intersection

S#� ∩ S
#
+ =

{
- ∈ S#� : - � 0

}
. (2.1)

This cone is closed, convex and pointed. It also has non-empty interior relative to
S#
�
(it includes the identity matrix �), so it is a regular (or proper) cone. The cone

of matrices in S#
�
that have a positive semidefinite completion is the projection of

S#+ on S#
�
. We denote this set by

Π� (S#+) = {Π� (.) : . � 0}. (2.2)

The cone Π� (S#+) is clearly convex, pointed and has non-empty interior relative
to S#

�
. Closedness follows from the fact that if Π� (.) = 0 and . � 0 then . = 0.

Hence the positive semidefinite completable coneΠ� (S#+) is also regular. The two
cones S#

�
∩ S#+ and Π� (S#+) are duals of each other under the trace inner product

in the space S#
�
.

The graph (+, �) can also be used to describe the sparsity pattern of lower-
triangular matrices. We say ! ∈ T# has sparsity pattern � if ! + !> ∈ S#

�
. The

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

682 L. Tunçel and L. Vandenberghe

notation
T#� =

{
! ∈ T# : ! + !> ∈ S#�

}
will be used for this set.
We define the Cholesky factorization of a positive definite matrix - as a decom-

position
%-%> = !!>, (2.3)

where % is a permutation matrix and ! is lower-triangular with positive diagonal
entries. In general, the factorization introduces fill in the sparsity pattern of %-%>.
We say the sparsity pattern of ! is an extension of the sparsity pattern of %-%>.

2.2. Chordal sparsity

We now give a short overview of the properties of chordal graphs and chordal
sparsity patterns that will be important in the discussion of homogeneous chordal
patterns in the next section. The interested reader is referred to the surveys by
Vandenberghe and Andersen (2014), Blair and Peyton (1993), Golumbic (2004)
and Zheng et al. (2021) for more background on chordal graphs and their history.

An undirected graph (+, �) is called chordal if it does not contain a cycle �:
of length : ≥ 4 as a node-induced subgraph (from now on we will simply say
induced graph to mean node-induced graph). A classical result states that a graph
is chordal if and only if it has a perfect elimination ordering (Fulkerson and Gross
1965). An ordering of the graph is a bijection f from {1, 2, . . . , |+ |} to the vertex
set + . An ordering f is a perfect elimination ordering if

{D, E} ∈ �, {D, F} ∈ �,
f−1(D) < f−1(E) < f−1(F)

}
=⇒ {E, F} ∈ �. (2.4)

In other words, the higher neighbourhood

adj+(D) ≔ {E ∈ + : {D, E} ∈ �, f−1(D) < f−1(E)}

of every vertex induces a complete subgraph of �:

E, F ∈ adj+(D) =⇒ {E, F} ∈ �. (2.5)

In sparse matrix language, a perfect elimination ordering of a sparsity pattern �
defines a permutation matrix that yields a zero-fill Cholesky factorization (2.3), i.e.
%>(! + !>)% ∈ S#

�
if - ∈ S#

�
.

Efficient linear-time algorithms exist for testing chordality of a graph and find-
ing a perfect elimination ordering if one exists (Rose, Tarjan and Lueker 1976,
Tarjan and Yannakakis 1984). For non-chordal graphs, the connection with the
sparse Cholesky factorization (2.3) suggests a practical heuristic for finding effi-
cient chordal extensions: apply a fill-reducing reordering to the sparsity pattern of
- and calculate the sparsity pattern of the Cholesky factor !.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 683

1
2

3
4

5
6

7
8

9

(a)

3

45

6

9

1

2

7

8

(b)

Figure 2.1. (a) A chordal graph with vertices + = {1, 2, . . . , 9} and perfect elim-
ination ordering 1, . . . , 9. The dots in the array represent the edges in the graph.
(b) Elimination tree.

Figure 2.2. �4 and %4 are forbidden induced subgraphs in a homogeneous chordal
graph.

Elimination trees play an important role in sparse matrix algorithms, such as the
multifrontal algorithm for sparse Cholesky factorization (Duff and Reid 1983, Liu
1990). The elimination tree of a chordal graph� with perfect elimination ordering
f is a tree (or a forest if the graph is not connected), with vertex set + . The parent
?(D) of a non-root vertex D in the tree is the first element of adj+(D). The perfect
elimination property (2.5) holds if and only if

adj+(D) ⊆ {?(D)} ∪ adj+(?(D)) (2.6)

for all non-root vertices D. Figure 2.1 shows an example.
It is useful to note that the elimination tree provides a summary of the graph

but is not an equivalent representation. For example, from the elimination tree in
Figure 2.1 and the property (2.6), we can conclude that vertex 6 is not adjacent
to vertex 1; however, the information in the elimination tree does not allow us to
decide whether vertex 5 is adjacent to vertex 1.

2.3. Homogeneous chordal sparsity

We define a homogeneous chordal graph as an undirected graph that does not
contain �4 (a cycle of length four) or %4 (a path formed by three edges on four
vertices) as induced subgraphs. These forbidden subgraphs are shown in Figure 2.2.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

684 L. Tunçel and L. Vandenberghe

It is clear from the definition that a homogeneous chordal graph does not contain
any induced cycle �: of length : ≥ 5; so, all homogeneous chordal graphs are
chordal.
Homogeneous chordal graphs were first studied by Wolk (1962, 1965), who

called themD-graphs. Golumbic proposed the more commonly used term trivially
perfect graphs (Golumbic 1978). They are known as homogeneous graphs in the
statistics literature on Gaussian graphical models (Letac and Massam 2007, Khare
and Rajaratnam 2012). Other names include quasi-threshold graphs (Yan, Chen
and Chang 1996), co-chordal graphs (Khare and Rajaratnam 2012) and chordal co-
graphs.1 Our motivation for the name homogeneous chordal graphs will become
clear in Section 3.
Wolk (1962, 1965) showed that the absence of %4 and �4 characterizes the

comparability graphs of rooted forests: a graph � = (+, �) is a homogeneous
chordal graph if and only if there exists a rooted forest with vertex set + and such
that {E, F} ∈ � if and only if E is an ancestor of F or F is an ancestor of E in the
forest (in which case we call E and F comparable vertices). As a key step in his
proof, he also established the important property that every connected component
of a homogeneous chordal graph has a universal vertex, i.e. a vertex adjacent to
all other vertices in the same connected component (Wolk 1962, p. 18). This
leads to a useful recursive characterization (Yan et al. 1996). Every homogeneous
chordal graph can be constructed starting from a single-vertex graph by a repeated
application of the following two operations.

• Disjoint union. If (+1, �1) and (+2, �2) are homogeneous chordal graphs and
+1 ∩+2 = ∅, then (+1 ∪+2, �1 ∪ �2) is a homogeneous chordal graph.
• Addition of a universal vertex. If (+, �) is a homogeneous chordal graph and
F ∉ + , then (+ ∪{F}, � ∪{{F, E} : E ∈ +}) is a homogeneous chordal graph.

These two operations have a simple interpretation for graphs that describe sparsity
patterns. By making a disjoint union we construct a sparsity pattern of size
#1 + #2 as a block-diagonal pattern with diagonal blocks of size #1 and #2 (up
to a symmetric reordering). Adding a universal vertex to a sparsity pattern of size
#1 × #1 corresponds to adding a dense row and column to define a pattern of
size (#1 + 1) × (#1 + 1). By repeating the two operations we construct a nested
block-arrow pattern (up to a symmetric reordering). Figure 2.3 shows an example.

Chu (2008) presents a linear-time algorithm for recognizing homogeneous chor-
dal graphs. The algorithm, described in detail in Appendix A, is an instance of
the lexicographic breadth-first search (LBFS) algorithm that was first developed
for testing chordality (Rose et al. 1976) and later extended for testing a variety of

1 Graphs that do not contain %4 are also known as co-graphs (complement reducible graphs), �∗-
graphs or hereditary Dacey graphs (due to a connection to work on orthomodular lattices). So the
homogeneous chordal graphs are the chordal co-graphs.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 685

1
2

3

5
4

6
7

8
9

10
11

12

(a)

1

2

3

4

5

12

11

6 8

7

10

9

(b)

Figure 2.3. The homogeneous chordal graph in (a) is the comparability graph of
the tree in (b). This tree is also the elimination tree for the perfect elimination
ordering 1, . . . , 12.

other graph properties (Corneil 2004, Habib, McConnell, Paul and Viennot 2000).
Chu’s algorithm also produces a perfect elimination ordering and an elimination
tree. The perfect elimination ordering f produced by the LBFS algorithm has the
following property, in addition to (2.4):

{D, E} ∈ �, {E, F} ∈ �,
f−1(D) < f−1(E) < f−1(F)

}
=⇒ {D, F} ∈ �. (2.7)

Combined with (2.4), this implies that two vertices are adjacent in the graph if
and only if they form an ancestor–descendant pair in the elimination tree: the
homogeneous chordal graph is the comparability graph of the elimination tree.
We will call a perfect elimination ordering that satisfies (2.7) a trivially perfect
elimination ordering. For a trivially perfect elimination ordering, property (2.6)
can be strengthened to

adj+(D) = {?(D)} ∪ adj+(?(D)). (2.8)

Hence, in contrast to general chordal patterns, a homogeneous chordal graph is
completely characterized by an elimination tree. This is illustrated in Figure 2.3.
Here the numerical ordering is a trivially perfect elimination ordering of the homo-
geneous chordal graph in Figure 2.3(a). Each vertex in this graph is adjacent to all
its ancestors and descendants in the elimination tree. The ordering in this example
is also a postordering, that is, if f−1(E) = 9 and E has : descendants in the elimin-
ation tree, then the descendants are numbered 9 − 1, . . . , 9 − : . The postordering
property holds for all trivially perfect elimination orderings computed by LBFS
(see Appendix A).

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

686 L. Tunçel and L. Vandenberghe

1
2

3 1 1 2 2

3 3

(a)

1
3

2 1 1

3 2

2 3

(b)

Figure 2.4. Two perfect elimination orderings of a homogeneous chordal graph and
the corresponding elimination trees. The number next to node E in the elimination
trees is f−1(E), the position of E in the ordering. The ordering in (a) is a trivially
perfect elimination ordering. The ordering in (b) is a perfect elimination ordering,
but is not trivially perfect.

Note that not every perfect elimination ordering of a homogeneous chordal
graph satisfies (2.8). Figure 2.4 shows the smallest non-trivial (not dense and not
diagonal) sparsity pattern. The figure shows two perfect elimination orderings and
the corresponding elimination trees. The first ordering is trivially perfect. The
second ordering is not, because

adj+(1) = {3} ≠ {?(1)} ∪ adj+(?(1)) = {2, 3}.

The elimination tree for a trivially perfect elimination ordering can be com-
pressed into a supernodal elimination tree, in which the nodes of the elimination
tree are combined into larger supernodes. Each supernode is associated with a rep-
resentative vertex. The representative vertices are the leaf nodes in the elimination
tree and all the nodes with more than one child. The supernode with representative
vertex E contains the representative vertex E itself plus the nodes in the elimination
tree between E and the first ancestor F that is also a representative vertex. In
the supernodal elimination tree, the supernode with representative vertex F is the
parent of the supernode with representative E. The supernodes therefore form a
partition of the vertex set. Each supernode induces a complete subgraph. The
vertices in a supernode are adjacent to all vertices in the supernodes that are its
ancestors or descendants in the supernodal elimination tree. The definitions are
illustrated in Figure 2.5 for the example in Figure 2.3. Note that several other
definitions of supernodes exist in the sparse matrix literature. The supernodes as
defined here are known as fundamental supernodes (Liu, Ng and Peyton 1993).

To conclude, we summarize the properties of the example in Figures 2.3 and 2.5
that generalize to arbitrary homogeneous chordal sparsity patterns in S# . After
applying a symmetric reordering one can assume that the numerical ordering
1, 2, . . . , # is a trivially perfect elimination ordering and a postordering. A matrix

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 687

1
2

3

5
4

6
7

8
9

10
11

12 1 2, 3

4, 5

6 7, 8 9, 10

11

12

Figure 2.5. Fundamental supernode partition and supernodal elimination tree for
the example in Figure 2.3. The representative vertices are 1, 2, 4, 6, 7, 9, 11, 12.

with a homogeneous chordal sparsity pattern will then have the form

- =



-V1V1 0 · · · 0 -V1a

0 -V2V2 · · · 0 -V2a
...

...
. . .

...
...

0 0 · · · -V:V: -V:a
-aV1 -aV2 · · · -aV: -aa


, (2.9)

where each of the diagonal blocks -V8V8 , for 8 = 1, . . . , : , has a block-arrow
structure of the same form. If the sparsity pattern is not block-diagonal, a is the
supernode at the root of the supernodal elimination tree. Assume the root a has :
children, denoted by a1, . . . , a: . Then the index set V8 is the union of the supernode
a8 and its descendants in the supernodal elimination tree. The postordering property
implies that each of these index sets V8 contains consecutive indices, that precede
the indices in a, so the matrices -V8V8 are diagonal blocks. Each of the matrices
-V8V8 has a homogeneous chordal sparsity pattern, with supernodal elimination
tree given by the subtree rooted at a8 . We have assumed that the entire sparsity
pattern is not block-diagonal (a is not empty). If it is block-diagonal, the associated
sparsity graph is not connected, and the supernodal elimination tree is a forest with
connected components V1, . . . , V: .
It is easily verified that if the matrix (2.9) is positive definite, then its Cholesky

factor in - = !!> is structured as

! =



!V1V1 0 · · · 0 0
0 !V2V2 · · · 0 0
...

...
. . .

...
...

0 0 · · · !V:V: 0
!aV1 !aV2 · · · !aV: !aa


, (2.10)

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

688 L. Tunçel and L. Vandenberghe

where each block !V8V8 is the Cholesky factor of -V8V8 and therefore has a similar
angular sparsity pattern.

2.4. Homogeneous chordal extension

Homogeneous chordal patterns in the reordered form (2.9) have a long history in
many areas, including least-squares fitting (Björck 1996, §6.3, Golub and Plem-
mons 1980), decomposition methods in optimization (Lasdon 2002) and graphical
statistical models (Pearl and Wermuth 1994, Chaudhuri, Drton and Richardson
2007, Drton and Richardson 2008, Letac and Massam 2007). The term nested
block-angularity is used in Saunders (1972, p. 24).
They also arise naturally as extensions of general unstructured sparsity patterns,

reordered using a nested dissection ordering (Duff, Erisman and Reid 2017, George
and Liu 1981). Here a is the vertex separator in the first dissection step; the other
non-leaf supernodes are the separators in subsequent levels of dissection. Such a
pattern is a homogeneous chordal pattern if at each level we treat the last block
row and column in (2.9) as dense, and also treat the principal blocks indexed by
the leaves of the supernodal elimination tree as dense. In applications to linear
equations the matrix will have a large number of additional zeros within these
blocks, so the actual sparsity pattern is an unstructured sparsity pattern � ′ (or a
non-homogeneous chordal sparsity pattern if it is the filled pattern of a Cholesky
factor) and the homogeneous chordal pattern � is an extension (� ′ ⊆ �).

When used in the non-symmetric formulation (1.3) of a sparse semidefinite
program, a homogeneous chordal extension can be obtained by applying nested
dissection to the aggregate sparsity pattern of �1, . . . , �<, �. If the homogeneous
chordal extension is used to define V , then, as we will see in the next section, the
cone is a homogeneous convex cone. The coefficient matrices �1, . . . , �<, � are
sparse matrices in V , but their zeros within the homogeneous chordal pattern are
not exploited in the definition of the cone .
Nested dissection ordering provides a heuristic for obtaining homogeneous

chordal extensions, with no guarantee of optimality. As proved by Yannakakis
(1981), given a sparsity pattern, it is NP-hard to compute the minimum number
of edges to add to make the underlying graph chordal. Analogously, El-Mallah
and Colbourn (1988) proved that given a sparsity pattern, it is NP-hard to find the
smallest number of edges to add to the graph to make it a co-graph (a graph that
does not contain %4 as an induced subgraph). We can show that given a sparsity
pattern, it is NP-hard to find the largest induced subgraph which is homogeneous
chordal.

Proposition 2.1. Given a graph � = (+, �) describing the sparsity pattern of a
symmetric matrix, it is NP-hard to compute the largest principal submatrix with a
homogeneous chordal sparsity pattern.

Proof. We use Theorem 3 of Bartholdi (1981/82) (whose proof relies on Yanna-
kakis’s related results). This theorem states that given a square matrix � with 0,1

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 689

entries, and a positive integer : , it is NP-hard to decide whether � has a : × :
principal submatrix satisfying property P , provided
• propertyP is non-trivial (meaning that it holds for infinitelymany 0,1matrices
and it fails for infinitely many 0,1 matrices);
• property P holds for identity matrices;
• property P is hereditary on principal submatrices.

Thus it suffices for us to check that the property of homogeneous chordal sparsity
satisfies these required conditions. Using the excluded induced subgraph character-
ization of homogeneous chordal graphs, we note that identity matrices correspond
to empty (no edges) graphs which are homogeneous chordal; sparsity patterns of
principal submatrices correspond to induced subgraphs, and if the original graph
does not contain a �4 or %4 then neither do any of its induced subgraphs. Finally,
there are infinitely many graphs which do not contain a �4 or %4; moreover, there
are infinitely many graphs which do contain either a �4 or a %4 (possibly both and
many copies). Thus homogeneous chordal sparsity satisfies the assumptions of
Theorem 3 of Bartholdi (1981/82) and the underlying problem is NP-hard.

Therefore onemust rely on heuristic algorithms in general (including polynomial-
time approximation algorithms for the minimum fill-in problems: Natanzon,
Shamir and Sharan 2000), as in the approaches used in applications of chordal
extensions of sparsity patterns.

3. Homogeneous sparse matrix cones
We now apply the results of the previous section to derive properties of the two
matrix cones

 ≔ S#� ∩ S
#
+ , ∗ = Π� (S#+). (3.1)

The cone is the cone of positive semidefinite matrices with sparsity pattern � .
The dual cone ∗ is the cone of positive semidefinite completable matrices with
sparsity pattern � . Note that ⊆ ∗. We assume that � is a homogeneous
chordal sparsity pattern and that the numerical order 1, . . . , # is a trivially perfect
elimination ordering, as in the example of Figure 2.3.
The automorphism group Aut() of a regular cone is the set of non-singular

linear transformations that map to itself. A regular cone is called homogeneous
if, for every pair of points G, H ∈ int(), there exists an automorphism of that
maps G to H. So, a regular cone is homogeneous if and only if the automorphism
group of acts transitively in the interior of . A subset H ⊆ Aut() is a
transitive subset of Aut() if, for every pair of points G, H ∈ int(), there exists an
automorphism inH that maps G to H.

Ishi (2013, Theorem A) proves that the sparse matrix cones (3.1) are homo-
geneous if and only if � is a homogeneous chordal sparsity pattern. In this section
we describe transitive subsets of the primal and dual automorphism groups.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

690 L. Tunçel and L. Vandenberghe

3.1. Computations with sparse triangular matrices

The properties of homogeneous chordal sparse matrices that will be needed follow
from four facts presented in the next theorem.

Theorem 3.1. Let � be a homogeneous chordal sparsity pattern in S# , with
trivially perfect elimination ordering 1, . . . , # , and assume ! ∈ T#

�
.

(i) If !̃ ∈ T#
�
, then !!̃ ∈ T#

�
.

(ii) If ! is non-singular, then !−1 ∈ T#
�
.

(iii) If - ∈ S#
�
, then !-!> ∈ S#

�
.

(iv) If . ∈ S# , then Π� (!>.!) = Π� (!>Π� (.)!).

The second property appears in Khare and Rajaratnam (2012). None of the four
properties holds for general chordal sparsity patterns, as can be seen by considering
the example of a tridiagonal pattern, which is chordal but not homogeneous if
≥ 4. We also note the assumption of a trivially perfect elimination ordering. In
the example in Figure 2.4(b), the ordering f(1) = 1, f(2) = 3, f(3) = 2 is a perfect
elimination ordering and results in a zero-fill bidiagonal Cholesky factor. However,
the inverse Cholesky factor will generally have a non-zero entry in position 2, 1.

Proof. To simplify the notation, we denote the set adj+(8) by U8 . This is the set
of row indices of the lower-triangular non-zeros in column 8. The set {8} ∪ U8 is
denoted by Ū8 . If the order of the elements in U8 and Ū8 matters, it is assumed
that they are sorted in increasing order. In this notation, the property (2.8) can be
expressed as

U8 = Ū?(8) for all 8, (3.2)

where we interpret Ū?(8) as the empty set if 8 is a root of the elimination tree. In the
example of Figure 2.3, U3 = {4, 5, 12}, Ū3 = {3, 4, 5, 12} and ?(3) = 4.
To prove property (i), we examine the sparsity pattern of !!̃. The 8 9 element,

with 8 ≥ 9 , is

(!!̃)8 9 =
#∑
:= 9

!8: !̃: 9 =
∑
:∈ Ū9

!8: !̃: 9 .

The simplification in the second expression follows because !̃: 9 = 0 for : ∉ Ū 9 .
Since !8: is zero if 8 ∉ Ū: , we have (!!̃)8 9 = 0 for 8 ∉

⋃
:∈ Ū9 Ū: . It follows from

(3.2) that
⋃
:∈ Ū9 Ū: = Ū 9 . We conclude that the non-zeros of column 9 of !!̃ are

in the positions indexed by Ū 9 , i.e. !!̃ ∈ T#� .
For property (ii) we consider the forward substitution method for computing

column : of !−1. To solve !G = 4: , where : is the :th unit vector, we set G = 4:
and run the iteration[

G 9
GU9

]
≔

[
1/! 9 9 0

−!U9 9/! 9 9 �

] [
G 9
GU9

]
, 9 = :, : + 1, . . . , #.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 691

Since initially G = 4: , and U 9 is the set of ancestors of vertex 9 in the elimination
tree, the iteration only modifies entries of G on the path between : and the root of
the tree. In other words, the iteration can be simplified as[

G 9
GU9

]
≔

[
1/! 9 9 0

−!U9 9/! 9 9 �

] [
G 9
GU9

]
, 9 = :, ?(:), ?2(:), . . . ,

where ?2(:) = ?(?(:)), etc., that is, we iterate over 9 ∈ Ū: in ascending order.
After completing the iteration, the non-zeros of G are in the positions indexed by
Ū: . Therefore !−1 ∈ T#

�
.

Next we prove property (iii). Consider the following expression for the lower-
triangular entry of !-!> in position 8 9 , with 8 > 9 :

(!-!>)8 9 =
#∑
:=1

(
!8:!: 9-:: +

∑
;∈U:

-;:(!8;! 9: + !8:! 9;)
)
. (3.3)

Suppose 8 ∉ U 9 , that is, 8 is not an ancestor of 9 in the elimination tree. We show
that (!-!>)8 9 = 0. The first term in the sum (3.3) is zero because !8:!: 9 ≠ 0
only if 8 ∈ Ū: and : ∈ Ū 9 , which implies 8 is on the path from vertex 9 to the root.
The second term is zero because !8;! 9: ≠ 0 implies 8 ∈ Ū; ⊂ Ū: and 9 ∈ Ū: , so
8 and 9 are both on the path from vertex : to the root, and since 8 > 9 , vertex 8 is
an ancestor of 9 . Similarly, the last term is zero because !8:! 9; ≠ 0 implies that
8 ∈ Ū: and 9 ∈ Ū; ⊂ U: , so 8 and 9 are both on the path from vertex : to the root
and 8 is an ancestor of 9 .

The last property in the list follows from property (iii). It is sufficient to show
that Π� (!.!>) = 0 whenever Π� (.) = 0. To see this, we choose any - ∈ S#

�
and

note that

Tr(-Π� (!>.!)) = Tr(-!>.!) = Tr(!-!>.) = 0

because !-!> ∈ S#
�
by property (iii) and Π� (.) = 0.

The properties of Theorem 3.1 are also easily verified by induction for a pattern
in the postordered block-matrix form (2.9). To verify property (ii), we note that if
! in (2.10) is invertible, its inverse is

!−1 =



!−1
V1V1

0 · · · 0 0
0 !−1

V2V2
· · · 0 0

...
...

. . .
...

...

0 0 · · · !−1
V:V:

0
−!−1

aa!aV1!
−1
V1V1

−!−1
aa!aV2!

−1
V2V2

· · · −!−1
aa!aV: !

−1
V:V:

!−1
aa


,

and it is clear that !−1 has the same sparsity pattern as !.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

692 L. Tunçel and L. Vandenberghe

3.2. Primal cone automorphisms

We now show that the linear transformations of the form

L(-) = !-!>, (3.4)

with non-singular ! ∈ T#
�
, form a transitive subset of Aut(). Property (iii)

of Theorem 3.1 shows that L(-) ∈ S#
�

for - ∈ S#
�
. Since !−1 ∈ T#

�
(by

property (ii)), the same is true for the inverse mapping L−1(-) = !−1-!−>.
The two transformations L and L−1 preserve positive definiteness, so they are
automorphisms for . To show that the transformations L form a transitive subset,
we show that for every pair of matrices -1, -2 ∈ int() there exists a non-singular
! ∈ T#

�
such that !-1!

> = -2. Let !1, !2 ∈ T#� be the triangular factors in the
Cholesky factorizations -1 = !1!

>
1 and -2 = !2!

>
2 . Thematrix ! = !2!

−1
1 is non-

singular and in T#
�
(by the first two properties of Theorem 3.1). The automorphism

L defined by ! maps -1 to -2:

L(-1) = !-1!
> = !!1!

>
1 !
> = !2!

>
2 = -2.

We will use the notation Aut4() for the transitive subset of Aut() containing the
transformations of the form (3.4) with non-singular ! ∈ T#

�
.

3.3. Dual cone automorphisms

The adjoint of L is the linear mapping from S#
�

to S#
�

that satisfies 〈L∗((), -〉 =
〈(,L(-)〉 for all (, - ∈ S#

�
. Since we use the trace inner product,

〈(,L(-)〉 = Tr((!-!>) = Tr(!>(!-) = 〈Π� (!>(!), -〉,

so the adjoint is given by
L∗(() = Π� (!>(!). (3.5)

The projection in the expression Π� (!>(!) cannot be omitted because, unlike for
the forward mapping !-!>, the product !>(! is not necessarily in S#

�
.

The linear transformations of the form L∗, where L ∈ Aut4(), form a transitive
subset of Aut(∗). The fact thatL∗ is an automorphism of ∗ follows directly from
being the adjoint of an automorphism of :

(∈ ∗ ⇐⇒ 〈(, -〉 ≥ 0 for all - ∈
⇐⇒ 〈(,L(-)〉 ≥ 0 for all - ∈
⇐⇒ 〈L∗((), -〉 ≥ 0 for all - ∈
⇐⇒ L∗(() ∈ ∗.

On line 2 we use the fact that L is an automorphism of . Next we prove that
the mappings L∗ form a transitive subset of Aut(∗), by showing how for every
(1, (2 ∈ int(∗) one can find ! such thatL∗((1) = (2. We use a classical result from
the theory of positive definite matrix completions, stating that for every (∈ int(∗)

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 693

there exists an - ∈ int() that satisfies Π� (-−1) = ((Grone et al. 1984). The
matrix - is the inverse of the maximum-determinant positive definite completion,
i.e. the unique solution . of the convex optimization problem

minimize − ln det(.)
subject to Π� (.) = ((3.6)

over . ∈ S#++. The optimality conditions for this problem,

.−1 = - � 0, Π� (.) = (,

where - ∈ S#
�

is a multiplier for the equality constraint of (3.6), show that
Π� (-−1) = (. Now consider two matrices (1, (2 ∈ int(∗). To construct an
automorphism L∗ (of ∗) that maps (1 to (2, we compute the matrices -1, -2 ∈
int() that satisfyΠ� (-−1

1) = (1,Π� (-−1
2) = (2. Let !1, !2 ∈ T#� be the Cholesky

factors of -1 and -2, and define ! = !1!
−1
2 . Then

L∗((1) = Π� (!>(1!)
= Π� (!>Π� (!−>1 !−1

1)!)
= Π� (!>!−>1 !−1

1 !)
= Π� (!−>2 !−1

2)
= (2.

On line 3 we apply property (iv) of Theorem 3.1.

3.4. Matrix inverse

The inverse of a positive definitematrix - ∈ int() can be factorized as -−1 = ''>,
where the upper-triangular matrix ' = !−> is sparse and satisfies '> ∈ T#

�
.

Suppose the pattern is in the postordered block-matrix form (2.9). Then

' =



'V1V1 0 · · · 0 'V1a

0 'V2V2 · · · 0 'V2a
...

...
. . .

...
...

0 0 · · · 'V:V: 'V:a
0 0 · · · 0 'aa


=



!−>
V1V1

0 · · · 0 −!−>
V1V1

!>
aV1
!−>aa

0 !−>
V2V2

· · · 0 −!−>
V2V2

!>
aV2
!−>aa

...
...

. . .
...

...

0 0 · · · !−>
V:V:

−!−>
V:V:

!>
aV:

!−>aa
0 0 · · · 0 !−>aa


,

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

694 L. Tunçel and L. Vandenberghe

and -−1 is the sum of a block-diagonal and a low-rank matrix

-−1 =


-−1
V1V1

· · · 0 0
...

. . .
...

...

0 · · · -−1
V:V:

0
0 · · · 0 0


+


'V1a
...

'V:a
'aa



'V1a
...

'V:a
'aa


>

.

Moreover, each diagonal block -−1
V8V8

has a similar block-diagonal plus low-rank
structure.
Conversely, consider a block-diagonal plus low-rank matrix

. =


.V1V1 · · · 0 0
...

. . .
...

...

0 · · · .V:V: 0
0 · · · 0 0


+


,V1a
...

,V:a

,aa



,V1a
...

,V: a

,aa


>

,

where the matrices .V1V1 , . . . , .V:V: are positive definite, and ,aa is invertible.
Then the inverse is a block-arrow matrix

.−1 =


.−1
V1V1

· · · 0 −.−1
V1V1

,V1a,
−1
aa

...
. . .

...
...

0 · · · .−1
V:V:

−.−1
V:V:

,V:a,
−1
aa

−,−1
aa,

>
V1a
.−1
V1V1

· · · −,−1
aa,

>
V:a
.−1
V:V:

,−>aa (,
−1
aa


,

where

(= � +
:∑
8=1
,>V8a.

−1
V8V8

,V8a .

4. Logarithmic barriers
The function − ln det(-) for symmetric positive definite - has important ap-
plications in statistics, machine learning, information theory and semidefinite
optimization. Here we restrict the function to the symmetric matrices with
a given homogeneous chordal sparsity pattern � . We denote this function by
� : S#

�
→ (−∞, +∞],

�(-) ≔

{
− ln det(-) if - ∈ int(),
+∞ otherwise,

(4.1)

where is the primal cone in (3.1), and refer to � as the logarithmic barrier for .
The gradient and Hessian of � (as a function on S#

�
) at - ∈ int() are given by

� ′(-) = −Π� (-−1), � ′′(-;.) = Π� (-−1.-−1). (4.2)

Here � ′′(-;.) denotes the directional derivative of � ′ at - in the direction. ∈ S#
�
,

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 695

that is,

� ′′(-;.) =
d

dU
� ′(- + U.)

����
U=0

.

The conjugate barrier of � is defined as

�∗(() = sup
- ∈int()

{−〈(, -〉 − �(-)}

and has domain int(∗). This is the logarithmic barrier for ∗. The maximizer in
the optimization problem in the definition is the positive definite solution -̂ of the
non-linear equation

� ′(-) = −Π� (-−1) = −(,

with variable - ∈ S#
�
. The inverse -̂−1 of the solution is themaximum-determinant

positive definite completion of (. From -̂ we obtain the function value �∗(() =
−�(-̂) − # and the derivatives

� ′∗(() = −-̂, � ′′∗ (() = � ′′(-̂)−1. (4.3)

In this section we derive some interesting properties of compositions of � and
�∗ with the cone automorphisms (3.4) and (3.5), respectively.

4.1. Composition with primal cone automorphism

As in Section 3, we assume that the numerical order is a trivially perfect elimination
ordering for � . Clearly,

�(L(-)) = �(!-!>) = �(-) + �(!!>) (4.4)

for all - ∈ int() and non-singular ! ∈ T� . Differentiating the left- and right-hand
sides with respect to - shows that

� ′(L(-)) = L−∗(� ′(-)), � ′′(L(-)) = L−∗ ◦ � ′′(-) ◦ L−1 (4.5)

for all - ∈ int() and non-singular ! ∈ T� . These properties can also be verified
from the definitions (4.2) and Theorem 3.1. For the gradient,

� ′(L(-)) = −Π� ((!-!>)−1)
= −Π� (!−>-−1!−1)
= −Π� (!−>Π� (-−1)!−1)
= L−∗(� ′(-)).

On line 3 we use property (iv) of Theorem 3.1. The result for the Hessian follows
similarly from

� ′′(L(-);.) = Π� ((!-!>)−1. (!-!>)−1)
= Π� (!−>-−1!−1.!−>-−1!−1)

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

696 L. Tunçel and L. Vandenberghe

= Π� (!−>Π� (-−1!−1.!−>-−1)!−1)
= L−∗(� ′′(-;L−1(.)))

for every . ∈ S� .

4.2. Composition with dual cone automorphism

Similar properties hold for the dual barrier. Using (4.4) in the definition of the dual
barrier, we find that

�∗(() = sup
-

{〈−(, -〉 − �(-)}

= sup
-

{〈−(,L(-)〉 − �(L(-))}

= sup
-

{〈−L∗((), -〉 − �(-)} − �(!!>)

= �∗(L∗(()) − �(!!>).

Hence �∗(L∗(()) = �∗(() + �(!!>) for all (∈ int(∗) and non-singular ! ∈ T� .
Differentiating with respect to (shows that

� ′∗(L∗(()) = L−1(� ′∗(()), � ′′∗ (L∗(()) = L−1 ◦ � ′′∗ (() ◦ L−∗. (4.6)

To verify these properties directly, we note that, by definition,

-̂ = −� ′∗(()⇐⇒ Π� (-̂−1) = (,
.̂ = −� ′∗(L∗(())⇐⇒ Π� (.̂−1) = Π� (!>(!).

Combining the two properties, we obtain

Π� (.̂−1) = Π� (!>Π� (-̂−1)!) = Π� (!> -̂−1!).

Since the maximum-determinant positive definite completion is unique, we con-
clude that

−� ′∗(L∗(()) = .̂ = !−1 -̂!−> = −L−1(� ′∗(()).

The Hessian property in (4.6) follows from

� ′′∗ (L∗(()) = � ′′(.̂)−1

= � ′′(L−1(-̂))−1

= (L∗ ◦ � ′′(-̂) ◦ L)−1

= L−1 ◦ � ′′(-̂)−1 ◦ L−∗

= L−1 ◦ � ′′∗ (() ◦ L−∗.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 697

4.3. Hessian factorization

An important consequence of the second relation in (4.5) is that the Hessian of �
at any point - ∈ int() can be factored as

� ′′(-) = L−∗ ◦ L−1, (4.7)

where L ∈ Aut4(), namely the automorphism that maps the identity matrix � to
L(�) = - (and defined by the Cholesky factor of -). Similarly, from (4.6), the
Hessian of �∗ at any point (∈ int(∗) admits a factorization

� ′′∗ (() = L ◦ L∗,

where L∗ is the dual cone automorphism that maps (to L∗(() = �.
Nesterov and Todd (1997) (see also Tunçel 2001, Theorem 3.1) have shown that

for every - ∈ int() and (∈ int(∗) there exists a unique, ∈ int() that satisfies

� ′′(, ; -) = (,

where � ′′(, ; -) denotes the directional derivative of � ′ at , in the direction - .
The matrix, is the solution of the convex optimization problem

minimize −〈� ′(,), -〉 + 〈(,,〉

with variable , . By factorizing � ′′(,) as � ′′(,) = L−∗ ◦ L−1, we obtain the
following theorem.

Theorem 4.1. For every pair of interior points - ∈ int() and (∈ int(∗), there
exists a unique L ∈ Aut4() which satisfies

L−1(-) = L∗((),

that is, there exists a non-singular ! ∈ T� such that !−1-!−> = Π� (!>(!).

Theorem 4.1 can be generalized to all homogeneous cones (see the discussion
following Theorem 5.3). Efficient computation of the matrix, is a topic of current
research.
A closely related result on convex cones is discussed in Tunçel (1998). The-

orem 4.2 of Tunçel (1998) states that if there exists a subset � ⊆ Aut() such
that for every G ∈ int() and B ∈ int(∗) there exists a self-adjoint D ∈ � which
satisfies

D−1(G) = D(B),

then must be a symmetric cone (homogeneous and self-dual). Theorem 4.1
does not contradict Theorem 4.2 of Tunçel (1998) because the automorphism L in
Theorem 4.1 is not self-adjoint.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

698 L. Tunçel and L. Vandenberghe

5. Homogeneous matrix cones
As an extension of (3.1) we now consider slices of the positive semidefinite cone

 ≔ V ∩ S#+ , (5.1)

where V is a subspace of S# . It is clear that is a closed, pointed and convex cone.
We will assume that V ∩ S#++ is non-empty, so has non-empty interior (relative
to V). The corresponding dual cone (in the subspace V) is given by

 ∗ = ΠV (S#+), (5.2)

where ΠV denotes Euclidean projection on V . To see this, we first note that the
cone ΠV (S#+) is closed. This follows from Rockafellar (1970, Theorem 9.1) and
the fact that if ΠV (.) = 0 and . � 0 then . must be zero, because ΠV (.) = 0
implies that Tr(.-) = 0 for all - ∈ V and, by assumption, V contains positive
definite matrices. Next, it is easily verified that the dual of the cone ΠV (S#+) is
given by the cone defined in (5.1):

(ΠV (S#+))∗ = {- ∈ V : Tr((-) ≥ 0 for all (∈ ΠV (S#+)}
= {- ∈ V : Tr(.-) ≥ 0 for all . ∈ S#+ }
= V ∩ S#+ .

Hence = (ΠV (S#+))∗. Since ΠV (S#+) is closed, we have

 ∗ = (ΠV (S#+))∗∗ = ΠV (S#+).

We conclude that and ∗ form a dual pair of regular cones. We also note that
 ⊆ ∗.
Ishi (2015) presents conditions on V that imply that the cone defined in (5.1)

is homogeneous. Suppose that after a suitable reordering, the matrices - ∈ V can
be partitioned as A × A block matrices

- =



-11 ->21 ->31 · · · ->
A1

-21 -22 ->32 · · · ->
A2

-31 -32 -33 · · · ->
A3

...
...

...
. . .

...

-A1 -A2 -A3 · · · -AA


, (5.3)

with blocks -8 9 of size #8 × # 9 , and that

V ≔
{
- ∈ S# : -8 9 ∈ V8 9 , 8 ∈ {1, . . . , A}, 9 ∈ {1, . . . , 8}

}
, (5.4)

where V88 is a subspace of S#8 and, for 8 ≠ 9 , V8 9 is a subspace ofR#8×# 9 . For 9 > 8
we define V8 9 = {*> : * ∈ V 98}. Suppose the subspaces V8 9 satisfy the following
properties.
P1. The diagonal blocks are multiples of the identity: V88 = {U� : U ∈ R} for

8 = 1, . . . , A .

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 699

P2. The lower-triangular blocks have orthogonal rows of equal norm: if 8 > 9 and
� ∈ V8 9 , then ��> is a multiple of the identity.

P3. If 8 > 9 > : , then the subspaces V8 9 , V 9: , V8: are related as follows:

� ∈ V8: , � ∈ V 9: =⇒ ��> ∈ V8 9 .

P4. If 8 > 9 > : , then the subspaces V8 9 , V 9: , V8: are related as follows:

� ∈ V8 9 , � ∈ V 9: =⇒ �� ∈ V8: .

Ishi (2015, Theorem 3) shows that the cone is homogeneous. Sections 5.2–5.4
will explain this in more detail.
Property P1 implies that � ∈ V , so V ∩ S#++ ≠ ∅, as assumed at the beginning

of this section. A useful equivalent form of P2 is the following: if 8 > 9 and
�,� ∈ V8 9 , then ��> + ��> is a multiple of the identity. This follows from P2
applied to � = � + � and, conversely, clearly implies P2 if we take � = � = �.
In the next sections we use the following notation for the set of lower-triangular

matrices with ! + !> ∈ V:

T ≔
{
! ∈ T# : !8 9 ∈ V8 9 , 8 ∈ {1, . . . , A}, 9 ∈ {1, . . . , 8}

}
. (5.5)

Here !8 9 refers to the #8 × # 9 submatrix of !, partitioned as in (5.3).

5.1. Examples

Homogeneous sparse matrix cones. The homogeneous sparse matrix cones of
Sections 3–4 are a special case with V ≔ S#

�
. Suppose � is a homogeneous

chordal sparsity pattern and that the numerical order 1, . . . , # is a trivially perfect
elimination ordering. Define A ≔ # , #1 ≔ · · · ≔ #A ≔ 1, and

V8 9 ≔
{
{0} 8 ≠ 9 and {8, 9} ∉ � ,
R otherwise.

Properties P1 and P2 hold trivially, since #8 = 1 for all 8. Property P3 reduces to

8 > 9 > :, {8, :} ∈ �, { 9 , :} ∈ � =⇒ {8, 9} ∈ �.

This is the property (2.4) of a perfect elimination ordering of a chordal graph.
Property P4 is

8 > 9 > :, {8, 9} ∈ �, { 9 , :} ∈ � =⇒ {8, :} ∈ �.

This is the additional property (2.7) of a trivially perfect elimination ordering.

Block-sparsity. As an extension, we can define a block-sparsity pattern for a matrix
partitioned as in (5.3) as an undirected graph with vertex set + = {1, 2, . . . , A} and
edge set

� = {{8, 9} : 8 ≠ 9 ,V8 9 ≠ {0}}.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

700 L. Tunçel and L. Vandenberghe

Properties P3 andP4 imply (amongother conditions on the subspaces) that the graph
(+, �) represents an A×A homogeneous chordal sparsity patternwith trivially perfect
ordering 1, . . . , A . As an example, properties P1–P4 are satisfied by the subspace
V of matrices of the form 

U� 0 D

0 V� E

D> E> W


with D ∈ R#1 , E ∈ R#2 and U, V, W ∈ R. The corresponding homogeneous chordal
sparsity pattern is the 3 × 3 pattern of Figure 2.4.

Rotated quadratic cone. The subspace

V =
{[
U� D

D> V

]
: U, V ∈ R, D ∈ R#−1

}
is a special case with A = 2, #1 = # − 1, #2 = 1 and V12 = R

#−1. The cone
 = V ∩ S#+ is linearly isomorphic to the cone

Qr = {(U, V, D) ∈ R × R × R#−1 : U, V ≥ 0, UV ≥ D>D} (5.6)

=

{
(U, V, D) ∈ R × R × R#−1 :

[
U� D

D> V

]
� 0

}
.

The cone Qr is known as the rotated quadratic cone and is a symmetric cone. It
can be used to represent the second-order cone

Q = {(C, H) ∈ R × R# : ‖H‖2 ≤ C}

as
Q = {(C, H) ∈ R × R# : (C + H1, C − H1, H̄) ∈ &r},

where H̄ = (H2, . . . , H#).

Non-sparse example. Define V as the set of matrices of the form

U� 0 D1 −D2 E1
0 U� D2 D1 E2
D>1 D>2 V 0 F1
−D>2 D>1 0 V F2
E>1 E>2 F1 F2 W


with U, V, W, F1, F2 ∈ R and D1, D2, E1, E2 ∈ R" . This is a special case with
= 2" + 3, A = 3, #1 = 2" , #2 = 2, #3 = 1 and

V12 =

{[
D1 −D2
D2 D1

]
: D1, D2 ∈ R"

}
, V13 = R

2" , V23 = R
2.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 701

Matrix norm cone. Define V as

V =
{[
U� *>

* +

]
: C ∈ R, * ∈ R ×! , + ∈ S

}
.

This is a special case of Ishi’s general structure, with A = + 1, #1 = !, #2 =
· · · = #A = 1. The off-diagonal subspaces are defined as

V8 9 =
{
R! 8 = 1, 9 ∈ {2, . . . , A},
R 8 ∈ {2, . . . , A}, 9 ∈ {2, . . . , 8 − 1}.

The cone = V ∩ S#+ is known as the matrix norm cone and is important for trace
norm minimization problems (Karimi and Tunçel 2020a,b).

Sparse matrix norm cone. The matrix norm cones and homogeneous sparse matrix
cones can be combined in a new class of homogeneous matrix cones. Define V as

V ≔
{[
U� *>

* +

]
: U ∈ R, * ∈ U , + ∈ S �

}
,

where U is a subspace of R ×! with the property that for every* ∈ U , the product
**> ∈ S

�
. An example is the set of positive semidefinite matrices of the form

U 0 0 0 0 D1 0 D6
0 U 0 0 0 0 D4 D7
0 0 U 0 0 0 D5 D8
0 0 0 U 0 D2 0 D9
0 0 0 0 U D3 0 D10

D1 0 0 D2 D3 E1 0 E2
0 D4 D5 0 0 0 E3 E4
D6 D7 D8 D9 D10 E2 E4 E5


.

5.2. Cholesky factorization

In this sectionwe assume thatV satisfies P1, P2, P3 but not necessarily P4. We show
that every positive definite matrix - ∈ V ∩ S#++ has a Cholesky factorization - =
!!> where ! ∈ T . This is the counterpart of the zero-fill Cholesky factorization
of positive definite matrices with chordal sparsity patterns.

Proof. The proof is by induction on A . For A = 1, we have V = {U� : U ∈ R} and
the result is obvious, with ! =

√
U� if - = U�. We show that the result holds for

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

702 L. Tunçel and L. Vandenberghe

A = < if it holds for A = < − 1. Suppose - is positive definite of the form

- =



U1� ->21 ->31 · · · ->
A1

-21 U2� ->32 · · · ->
A2

-31 -32 U3� · · · ->
A3

...
...

...
. . .

...

-A1 -A2 -A3 · · · UA �


with -8 9 ∈ V8 9 for 8 ∈ {2, . . . , A}, 9 ∈ {1, . . . , 8 − 1}, and that the subspaces V8 9
satisfy P2 and P3. The matrix can be factored as

- =



!11 0 0 · · · 0
!21 � 0 · · · 0
!31 0 � · · · 0
...

...
...

. . .
...

!A1 0 0 · · · �





� 0 0 · · · 0
0 .22 .>32 · · · .>

A2
0 .32 .33 · · · .>

A3
...

...
...

. . .
...

0 .A2 .A3 · · · .AA





!11 0 0 · · · 0
!21 � 0 · · · 0
!31 0 � · · · 0
...

...
...

. . .
...

!A1 0 0 · · · �



>

,

(5.7)
where !11 ≔

√
U1� ∈ V11, and !81 ≔ -81/

√
U1 ∈ V81 for 8 ∈ {2, . . . , A}. The

matrix . is the Schur complement
.22 .>32 · · · .>

A2
.32 .33 · · · .>

A3
...

...
. . .

...

.A2 .A3 · · · .AA


=


U2� ->32 · · · ->

A2
-32 U3� · · · ->

A3
...

...
. . .

...

-A2 -A3 · · · UA �


− 1
U1


-21

-31
...

-A1



-21

-31
...

-A1



>

.

By property P2, the diagonal blocks .88 = U8 � − (1/U1)-81->81 are multiples of the
identity, so .88 ∈ V88. Property P3 implies that for 8 > 9 ,

.8 9 = -8 9 −
1
U1
-81-

>
91 ∈ V8 9 .

Hence, by the induction hypothesis, the matrix . can be factored as
.22 .>32 · · · .>

A2
.32 .33 · · · .>

A3
...

...
. . .

...

.A2 .A3 · · · .AA


=


!22 0 · · · 0
!32 !33 · · · 0
...

...
. . .

...

!A2 !A3 · · · !AA



!>22 !>32 · · · !>

A2
0 !>33 · · · !>

A3
...

...
. . .

...

0 0 · · · !>AA


with !8 9 ∈ V8 9 . Substituting the factorization of . in (5.7) gives a Cholesky
factorization - = !!> with the desired properties.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 703

5.3. Computations with triangular matrices

The following result generalizes Theorem 3.1 to triangular matrices in a subspace
with the structure specified in properties P1–P4.

Theorem 5.1. Let T be the set of triangular matrices (5.5), where the subspaces
V8 9 satisfy properties P1–P4, and assume ! ∈ T .

(i) If !̃ ∈ T , then !!̃ ∈ T .

(ii) If ! is non-singular, then !−1 ∈ T .

(iii) If - ∈ V , then !-!> ∈ V .

(iv) If . ∈ V⊥, then !>.! ∈ V⊥.

Proof. Suppose !, !̃ ∈ T are partitioned as

! =



U1� 0 0 · · · 0
!21 U2� 0 · · · 0
!31 !32 U3� · · · 0
...

...
...

. . .
...

!A1 !A2 !A3 · · · UA �


, !̃ =



Ũ1� 0 0 · · · 0
!̃21 Ũ2� 0 · · · 0
!̃31 !̃32 Ũ3� · · · 0
...

...
...

. . .
...

!̃A1 !̃A2 !̃A3 · · · ŨA �


.

The diagonal blocks in the product !!̃ are (!!̃)88 = U8Ũ8 � ∈ V88. For the lower-
triangular off-diagonal blocks,

(!!̃)8 9 = Ũ 9!8 9 +
8−1∑
:= 9+1

!8: !̃: 9 + U8 !̃8 9 .

By assumption, the terms !8 9 , !̃8 9 are in V8 9 . The middle term in the expression
on the right-hand side is in V8 9 by property P4. Hence P1 and P4 are sufficient to
prove statement (i) of the theorem.
Part (ii) is proved by induction on A . For A = 1 it is obvious, with ! = U� and

!−1 = U−1�. Suppose the result holds for A = < − 1 and consider a matrix ! ∈ T ,
partitioned in A × A blocks as above. By the induction hypothesis, the blocks in


!22 0 · · · 0
!32 !33 · · · 0
...

...
. . .

...

!A2 !A3 · · · !AA


−1

=


U−1

2 � 0 · · · 0
�32 U−1

3 � · · · 1
...

...
. . .

...

�A2 �A3 · · · U−1
A �



https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

704 L. Tunçel and L. Vandenberghe

satisfy �8 9 ∈ V8 9 for 8 > 9 > 1. The inverse of ! is

!−1 =



U−1
1 � 0 0 · · · 0
�21 U−1

2 � 0 · · · 0
�31 �32 U−1

3 � · · · 0
...

...
...

. . .
...

�A1 �A2 �A3 · · · U−1
A �


with

�21 = −(U1U2)−1!21

�31 = −U−1
1 �32!21 − (U1U3)−1!31

...

�A1 = −U−1
1 (�A2!21 + · · · + �A ,A−1!A−1,1) − (U1UA)−1!A1.

From the induction hypothesis (�8 9 ∈ V8 9 for 8 > 9 > 1) and property P4, we see
that�81 ∈ V81 for 8 ∈ {2, . . . , A}. Hence, statement (ii) of the theorem follows from
P1 and P4.
Next we show part (iii). First consider the diagonal blocks of !-!>,

(!-!>)88 =
8∑
:=1

!8:-::!
>
8: +

8∑
:=2

:−1∑
;=1

(
!8:-:;!

>
8; + !8;-

>
:;!
>
8:

)
.

Properties P1, P2 and P3 imply that this is a product of the identity. For the
off-diagonal blocks with 8 > 9 ,

(!-!>)8 9 =
9∑
:=1

!8:-::!
>
9: +

9∑
:=2

:−1∑
;=1

(
!8:-:;!

>
9; + !8;-

>
:;!
>
9:

)
.

Properties P1, P3 and P4 imply that this is an element in V8 9 .
Part (iv) is an immediate consequence of part (iii). Suppose . ∈ V⊥. For any

- ∈ V ,
Tr(-!>.!) = Tr(!-!>.) = 0

because !-!> ∈ V by part (iii). Therefore !>.! ∈ V⊥.

5.4. Primal and dual cone automorphisms

Now consider the cones (5.1) and (5.2), where V is a subspace that satisfies the
four properties P1–P4.
The linear mappings L(-) = !-!> for non-singular ! ∈ T form a transitive

subset of Aut(). This is readily shown by extending the arguments in Section 3.2
using Theorem 5.1 and the property that Cholesky factors of matrices in int() are
in T (see Section 5.2). In the remainder of Section 5, Aut4() will be used to
denote this transitive subset of Aut().

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 705

The adjoints L∗(() = ΠV (!>(!) of mappings L ∈ Aut4() form a transitive
subset of Aut(∗). The proof again parallels the arguments in Section 3.3. As
noted in Section 3.3, every adjoint of an automorphism of is an automorphism
of ∗. We also note that every (∈ int(∗) can be expressed as

(= ΠV (-−1),

where - ∈ int(). The matrix - is the solution of the convex optimization problem

minimize Tr((-) − ln det(-)

with variable - ∈ V . The Cholesky factorization - = !!>, where ! ∈ T , defines
a mapping L ∈ Aut4() that satisfies L−∗(�) = ΠV (!−>!−1) = (. Therefore
L∗(() = �.
Now consider any two matrices (1, (2 ∈ int(∗). Find L1,L2 ∈ Aut4() that

satisfy L∗1((1) = �, L∗2((2) = �. Then L = L1 ◦ L−1
2 satisfies L∗((1) = (2 and

L ∈ Aut4() by properties (i)–(iii) of Theorem 5.1. By establishing transitive
subsets of Aut() and Aut(∗), we have shown that these cones are homogeneous.
Using our results, in particular Theorem 5.1, we can establish the following fact.

Theorem 5.2. Let be a homogeneous cone represented in S# as described in
(5.1). Then, for every / ∈ V ∩ S# , upon expressing / = ! + !> for some ! ∈ T ,
we have

!!> + ΠV (!>!) + !2 + (!>)2 ∈ ∗.

Decompositions such as the above have potential applications in linear and non-
linear complementarity problems over homogeneous cones and in the design of
algorithms and theories utilizing Moreau decompositions; see for instance Kong,
Tunçel and Xiu (2012).

5.5. Logarithmic barriers

If = V ∩ S#+ and V satisfies properties P1–P4, then the log-det barrier

�(-) ≔

{
− ln det(-) if - ∈ int(),
+∞ otherwise

(5.8)

has the same scaling properties (4.5) as the log-det barrier for a homogeneous
sparse matrix cone. The proof is exactly the same. From (4.4) and the fact that L is
an automorphism, it follows that (4.5) holds for all - ∈ int() and allL ∈ Aut4().
Similarly, (4.6) holds for all (∈ int(∗) and all L ∈ Aut4().
With the above definition of the barrier function �, Theorem 4.1 extends to

all homogeneous matrix cones discussed in this section. This is stated in the
following theorem.

Theorem 5.3. Let = V ∩ S#+ , where V is a subspace that satisfies properties
P1–P4. Then, for every - ∈ int() and (∈ int(∗), there exists L ∈ Aut4() such

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

706 L. Tunçel and L. Vandenberghe

that
L−1(-) = L∗(().

Ishi has shown that every homogeneous cone can be represented in the form
 = V ∩ S#+ , where V satisfies properties P1–P4. Theorem 5.3 therefore shows
that problem (2) of Tunçel (1998, p. 711) is solvable for every homogeneous cone,
and settles the open problem (i) of Tunçel (1998, p. 714).

Next we relate the above homogeneous matrix cones representation to algebraic
classifications of all homogeneous cones and explain why the results of this section
apply to all homogeneous cones.

6. Algebraic structure of homogeneous cones
In the previous sections we discussed classes of homogeneous cones defined as
linear slices of the positive semidefinite cone. It turns out that every homogeneous
cone can be expressed in this form. As mentioned by Faybusovich (2002, p. 214)
and Papp and Alizadeh (2013, p. 1406), and worked out in detail by Chua (2003),
this result is implicit in Vinberg’s)-algebra-based classification of homogeneous
cones, because Vinberg’s results imply that every homogeneous cone is a ‘cone
of squares’ for a suitable vector product. Rothaus, announcing a similar result
first in 1963, proved it using the inductive Siegel-domain-based classification of
homogeneous cones and convex cone duality (Rothaus 1963, 1966, 1968). Ishi’s
approach (Ishi 2013, 2016, 2015), influenced in part by some recent work by
Yamasaki and Nomura (2015), brings Rothaus’s Siegel-domain-based inductive
construction closer to more direct utilization of the)-algebra axioms. In this
section we discuss some of the results by Vinberg and Rothaus, and explain their
connections to the classes of homogeneous matrix cones described in Sections 3–5.
It is useful to first clarify the meaning of semidefinite representation of a convex

cone. A convex cone V ∩ S#+ , where V ⊆ S# is a linear subspace, can be
equivalently represented as

 =

{
G ∈ R= :

=∑
8=1

G8�8 � 0
}
, (6.1)

where �1, �2, . . . , �= ∈ S# . Given the subspace in the representation V ∩ S#+ ,
we can pick a basis �1, �2, . . . , �= ∈ S# for V to obtain the representation
(6.1). Given �1, �2, . . . , �= ∈ S# in the second representation, we define V ≔

span{�1, �2, . . . , �=} to obtain the former representation. The representation (6.1)
is called a linear matrix inequality (LMI) or spectrahedral representation of the
cone . In spectrahedral representations one typically requires that V ∩ S#++ ≠ ∅
(i.e. there exists Ḡ ∈ R= such that ∑<

8=1 Ḡ8�8 � 0).
Whenever a regular cone admits a spectrahedral representation with int() =

V ∩ S#++ ≠ ∅, the dual cone in the space S# , under the trace inner product, is given
by V⊥ + S#+ . (In general, a closure operation is needed on the right-hand side.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 707

However, it can be shown that the cone V⊥ + S#+ is closed if V ∩ S#++ ≠ ∅, so the
closure operation can be omitted.) If we take the dual of = V ∩ S#+ with respect
to the smaller space V , the dual cone is

 ∗ = ΠV (V⊥ + S#+) = ΠV (S#+).

The dual cone can therefore be represented in the form

 ∗ =

{
B ∈ R= :

=∑
8=1

B8�8 +
:∑
9=1
D 9* 9 � 0, for some D ∈ R:

}
, (6.2)

where �1, �2, . . . �=,*1,*2, . . . ,*: ∈ S# are given. This kind of semidefinite
representation is called a lifted-LMI or spectrahedral shadow representation (of
 ∗); see Helton and Vinnikov (2007), Nemirovski (2007), Chua and Tunçel (2008),
Helton and Nie (2010), Gouveia, Parrilo and Thomas (2013), Scheiderer (2018),
Averkov (2019), Fawzi (2020) and the references therein. In a spectrahedral shadow
representation the dual cone is expressed as the cone of positive semidefinite
‘completable’ matrices (‘completable’ by some element of V⊥). In our context, for
the spectrahedral shadow representation (6.2), {�1, �2, . . . , �=} is a basis for V
and {*1,*2, . . . ,*: } can be taken as a basis for V⊥. If so, then =+ : = #(# +1)/2.

Note that by our choices for these representations of and ∗ (i.e. for this choice
of inner product and the space), we always have ⊆ ∗.

6.1. Symmetric bilinear forms

Definition 6.1. Let be a homogeneous cone in a finite-dimensional real vector
space V . A homogeneous -bilinear symmetric form B(D, E) is a mapping from
R? × R? to V that satisfies the following properties.

(i) B(U1D
(1) +U2D

(2), E) = U1B(D(1), E)+U2B(D(2), E) for all D(1), D(2), E ∈ R? and
U1, U2 ∈ R.

(ii) B(D, E) = B(E, D) for all D, E ∈ R?.
(iii) B(D, D) ∈ for all D ∈ R?.
(iv) B(D, D) = 0 implies D = 0.
(v) There exists a transitive subset � ⊆ Aut() such that for every 6 ∈ �, there

exists a linear transformation 6̄ on R? which satisfies

6(B(D, E)) = B(6̄D, 6̄E) for all D, E ∈ R? . (6.3)

In this definition, ? = 0 is allowed. When ? = 0, the mapping B is the trivial
bilinear form (a constant zero vector).
We now discuss some implications of the five properties in the definition. We

use the standard inner product D>E in R?, an inner product 〈B, G〉 in V , and let

 ∗ = {B ∈ V : 〈B, G〉 ≥ 0 for all G ∈ }

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

708 L. Tunçel and L. Vandenberghe

denote the corresponding dual cone. The trace inner product is used for symmetric
matrices.

A function B that satisfies properties (i) and (ii) of Definition 6.1 is called a
symmetric bilinear form. With every symmetric bilinear form B one can associate
a linear matrix function H : V → S?, defined by the identity

D>H(B)E = E>H(B)D = 〈B,B(D, E)〉 for all D, E ∈ R?, B ∈ V . (6.4)

An explicit formula for the entries ofH(B) is

H(B)8 9 = 〈B,B(48 , 4 9)〉, 8, 9 = 1, . . . , ?, (6.5)

where 41 = (1, 0, . . . , 0), 42 = (0, 1, 0, . . . , 0), . . . , 4? = (0, . . . , 0, 1) are the stand-
ard unit vectors in R?. This expression follows from (6.4) if we use the bilinearity
property (i) of the definition to expand B(D, E) as

B(D, E) = B(D141 + · · · + D?4?, E141 + · · · + E?4?)

=

?∑
8=1

?∑
9=1
D8E 9B(48 , 4 9). (6.6)

We will refer to H as the dual representation of the bilinear form B. The adjoint
ofH (with respect to the inner product 〈·, ·〉 in V and the trace inner product in S?)
is the linear mappingH∗ : R? → V that maps a matrix . ∈ S? to the vector

H∗(.) =
?∑
8=1

?∑
9=1
.8 9B(48 , 4 9).

Hence, from (6.6), we have the following expression for B:

B(D, E) = H∗((DE> + ED>)/2). (6.7)

In particular, B(D, D) = H∗(DD>). If B is the trivial bilinear form, we define H∗ as
the constant zero in V .
The formula B(D, D) = H∗(DD>) has an important consequence for semidefinite

programming applications. It implies that the ‘sum of squares’ cone

� ≔

{ :∑
8=1

B(D(8), D(8)) : for some : and D(1), . . . , D(:) ∈ R?
}

(6.8)

of any symmetric bilinear form B has a spectrahedral representation

� = {H∗(.) : . � 0}

(Nesterov 2000, Faybusovich 2002, Papp and Alizadeh 2013). This follows from
B(D, D) = H∗(DD>) and linearity ofH∗: all elements in � can be expressed as

:∑
8=1

B(D(8), D(8)) =
:∑
8=1

H∗(D(8)(D(8))>) = H∗(.),

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 709

where . =
∑
8 D

(8)(D(8))> � 0, and, conversely, if G = H∗(.) with . � 0, then any
decomposition . =

∑
8 D

(8)(D(8))> gives an expression G =
∑
8 B(D(8), D(8)) showing

that G ∈ �.
Properties (iii)–(v) of Definition 6.1 can be stated in equivalent forms involving

the dual representationH and its adjoint.

Proposition 6.2. Let be a regular convex cone in a finite-dimensional real
vector space V . Let B : R? ×R? → V be a symmetric bilinear form andH its dual
representation defined in (6.4).

(i) Each of the following two statements is equivalent to the property that
B(D, D) ∈ for all D:

H∗(.) ∈ for all . � 0, (6.9a)
H(B) � 0 for all B ∈ ∗. (6.9b)

(ii) Each of the following two statements is equivalent to the property that
B(D, D) ∈ \ {0} for all D ≠ 0:

H∗(.) ∈ \ {0} for all non-zero . � 0, (6.10a)
H(B) � 0 for all B ∈ int(∗). (6.10b)

(iii) Let 6 : V → V and 6̄ : R? → R? be linear transformations. Each of the fol-
lowing two statements is equivalent to the property that 6(B(D, E)) = B(6̄D, 6̄E)
for all D, E ∈ R?:

6(H∗(.)) = H∗(6̄. 6̄>) for all . ∈ S?, (6.11a)
H(6∗(B)) = 6̄>H(B)6̄ for all B ∈ V . (6.11b)

Part (iii) of the proposition follows directly from (6.4) and (6.7). The statements
aboutH∗ in the first two parts follow from B(D, D) = H∗(DD>) and linearity ofH∗.
The statements aboutH follow from D>H(B)D = 〈B,B(D, D)〉, and the equivalences

B(D, D) ∈ ⇐⇒ 〈B,B(D, D)〉 ≥ 0 for all B ∈ ∗

⇐⇒ D>H(B)D ≥ 0 for all B ∈ ∗

and

B(D, D) ∈ \ {0} ⇐⇒ 〈B,B(D, D)〉 > 0 for all B ∈ int(∗)
⇐⇒ D>H(B)D > 0 for all B ∈ int(∗).

Example 6.3. We take V = S3
�
, where � is the homogeneous chordal pattern in

Figure 2.4, that is, V is the space of matrices of the form

- =


-11 0 -31
0 -22 -32
-31 -32 -33

 .
We use the inner product 〈(, -〉 = Tr((-) on V and define = V ∩S3

+. (This cone

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

710 L. Tunçel and L. Vandenberghe

is known as the Vinberg cone, the smallest-dimensional homogeneous cone that is
not symmetric.) Consider the following symmetric bilinear form B : R6×R6 → V:

B(D, E)

=
1
2


D1 D3 0
0 0 D5
D2 D4 D6



E1 E3 0
0 0 E5
E2 E4 E6


>

+

E1 E3 0
0 0 E5
E2 E4 E6



D1 D3 0
0 0 D5
D2 D4 D6


>

=
1
2


2(D1E1 + D3E3) 0 D1E2 + D2E1 + D3E4 + D4E3

0 2D5E5 D5E6 + D6E5
D1E2 + D2E1 + D3E4 + D4E3 D5E6 + D6E5 2(D2E2 + D4E4 + D6E6)

 .
The dual representationH : V → S6 is

H(() =



(11 (31 0 0 0 0
(31 (33 0 0 0 0
0 0 (11 (31 0 0
0 0 (31 (33 0 0
0 0 0 0 (22 (32
0 0 0 0 (32 (33


,

and its adjointH∗ : S6 → V is

H∗(.) =

.11 + .33 0 .21 + .43

0 .55 .65
.21 + .43 .65 .22 + .44 + .66

 .
This bilinear form B satisfies the five properties of Definition 6.1. It satisfies
properties (iii) and (iv), as can be seen from

B(D, D) =
1
2


D1 D3 0
0 0 D5
D2 D4 D6



D1 D3 0
0 0 D5
D2 D4 D6


>

=


D2

1 + D
2
3 0 D1D2 + D3D4

0 D2
5 D5D6

D1D2 + D3D4 D5D6 D2
2 + D

2
4 + D

2
6

 .
The first expression shows that B(D, D) is positive semidefinite for all D; the second
expression shows that B(D, D) = 0 only if D = 0. For property (v) we use the
transitive subset of Aut() discussed in Section 3.2. The automorphisms in � are
the mappings 6 = L : V → V defined as L(-) = !-!>, where ! is a non-singular
triangular matrix

! =


!11 0 0
0 !22 0
!31 !32 !33

 .

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 711

Then L(B(D, E)) = B(6̄D, 6̄E), where

6̄ =



!11 0 0 0 0 0
!31 !33 0 0 0 0
0 0 !11 0 0 0
0 0 !31 !33 0 0
0 0 0 0 !22 0
0 0 0 0 !32 !33


.

Example 6.4. With the same choice of V and , define B : R2 × R2 → V as

B(D, E) =
1
2


D1
0
D2



E1
0
E2


>

+ 1
2


E1
0
E2



D1
0
D2


>

=
1
2


2D1E1 0 D1E2 + D2E1

0 0 0
D1E2 + D2E1 0 2D2E2

 .
The dual representationH : V → S2 and its adjointH∗ : S2 → V are

H(() =
[
(11 (31
(31 (33

]
, H∗(.) =


.11 0 .21
0 0 0
.21 0 .22

 .
Here,

B(D, D) =

D1
0
D2



D1
0
D2


>

=


D2

1 0 D1D2
0 0 0

D1D2 0 D2
2

 ,
which satisfies properties (iii) and (iv) of Definition 6.1. Property (v) holds for the
same transitive subset � as in the previous example and

6̄ =

[
!11 0
!31 !33

]
.

Therefore B is another homogeneous -bilinear symmetric form for the same
cone . Note that, in contrast to the previous example, is not equal to the
sum-of-squares cone (6.8). Here, strict inclusions ⊃ {H∗(.) : . � 0} and
 ∗ ⊂ {(: H(() � 0} hold.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

712 L. Tunçel and L. Vandenberghe

6.2. Siegel cone

Let be a homogeneous cone and B a homogeneous -bilinear symmetric form
as defined in Definition 6.1. We define the Siegel cone associated with and B as

SC(,B)
≔ {(G, D, U) ∈ V × R? × R : G ∈ , U ≥ 0, UG − B(D, D) ∈ }

=

{
(G, D, U) : U > 0, G − 1

U
B(D, D) ∈

}
∪ {(G, 0, 0) : G ∈ }. (6.12)

If B is the trivial bilinear form (? = 0), the Siegel cone is SC(,B) = × R+.
The following equivalent definition follows from the results in the previous

section and makes it clear that SC(,B) is convex: if ? ≥ 1,

SC(,B)

=

{
(G, D, U) : G −H∗(.) ∈ ,

[
U D>

D .

]
� 0 for some . ∈ S?

}
. (6.13)

This definition also shows that SC(,B) has a spectrahedral shadow representation
if the cone has a spectrahedral shadow representation. The equivalence of (6.12)
and (6.13) can be seen as follows. We first note that in both definitions the only
elements (G, D, U) with U = 0 are the vectors (G, 0, 0), G ∈ . If U = 0, the matrix
inequality in (6.13) requires D = 0 and . � 0. Since H∗(.) ∈ for all . � 0,
the condition on G then reduces to G ∈ . Next, suppose U > 0 and (G, D, U)
is in the cone (6.12). Then . = (1/U)DD> satisfies the conditions in (6.13), so
(G, D, U) is in the cone (6.13). Conversely, suppose U > 0 and (G, D, U) satisfies
the conditions in (6.13) for some . � 0. Then . � (1/U)DD> and therefore
H∗(.) − (1/U)H∗(DD>) ∈ . Hence G − B(D, D)/U = G − H∗(DD>)/U ∈ , so
(G, D, U) is an element of the cone (6.12).

To establish the equivalence between (6.13) and (6.12) we only used prop-
erties (i)–(iii) of Definition 6.1. Clearly, SC(,B) has non-empty interior in
V × R? × R, since has non-empty interior in V . Property (iv) further implies
that SC(,B) is closed and pointed, so it is a regular cone. It is closed because
SC(,B) can be expressed as the image of a closed convex cone S?+1+ × under
the linear transformation

A(,, F) = (H∗(,22) + F,,21,,11),

where,11 is scalar,,21 ∈ R? and,22 is the trailing ? × ? submatrix in

, =

[
,11 ,>21
,21 ,22

]
.

Property (iv) in its form (6.10a) implies that A(,, F) = 0, , � 0, F ∈ only
holds for , = 0, F = 0. Hence, by Theorem 9.1 of Rockafellar (1970), the
set SC(,B) is closed. By a similar argument, SC(,B) is pointed. Suppose

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 713

(G, D, U) ∈ SC(,B) and −(G, D, U) ∈ SC(,B), so

(G, D, U) = A(,, F), −(G, D, U) = A(,̃, F̃),

for some,, ,̃ � 0,F, F̃ ∈ . Therefore 0 = A(,+,̃, F+F̃), and by property (iv),
, = ,̃ = 0 and F = F̃ = 0. Hence (G, D, U) = 0.

The dual cone of SC(,B), if we use the inner product 〈B, G〉+2E>D+VU between
(B, E, V) and (G, D, U), is given by

SC(,B)∗ =
{
(B, E, V) ∈ V × R? × R : B ∈ ∗,

[
V E>

E H(B)

]
� 0

}
(6.14)

if ? ≥ 1. If B is the trivial bilinear form (? = 0), the dual Siegel cone is
SC(,B)∗ = ∗ × R+. The dual Siegel cone is closed, convex and pointed, and
property (iv) of Definition 6.1 implies that it has non-empty interior.
Note that the expression (6.14) shows that SC(,B)∗ has a spectrahedral repres-

entation if ∗ has a spectrahedral representation.
So far we have only used properties (i)–(iv) of Definition 6.1. Property (v)

further implies that the Siegel cone is a homogeneous cone. This result is due to
Vinberg (1965a). To see this, it is sufficient to verify that the group generated by
the following linear transformations on V × R? × R forms a transitive subset of
Aut(SC(,B)):

)1(W) : (G, D, U) ↦→ (G,
√
WD, WU), (6.15)

)2(F) : (G, D, U) ↦→ (G + 2B(F, D) + UB(F, F), D + UF, U), (6.16)
)3(6) : (G, D, U) ↦→ (6(G), 6̄D, U). (6.17)

Here,)1 is parametrized by a scalar W > 0,)2 by a vector F ∈ R?, and)3 by
an automorphism 6 ∈ �, where � is the transitive subset of Aut() mentioned
in property (v) of Definition 6.1. The mapping 6̄ is the corresponding linear
transformation in R? and satisfies (6.3). It is easy to check, using (6.12) or (6.13),
that these transformations are automorphisms of SC(,B). To verify that they
form a transitive subset, consider an arbitrary pair of points (G, D, U) and (Ĝ, D̂, Û) in
the interior of SC(,B). Let 6 ∈ � be an automorphism that maps G − B(D, D)/U
to Ĝ − B(D̂, D̂)/Û. Then the mapping

)1(Û) ◦)2(D̂/Û1/2) ◦)3(6) ◦)2(−D/U1/2) ◦)1(1/U)

is an automorphism of SC(,B) that maps (G, D, U) to (Ĝ, D̂, Û).
By duality, the adjoints of the mappings)1(W),)2(F),)3(6) form a transitive

subset of the automorphism group of SC(,B)∗. The adjoints are given by

)1(W)∗ : (B, E, V) ↦→ (B,
√
WE, WV), (6.18)

)2(F)∗ : (B, E, V) ↦→ (B, H(B)F + E, F>H(B)F + 2F>E + V), (6.19)
)3(6)∗ : (B, E, V) ↦→ (6∗(B), 6̄>E, V) (6.20)

and are exploited in the work of Rothaus (1966). These mappings correspond to

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

714 L. Tunçel and L. Vandenberghe

congruence operations[√
W 0

0 �

] [
V E>

E H(B)

] [√
W 0

0 �

]
,

[
1 F>

0 �

] [
V E>

E H(B)

] [
1 0
F �

]
and [

1 0
0 6̄>

] [
V E>

E H(B)

] [
1 0
0 6̄

]
,

respectively, where on the last line we use the identity 6̄>H(B)6̄ = H(6∗(B)).
Rothaus calls the mapping H, associated with a homogeneous -bilinear sym-

metric form B via the definition (6.4), a representation of ∗, and he calls the
dual Siegel cone SC(,B)∗ an extension of ∗ from the representationH (Rothaus
1966). We have used the term dual representation for H, to avoid confusion with
general semidefinite representations of convex cones (i.e. spectrahedral represent-
ations or spectrahedral shadow representations).

Example 6.5. We take = R+ and V = R, and the trivial bilinear form (? = 0
and B = 0). The Siegel cone is

SC(,B) = {(G, U) ∈ R × R : G ≥ 0, U ≥ 0, UG ≥ 0}

=

{
(G, U) ∈ R × R :

[
U 0
0 G

]
� 0

}
.

This cone is linearly isomorphic to R2
+.

For the same and V , consider B : R × R → R defined as B(D, E) = DE.
The symmetric form clearly satisfies properties (i)–(iv) of Definition 6.1, and
property (v) with automorphisms 6(G) = WG for W > 0, and linear transformations
6̄ =
√
W. The Siegel cone

SC(,B) = {(G, D, U) ∈ R × R × R : G ≥ 0, U ≥ 0, UG ≥ D2}

=

{
(G, D, U) ∈ R × R × R :

[
U D

D G

]
� 0

}
is linearly isomorphic to S2

+.
Finally, consider B : R? × R? with ? > 1, defined as B(D, E) = D>E. This is

another -bilinear homogeneous form. In property (v), we take automorphisms
6(G) = WG for W > 0 and 6̄ = √W�. The dual representation H : R → S? and its
adjoint H∗ : S? → R are H(B) = B� and H∗(.) = Tr(.). With this choice of B, we
obtain

SC(,B) = {(G, D, U) ∈ R × R? × R : G ≥ 0, U ≥ 0, UG ≥ D>D}

=

{
(G, D, U) ∈ R × R? × R :

[
U� D

D> G

]
� 0

}
.

This cone is linearly isomorphic to the rotated quadratic cone (5.6).

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 715

The most general form of a homogeneous -bilinear symmetric form for = R+
is B(D, E) = D>&−1E, with & ∈ S?++. With this choice,

SC(,B) = {(G, D, U) ∈ R × R? × R : G ≥ 0, U ≥ 0, UG ≥ D>&−1D}

=

{
(G, D, U) ∈ R × R? × R :

[
U& D

D> G

]
� 0

}
.

This cone is a rotated quadratic cone after a linear transformation.
Hence R2

+, S2
+ and the rotated quadratic cones are essentially the only types of

cones that can be constructed as Siegel cones of R+.

Example 6.6. Wecontinue Examples 6.3 and 6.4. The Siegel cone for the bilinear
form in Example 6.3 is

SC(,B) =


(G, D, U) ∈ S3

� × R
6 × R :



U 0 0 D1 0 D2
0 U 0 D3 0 D4
0 0 U 0 D5 D6
D1 D3 0 -11 0 -31
0 0 D5 0 -22 -32
D2 D4 D6 -31 -32 -33


� 0


.

This is an example of a sparse matrix norm cone discussed in Section 5.1. For the
bilinear form of Example 6.4, we obtain

SC(,B) =

(G, D, U) ∈ S3
� × R

2 × R :


U D1 0 D2
D1 -11 0 -31
0 0 -22 -32
D2 -31 -32 -33

 � 0

.
This is a homogeneous sparse matrix cone (ordered using a trivially perfect elim-
ination ordering).

6.3. Siegel-domain construction of homogeneous cones

The Siegel cone is the key tool in Vinberg’s recursive construction of all homo-
geneous cones. A homogeneous cone and a homogeneous -bilinear symmetric
form B together yield a Siegel cone SC(,B), which is a homogeneous cone in a
higher-dimensional space. The converse is also true. For every homogeneous cone
 ̂ of dimension at least two, there exists a lower-dimensional homogeneous cone
and a homogeneous -bilinear symmetric formB such that ̂ is linearly isomorphic
to the Siegel cone SC(,B); see for example Rothaus (1966) or Gindikin (1992).
This provides an inductive characterization (called Siegel-domain construction) of
all homogeneous cones, starting with the ray R+ in R as the first homogeneous
cone. The construction may be viewed as an abstraction of the commonly used
concept of Schur complement.
The minimum number of steps required to construct in this recursive way is

called the Siegel-rank of . We denote this integer-valued function of homogeneous

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

716 L. Tunçel and L. Vandenberghe

cones by A() and define A(R+) ≔ 1. Since is homogeneous if and only if ∗ is,
Vinberg’s classification theory described above also applies to ∗. Furthermore,
the Siegel-ranks of and ∗ are always the same.

Example 6.7. The Vinberg cone

 ≔

G ∈ R5 :

G1 0 G2
0 G3 G4
G2 G4 G5

 � 0
 (6.21)

has Siegel-rank three. Let us construct it via the recursive procedure.

• Let 1 = R+. Define B1 : R × R → R by B(D, E) ≔ DE. Then 1 and
B1 satisfy the conditions of Definition 6.1 and their Siegel cone is linearly
isomorphic to S+2 ; see Example 6.5. This shows that A(S2

+) = 2.

• Let 2 ≔ S
2
+. Define B2 : R × R→ S2 by

B2(D, E) ≔
1
2

[
0
D

] [
0 E

]
+ 1

2

[
0
E

] [
0 D

]
=

[
0 0
0 DE

]
.

Again, 2 and B2 satisfy the conditions of Definition 6.1. To check the
fifth condition, we can take as the transitive subset � the set of linear maps
6(-) = !-!>, where ! is a non-singular 2 × 2 lower-triangular matrix

! =

[
!11 0
!21 !22

]
,

and define 6̄ = !22, so that !(B(D, E)!> = B(!22D, !22E) as desired. The
Siegel cone for 2 and the bilinear form B2 is

SC(2,B2) =
(-, D, U) ∈ S2 × R × R :


U 0 D

0 -11 -21
D -21 -21

 � 0
,

which is linearly isomorphic to theVinberg cone (6.21). Thuswe have derived
the Vinberg cone as a homogeneous cone with A() = 3.

6.4. Semidefinite representations of homogeneous cones

Since every homogeneous cone of Siegel-rank A ≥ 2 arises from a homogeneous
cone of Siegel-rank A − 1, via the above construction, we can establish many
properties of homogeneous cones by induction on the Siegel-rank. For example,
from (6.13) we see that SC(,B) has a spectrahedral shadow representation if
 has a spectrahedral shadow representation. By induction, starting with R+, it
follows that every homogeneous cone has a spectrahedral shadow or lifted-LMI
representation.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 717

From (6.14), we also see that if the dual of a homogeneous cone has a
spectrahedral representation then so does SC(,B)∗. For example, if V = R= and
 ∗ = {B ∈ R= : A(B) � 0} is an LMI representation of ∗, then

SC(,B)∗ =
(B, E, V) ∈ R= × R? × R :


V E> 0
E H(B) 0
0 0 A(B)

 � 0


is an LMI representation of SC(,B)∗. Since the set of homogeneous cones is
closed under duality, every homogeneous cone of Siegel-rank A ≥ 2 must arise as
SC(,B)∗ for some homogeneous cone of Siegel-rank A − 1 and some homo-
geneous -bilinear symmetric form B. Therefore, by induction on A , we can
establish that every homogeneous cone has a spectrahedral representation of the
form V ∩ S#+ for some # ≥ 1 and a linear subspace V of S# . Moreover, it can
be assumed that there exists a transitive subset of Aut(V ∩ S#+), consisting of con-
gruencesR(*) = '>*'. This again follows by induction from (6.14) and the fact
that the group generated by the mappings (6.18)–(6.20) forms a transitive subset of
Aut(SC(,B)∗).
This high-level description of a recursive construction of a spectrahedral rep-

resentation does not necessarily lead to an efficient representation. In Section 5
we saw a more structured and potentially more efficient canonical form for the
spectrahedral representation of a homogeneous cone, due to Ishi (2015).
In Example 6.5 we enumerated the three types of cones (up to linear isomorph-

isms) that can be constructed as Siegel cones of = R+ by choosing different
bilinear forms B. The possible homogeneous -bilinear symmetric forms are the
trivial symmetric form and the inner products B(D, E) = E>D in R?, for ? ≥ 1.
The corresponding dual representations are H(B) = B�, where � is a ? × ? iden-
tity matrix. To continue the inductive construction, one needs to characterize all
homogeneous ̂-bilinear symmetric forms B̂ for a Siegel cone ̂ = SC(,B), or,
equivalently, the dual representations Ĥ of B̂, from the dual representations H of
B. By definition,

Ĥ(B, E, V) =
[
V E>

E H(B)

]
is a dual representation of one possible B̂. Rothaus (1963, 1966, 1968) has char-
acterized the possible dual representations of homogeneous ̂-bilinear symmetric
forms. Using properties (i)–(v) of Definition 6.1 (Rothaus 1966, Lemma 3.5 and
Theorem 3.7), he proves that they are all of the form

Ĥ(B, E, V) =
[
V� C(E)>

C(E) H̃(B)

]
,

where H̃ : V → S@ is the dual representation of a homogeneous -bilinear form
B̃ : R@ × R@ → V , and C : R? → R@×< is a linear matrix function. Property (v) of
Definition 6.1 imposes additional constraints on C and �̃; specifically, the matrix

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

718 L. Tunçel and L. Vandenberghe

equations

C(D)>C(E) + C(E)>C(D) = 2(D>E)�, C(H(B)E) = H̃(B)C(E)

are satisfied for all B, D, E.

7. Primal–dual interior-point methods
Theorems 4.1 and 5.3 provide a technique for ‘scaling’ primal and dual conic
optimization problems over homogeneous matrix cones. These types of primal–
dual scalings can be used to design and analyse scale-invariant and primal–dual
symmetric algorithms in the sense of Tunçel (1998).
Consider a linear conic optimization problem in standard form (P) and its

dual (D), with cones and ∗ in a finite-dimensional real vector spaceW:

(P) minimize 〈2, G〉
subject to A(G) = 1

G ∈

(D) maximize 1>H
subject to A∗(H) + B = 2

B ∈ ∗.

(7.1)

The linearmappingA : W → R< and the vectors 1 ∈ R< and 2 ∈ W are given. The
primal optimization variable is G ∈ W; the dual variables are H ∈ R< and B ∈ W .
The linear conic optimization problem is a natural extension of linear programming
(the special case with W = R=, = ∗ = R=+), and has been widely used in
the development of interior-point methods; see the surveys by Renegar (2001),
Nemirovski and Todd (2008) and Ben-Tal and Nemirovski (2001). Advances in
conic optimization algorithms and software have also enabled the creation of highly
influential modelling software for convex optimization (Lofberg 2004, Grant and
Boyd 2014, Diamond and Boyd 2016, Fu, Narasimhan and Boyd 2020, Sagnol
and Stahlberg 2022). These modelling tools take advantage of the fact that a
few different types of convex cones (the positive semidefinite cone, the second-
order cone and the exponential cone) are sufficient to reformulate most convex
optimization problems encountered in practice as conic optimization problems.

In this section we first review some recent literature on interior-point algorithms
for conic optimization, and then comment on the special case of homogeneous
cones and ∗.

Until 2001, the research and the literature on primal–dual interior-point methods
with polynomial iteration complexitywere dominated by a very high level of activity
concentrated on semidefinite programming, i.e. the special case W = S# , =

 ∗ = S#+ . Wemust note, however, that themonograph byNesterov andNemirovskii
(1994) already contained primal–dual interior-point algorithms, with polynomial
iteration complexity, for general conic programming. Their results were based
on the primal–dual symmetric, generalized Tanabe–Todd–Ye potential function:
generalized because the original Tanabe–Todd–Ye potential function was proposed
for linear programming and linear complementarity problems, whereas Nesterov
and Nemirovski’s generalization replaced the logarithmic barrier functions for the

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 719

non-negative orthant with self-concordant barrier functions for , and used the
Legendre–Fenchel conjugates for the dual cone ∗. Even though the algorithm and
analysis were based on a primal–dual symmetric potential function, the underlying
algorithm was not primal–dual symmetric (the algorithm chose different kinds of
search directions and steps in the primal and dual spaces).
In a breakthrough work, Nesterov and Todd (1997, 1998) identified properties

of self-concordant barriers (they called such special self-concordant barriers self-
scaled) allowing the design and analysis of primal–dual symmetric interior-point
algorithms with an outstanding number of desired properties and matching the best
iteration complexity bounds. Only symmetric cones (those that are homogeneous
and self-dual) admit self-scaled barriers. Therefore the Nesterov–Todd algorithms
only apply to symmetric cones, that is, they are limited to second-order cone
programming and semidefinite programming (over symmetric matrices with real
entries, Hermitian matrices with complex entries or quaternion entries, and Her-
mitian 3×3 matrices over the octonions). It quickly became clear that generalizing
all of the desired properties of Nesterov–Todd algorithms beyond symmetric cones
was impossible; see a result of Nesterov in Theorem 7.2 of Güler (1997), Tunçel
(1998) and Lemma 6.4 of Nesterov and Tunçel (2016). However, as explained
below, Theorem 5.3 does allow some possibilities for homogeneous cones that are
not self-dual.
Until recently, the literature on primal–dual symmetric interior-point algorithms

for general conic optimization was quite sparse (beyond the special case of sym-
metric cones), but papers on this subject have been increasing in number and in
their depth. A general framework for primal–dual symmetric interior-point al-
gorithms with polynomial iteration complexity was proposed in Tunçel (2001).
The same paper also showed how the theory of quasi-Newton methods and quasi-
Newton-like updates can be applied to the computation of a primal–dual scaling in
interior-point methods. Chares (2009) considered ?-norm and power cone optim-
ization problems, and recently Roy and Xiao (2022) proved Chares’ conjecture on
self-concordance of a very efficient barrier function for generalized power cones.
Nesterov (2012) proposed primal–dual interior-point algorithms for general conic
optimization which are based on a primal–dual scaling that approximately satis-
fies the conditions used in Nesterov and Todd (1997, 1998) and Tunçel (2001).
Myklebust and Tunçel (2014) streamlined the computation of the primal–dual scal-
ing in Tunçel (2001), which involved a rank-four update to a symmetric positive
definite matrix, by expressing it as a composition of two rank-two quasi-Newton
updates. Further, they proved that short-step path-following algorithms based on
the framework of Tunçel (2001) achieve the same worst-case polynomial iteration
complexity as the current best interior-point algorithms for symmetric cone pro-
gramming. Skajaa and Ye (2015) also used the idea of quasi-Newton methods to
design and analyse a primal–dual interior-point algorithm for general conic optim-
ization. Their algorithm with some necessary modifications has been implemented
by Papp and Yıldız (2022). Dahl and Andersen (2022) followed the framework

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

720 L. Tunçel and L. Vandenberghe

from Tunçel (2001) and Myklebust and Tunçel (2014), made a connection to the
work of Schnabel (1983), and designed and implemented primal–dual symmetric
interior-point algorithms for exponential cone programming problems.

There are interior-point algorithms for hyperbolicity cones (Renegar and Sond-
jaja 2014, Nesterov and Tunçel 2016), and there is further potential for interesting
primal–dual algorithms utilizing self concordant barriers for sophisticated matrix
cones, such as those arising from the quantum relative entropy (Faybusovich and
Zhou 2022, Karimi and Tunçel 2020a, Fawzi and Saunderson 2022).
Chua (2009) proposed a primal–dual interior-point algorithm for conic optimiz-

ation with general homogeneous cones, based on Vinberg’s axioms and exploiting
the underlying structure, including the transitive subset of the cone automorphism
group. Chua’s algorithm achieves the current best iteration complexity bound for
symmetric cone programming. However, it is not primal–dual symmetric (in each
iteration, the scaling is computed based on the automorphism which maps the cur-
rent dual iterate to identity). Moreover, the search direction is well-defined only in
a narrow neighbourhood of the central path.
By means of computational experiments, several advantages of primal–dual

algorithms have been observed. In theoretical contexts there are additional justific-
ations. See Nesterov and Todd (2002) for a justification of the usage of primal–dual
central path setting, and see Todd (2009) for a geometric justification of the primal–
dual scaling in the case of symmetric cones.
Next, based on the results and insights from the earlier sections, we outline

a new way of computing the primal–dual scaling in new primal–dual symmetric
interior-point algorithms for homogeneous cones.
We assume the cone in (7.1) is a homogeneous matrix cone of the types

discussed in Sections 3–5, i.e. a homogeneous sparse matrix cone (3.1) or the more
general homogeneous matrix cone (5.1). In the first case we takeW = S#

�
in (7.1),

and in the second case W = V . We let � denote the logarithmic barrier function
(4.1) and (5.8). This is a o-logarithmically homogeneous self-concordant barrier
(or o-normal barrier), with parameter o = # . To simplify the notation and the
application to homogeneous cones in other representations (e.g. withW = R?), we
continue to use lower-case symbols G, B for the variables.
Let G: ∈ int(), B: ∈ int(∗) be current iterates in a primal–dual algorithm for

(7.1). Theorems 4.1 and 5.3 state that there exists an automorphism L of that
satisfies

L−1(G:) = L∗(B:). (7.2)

Moreover,L−∗◦L−1 = � ′′(F), whereF is the primal–dual scaling point defined by

� ′′(F; G:) = B: . (7.3)

(If W = R?, this equation is written more simply as � ′′(F)G: = B: .) If we make
a change of variables Ḡ = L−1(G), B̄ = L∗(B), problems (P) and (D) in (7.1) are

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 721

transformed to (P̄) and (D̄) given by

(P̄) minimize 〈2̄, Ḡ〉
subject to Ā(Ḡ) = 1

Ḡ ∈

(D̄) maximize 1>H
subject to Ā∗(H) + B̄ = 2̄

B̄ ∈ ∗.

Here Ā ≔ � ◦ L and 2̄ ≔ L∗(2). In the scaled problem the current iterates G: , B:
are mapped to the same point

E: ≔ L−1(G:) = L∗(B:). (7.4)

The scaled problem generalizes the E-space formulation from the interior-point
literature for linear complementarity problems and linear optimization problems
over symmetric cones (Kojima, Megiddo, Noma and Yoshise 1991, Jansen, Roos
and Terlaky 1996, Sturm and Zhang 1999). Extending the definition in Tunçel
(2001, Section 3), we can define a primal–dual affine scaling direction at G: , B: as
the solution (3G , 3H , 3B) of the linear system

A(3G) = 0, A∗(3H) + 3B = 0, L−1(3G) + L∗(3B) = −E: .

If � is a self-scaled barrier of a symmetric cone, equation (7.3) defines the
Nesterov–Todd scaling point F (Nesterov and Todd 1997, 1998), and automatically
implies

� ′′(F; G̃:) = B̃: , (7.5)

where G̃: ≔ −� ′∗(B:) and B̃: ≔ −� ′(G:). For general convex cones, equation (7.3)
can still be used to define primal–dual scaling points, and algorithms based on such
scalings have been studied in Tunçel (2001) and Nesterov (2012). An important
difference is that for general cones (and for the non-self-dual homogeneous cones
discussed in this paper), equation (7.3) does not imply (7.5). In the algorithms
of Tunçel (2001) and Myklebust and Tunçel (2014) this difficulty is addressed
by making a rank-four update to � ′′(F), or to an approximation of � ′′(F), to
define a positive definite self-adjoint mapping H that satisfies both H(G:) = B:
andH(G̃:) = B̃: . In these algorithms, a primal–dual search direction (3G , 3H , 3B) is
computed fromH by solving the equation

A(3G) = 0, A∗(3H) + 3B = 0, H−1/2(3G) +H1/2(3B) = −E: + W`Ẽ: , (7.6)

where W ∈ [0, 1] is a centering parameter, ` = 〈B: , G:〉/o, and

E: ≔ H1/2(G:) = H−1/2(B:), Ẽ: ≔ H1/2(G̃:) = H−1/2(B̃:).

For homogeneous cones, different and simpler updates are possible, because the
factor L of the primal–dual scaling matrix � ′′(F) = L−∗ ◦ L−1 can be modified by
a rank-one update to obtain a scaling L+ that satisfies the two conditions

L−1
+ (G:) = L∗+(B:), L−1

+ (G̃:) = L∗+(B̃:). (7.7)

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

722 L. Tunçel and L. Vandenberghe

The construction of L+ is similar to a quasi-Newton update, with the difference
that L+ must satisfy the two equations (7.7), as opposed to one (secant) equation in
standard quasi-Newton updates. A simplification of the updates in Myklebust and
Tunçel (2014) that achieves this goal proceeds as follows. Define

Xp ≔ G: − `G̃: , Xd ≔ B: − `B̃: ,

where ` = 〈B: , G:〉/o. General properties of o-logarithmically homogeneous
barriers (〈� ′(G), G〉 = 〈B, � ′∗(B)〉 = −o) imply that

〈B: , Xp〉 = 〈Xd, G:〉 = 0.

One can also show that
〈Xd, Xp〉 ≥ 0

with equality only if Xp and Xd are both zero (Tunçel 2001, Corollary 4.1). We note
the simple E-space expressions

L−1(Xp) = E: + `� ′∗(E:), L∗(Xd) = E: + `� ′(E:),

which follow from (7.4) and the composition properties (4.5), (4.6). The second
terms on the two right-hand sides are not equal because � ′∗ ≠ � ′, unless the cone is
symmetric. The purpose of the update of L is to achieve L−1

+ (Xp) = L∗+(Xd) while
preserving L−1

+ (G:) = L∗+(B:).
If Xp = Xd = 0, no update is needed and we takeL+ = L. Otherwise, 〈Xd, Xp〉 > 0

and we use the (Broyden) rank-one update

L+(·) = L(·) + 〈Ê: , ·〉
‖Ê: ‖2

(Xp − L(Ê:)), (7.8)

where Ê: is a multiple of L∗(Xd), scaled to have norm ‖Ê: ‖ = 〈Xp, Xd〉1/2, that is,

Ê: =
1
U
L∗(Xd), U =

‖L∗(Xd)‖
〈Xd, Xp〉1/2

. (7.9)

The mapping L+ is invertible with inverse

L−1
+ (·) = L−1(·) + U 〈L

−∗(Ê:), ·〉
‖Ê: ‖2

(Ê: − L−1(Xp)).

We verify that the update L+ satisfies

L−1
+ (G:) = L∗+(B:) = E: , L−1

+ (Xp) = L∗+(Xd) = Ê: . (7.10)

This is equivalent to (7.7) because Xp and Xd are linear combinations of G: , G̃: and
B: , B̃: , respectively. To show (7.10) we first note that

〈Ê: , E:〉 =
1
U
〈L∗(Xd), E:〉 =

1
U
〈Xd,L(E:)〉 = 1

U
〈Xd, G:〉 = 0.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 723

Therefore, applying (7.8) to E: gives

L+(E:) = L(E:) + 〈Ê: , E:〉
‖Ê: ‖2

(Xp − L(Ê:)) = L(E:) = G: .

Applying the adjoint to B: gives

L∗+(B:) = L∗(B:) +
〈B: , Xp − L(Ê:)〉

‖Ê: ‖2
Ê:

= E: −
〈L∗(B:), Ê:〉
‖Ê: ‖2

Ê:

= E: −
〈E: , Ê:〉
‖Ê: ‖2

Ê:

= E: .

This proves the first two equations in (7.10). The equationL+(Ê:) = Xp is immediate
from (7.8). The last equation L∗+(Xd) = Ê: follows from

L∗+(Xd) = L∗(Xd) +
〈Xd, Xp〉 − 〈L∗(Xd), Ê:〉

‖Ê: ‖2
Ê:

= UÊ: +
‖Ê: ‖2 − U‖Ê: ‖2

‖Ê: ‖2
Ê:

= Ê: .

The rank-one update (7.8) is the square-root form of a Broyden–Fletcher–Goldfarb–
Shanno (BFGS) update (i.e. H+ = L+ ◦ L∗+ is the BFGS update of H = L ◦ L∗
for the secant conditionH+(Xd) = Xp). Many other rank-one updates will serve the
same purpose. For example, in Sorensen (1982, p. 140) a closely related family
of quasi-Newton updates is defined. Sorensen’s updates are parametrized by the
vector Ê: (in our notation). Instead of (7.9) one can choose for Ê: any vector that
satisfies

‖Ê: ‖2 = 〈Xd, Xp〉, 〈Ê: , E〉 = 0, (7.11)

and 〈L∗(Xd), Ê:〉 ≠ 〈Xd, Xp〉, 〈Ê: ,L−1(Xp)〉 ≠ 〈Xd, Xp〉. Then the mapping L+
defined by

L+(·) = L(·) + 〈L
∗(Xd) − Ê, ·〉

〈L∗(Xd) − Ê, Ê〉 (Xp − L(Ê))

is invertible and satisfies (7.10). When U ≠ 1, the update (7.8) is a special case if
we choose the Ê: given in (7.9).

Corresponding to the updated primal–dual scaling L+ that satisfies (7.10), a
primal–dual search direction at G: , B: can be defined as the solution of the equation

A(3G) = 0, A∗(3H) + 3B = 0, L−1
+ (3G) + L∗+(3B) = −E: + W`Ẽ: ,

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

724 L. Tunçel and L. Vandenberghe

where W ∈ [0, 1] is a centering parameter, ` = 〈B: , G:〉/o, and

Ẽ: ≔ L−1
+ (G̃:) = L∗+(B̃:) =

1
`

(E: − Ê:).

This primal–dual search direction simplifies the algorithms developed and analysed
in the framework of Tunçel (2001), and are similar to the algorithms in Myklebust
and Tunçel (2014), based on the search direction defined in (7.6). However,
the primal–dual scalings for homogeneous cones described above have stronger
properties than the primal–dual scalings for general convex cones discussed in
Myklebust and Tunçel (2014). As mentioned earlier, instead of a rank-four update
of the scaling matrix � ′′(F), we perform a rank-one update to the factors (each of
which is an automorphism of the underlying cone) in the decomposition � ′′(F) =
L−∗ ◦ L−1 to satisfy the second of the key equations (7.7). Moreover, if we apply
a short-step strategy satisfying the assumptions in Myklebust and Tunçel (2014),
these new algorithms achieve the same polynomial-time iteration complexity as the
current best primal–dual symmetric interior-point algorithms for symmetric cone
programming.
Our approach above offers more possibilities for the design and analysis of

algorithms that have a significant part operating in the E-space. In addition to the
references for E-space-based algorithms mentioned above, another example is the
algorithm for linear programming proposed by Nesterov (2008).

8. Conclusion
Special cases of homogeneous matrix cones have been studied in the conic optim-
ization literature. Sparse SDPs with arrow patterns are quite common, and arise,
for example, in robust least-squares and robust quadratic programming (Andersen,
Vandenberghe and Dahl 2010b, El Ghaoui and Lebret 1997, Ben-Tal, El Ghaoui
and Nemirovski 2009) and in structural optimization (Kočvara 2021). They also
appear in semidefinite relaxations of optimization problem with quadratic equality
constraints, when the constraints involve only squares G2

8
of variables but not cross-

products G8G 9 with 8 ≠ 9 (e.g. Boolean constraints expressed as G8(G8 − 1) = 0).
Sparse matrix cones with block-arrow structure are often highlighted as an import-
ant example of chordal structure (Vandenberghe and Andersen 2014, Zheng et al.
2021). As we have seen, their homogeneous cone property actually distinguishes
them from general chordal sparse matrix cones. The matrix norm cones described
in Section 5.1 have also been studied separately, for their important role in op-
timization problems involving the matrix trace norm and spectral norm. Except
for these special cases, homogeneous matrix cones have been largely unexplored
in modelling convex optimization problems and in the development of scalable
algorithms.
Our approach in this paper builds on fundamental results from various discip-

lines: abstract algebra, graph theory, sparse matrix computation and theory, convex

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 725

conic optimization. An exciting next step in research is the development of special-
ized algorithms and software which exploit the special structures we exposed here.
There are many other interesting directions to be explored. Hyperbolicity cones
are the next class of well-known convex cones which contain homogeneous cones
as a strict subset. It may be fruitful to find a class of convex cones strictly between
homogeneous cones and hyperbolicity cones providing a common generalization
of homogeneous cones and cones of symmetric positive semidefinite matrices with
chordal sparsity.

Acknowledgements
Research of the first author was supported in part byDiscovery Grants fromNSERC
and by the US Office of Naval Research under award numbers N00014-15-1-2171
and N00014-18-1-2078. This work was started while the authors were visit-
ing the Simons Institute for the Theory of Computing, supported in part by the
DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimiza-
tion through NSF grant #CCF-1740425.

A. Background on homogeneous chordal graphs
This appendix contains additional details for Section 2. We first review some results
by Wolk (1962, 1965) and Golumbic (1978), and then discuss the LBFS algorithm
for recognizing and reordering homogeneous chordal graphs (Chu 2008). We will
use the term D-graph when discussing Wolk’s results in the next section, and the
term trivially perfect graph when discussing Golumbic’s results. After that we use
the term homogeneous chordal graph as in the rest of the paper.

A.1. D-graphs

Wolk (1962, 1965) defines a D-graph or graph with the diagonal property as an
undirected graph that does not contain %4 or �4 as an induced subgraph. He shows
that this property characterizes the comparability graphs of rooted forests.
It is easy to show by contradiction that the absence of induced subgraphs �4 or

%4 is a necessary condition for a graph � = (+, �) to be the comparability graph
of a rooted forest. Suppose the vertices D, E, F, G induce �4 or %4 (Figure A.1)
and that there exists a rooted forest with � as its comparability graph. We use
the notation 0 < 1 to denote that 1 is an ancestor of 0 in the forest (1 is on the
unique path from 0 to a root of the forest). This defines a partial ordering: if 0 < 1
and 1 < 2, then 0 < 2. There are two possible orientations for the edge {D, E}
in Figure A.1, and for each orientation there is only one possible orientation of
the edges {E, F} and {F, G} that is compatible with the fact that {D, F} ∉ � and
{E, G} ∉ � . For example, if D < E as in the graph in Figure A.1(a), then necessarily
E > F, because E < F would imply that D < F and therefore {D, F} ∈ � . Now
the two orientations in the figure are incompatible with a tree structure because in

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

726 L. Tunçel and L. Vandenberghe

D G

FE
(a)

D G

FE
(b)

Figure A.1. The vertices D, E, F, G induce �4 (if D and G are adjacent) or %4
(otherwise). In (a) we assume E > D. Transitivity of the partial ordering and the
fact that {D, F} ∉ � and {E, G} ∉ � imply that F < E and F < G. This ordering is
incompatible with a tree structure because the vertex F has two ancestors E and G
that do not form an ancestor–descendant pair in the tree. In (b) we assume D > E.
Here, transitivity of the partial ordering implies that E < F and G < F. Now E has
two ancestors D and F that do not form an ancestor–descendant pair.

each case we find a vertex (F in (a) and E in (b)) with two ancestors that are not
mutually comparable (do not form an ancestor–descendant pair in the tree).

For the second part of Wolk’s result (every D-graph is the comparability graph
of a rooted forest), we refer to Section A.4, where we discuss how to construct a
rooted forest with comparability graph �.

Wolk also established the important property that every connected component
of a D-graph has a universal vertex, i.e. a vertex adjacent to all other vertices
(Wolk 1962, lemma). This can be seen as follows. Without loss of generality we
assume that � is connected. Let E be the vertex with highest degree, and denote
its neighbourhood by adj(E) = {D1, . . . , D: }, where : is the degree of E. We need
to show that E is a universal vertex, i.e. : = |+ | − 1. Assume that : < |+ | − 1.
Since the graph is connected, there exists a vertex F adjacent to one of the vertices
D8 and not adjacent to E. Thus {F, D8} ∈ � , {D8 , E} ∈ � and {F, E} ∉ � . Consider
any vertex D 9 , 9 ≠ 8. Since {E, D 9} ∈ � , the vertices E, D8 , F, D 9 induce a %4 or
�4 unless D8 and D 9 are adjacent. Therefore, if the graph is a D-graph, D8 must be
adjacent to all D 9 , 9 ≠ 8. However, it is also adjacent to E and to F, so its degree is
higher than the degree of E. This contradicts our assumption that E is a vertex with
maximum degree.
It was mentioned on page 684 that this property leads to useful recursive charac-

terization of D-graphs. One consequence of this characterization is that D-graphs
are interval graphs (Yan et al. 1996). (In an interval graph the vertices represent
intervals in R; two vertices are adjacent if and only if the corresponding intervals
intersect.) This follows from the construction method above, since clearly a disjoint
union of interval graphs is an interval graph, and the addition of a universal vertex
to an interval graph results in an interval graph. The interval graphs are a subclass
of the chordal graphs (Golumbic 2004, Chapter 8).

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 727

A.2. Trivially perfect graphs

Golumbic (1978) defines a graph � = (+, �) to be trivially perfect if U(�,) =
<(�,) holds for all , ⊆ + , where �, denotes the subgraph induced by , ,
U(�,) is the stability number and <(�,) is the number of maximal cliques. To
motivate the name, recall that a graph is perfect if U(�,) = j̄(�,) for all , ,
where j̄(�,) is the clique cover number of �, . Clearly, j̄(�,) ≤ <(�,), so
U(�,) = <(�,) immediately implies that U(�,) = j̄(�,).
Golumbic gives the following simple proof to show that the trivially perfect

graphs are exactly the graphs that do not contain �4 or %4 as induced subgraphs.
First, we note that U(�4) = 2 < <(�4) = 4 and U(%4) = 2 < <(%4) = 3, so
a trivially perfect graph cannot contain �4 or %4. To show that the condition is
sufficient, assume that� does not contain�4 or %4 as induced subgraphs. Suppose
U(�,) < <(�,) for some, ⊆ + . Let (be a maximum stable set of �, . Since
|(| = U(�,) < <(�,), there exists a vertex B ∈ (that belongs to two different
maximal cliques of �, , so we can find G, H ∈ , with {B, G} ∈ � , {B, H} ∈ � ,
{G, H} ∉ � . Let D be any element of (\ {B} (note that |(| = U(�,) ≥ 2 since
{G, H} ∉ �). Therefore {B, D} ∉ � . If {G, D} ∈ � and {D, H} ∈ � , then the vertices
B, G, D, H induce a subgraph �4. If {G, D} ∈ � and {D, H} ∉ � , or {G, D} ∉ � and
{D, H} ∈ � , then they induce a subgraph %4. We conclude that {G, D} ∉ � and
{D, H} ∉ � for all D ∈ (\ {B}. However, this means that the set ((\ {B}) ∪ {G, H}
is a stable set larger than (, contradicting the assumption that (is a maximum
stable set.

A.3. Lexicographic breadth-first search

We now discuss Chu’s algorithm for recognizing homogeneous chordal graphs and
constructing a trivially perfect elimination ordering f : {1, 2, . . . , |+ |} → + (Chu
2008). The algorithm can be interpreted as reversing the recursive construction of
a homogeneous chordal graph via the operations of disjoint union and addition of
a universal vertex. We number the vertices in the order |+ |, . . . , 1, that is, select
f(|+ |), . . . , f(1) in that order. At each step we find a universal vertex, give it the
next available number and remove it from the graph. Note that a universal vertex
in a homogeneous chordal graph is easily found as a vertex with highest degree.

Chu’s algorithm maintains a list ! = (+1, . . . , +) of non-empty disjoint subsets
of + . The vertices in each set +8 are ordered by non-decreasing degree (in �).

• Define = 1 and ! = (+1), with +1 containing the elements of + sorted in
order of non-decreasing degree.
• For 8 = |+ |, . . . , 1:

1. Let E be the last vertex in + . Define f(8) = E.
2. If adj(E) ∩ + 9 ≠ ∅ for some 9 < , terminate. The graph is not a

homogeneous chordal graph.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

728 L. Tunçel and L. Vandenberghe

1
2

3

5
4

6
7

8
9

10
11

12

Vertex 1 2 3 4 5 6 7 8 9 10 11 12
Degree 4 3 3 3 6 5 3 11 4 3 2 5

Figure A.2. Undirected graph with vertex set + = {1, . . . , 12} and edges indicated
by dots. The table lists the degrees of the 12 vertices.

3. Otherwise, partition + \ {E} into two sets

, ′ = + ∩ adj(E), , = (+ \ {E}) \, ′.

The vertices in, and, ′ are kept in the order of non-decreasing degree
(in �). Replace the list ! with

! ≔ (+1, . . . , + −1,,,,
′). (A.1)

If , or , ′ is empty, remove the empty sets from !. Set equal to the
length of the new list !.

The complexity of the algorithm is $(|� | + |+ |).
As an example we apply the algorithm to the graph in Figure A.2. The sequence

of partitions ! is shown in Table A.1. The ordering found by the algorithm is

(f(1), . . . , f(12)) = (2, 1, 9, 6, 12, 11, 4, 7, 3, 10, 5, 8), (A.2a)
(f−1(1), . . . , f−1(12)) = (2, 1, 9, 7, 11, 4, 8, 12, 3, 10, 6, 5). (A.2b)

We now verify that the algorithm recognizes homogeneous chordal graphs (Chu
2008, Theorem 3). First, assume that � is a homogeneous chordal graph. Let
! = (+1, . . . , +) be the partition at the start of a cycle in the for-loop. Assume
that each set + 9 induces a homogeneous chordal subgraph �+9 , disconnected from
the other induced subgraphs �+: , : ≠ 9 . If � is a homogeneous chordal graph,
this assumption holds at the start of the algorithm. Since E ∈ + , we have
adj(E) ∩ + 9 = ∅ for 9 < , so the algorithm does not terminate in step 2. Since
�+ is a homogeneous chordal graph, the sets, and, ′, which are subsets of+ ,

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 729

Table A.1. The partition ! at the start of each cycle in the LBFS
algorithm. We start from the vertices + sorted by degree.

8 !

12 11, 2, 3, 4, 7, 10, 1, 9, 6, 12, 5, 8

11 11, 2, 3, 4, 7, 10, 1, 9, 6, 12, 5

10 2, 1, 9, 6, 12 11, 3, 4, 7, 10

9 2, 1, 9, 6, 12 11, 4, 7 3

8 2, 1, 9, 6, 12 11, 4, 7

7 2, 1, 9, 6, 12 11 4

6 2, 1, 9, 6, 12 11

5 2, 1, 9, 6, 12

4 2, 1, 9, 6

3 2, 1, 9

2 2 1

1 2

also induce homogeneous chordal graphs. Moreover, E is a vertex with maximum
degree in + , and therefore a universal vertex in the connected component of
�+ to which it belongs. This implies that �, is disconnected from �, ′. We
conclude that the sets in the new partition computed in step 3 of the algorithm
define homogeneous chordal subgraphs that are mutually disconnected. Therefore
the algorithm completes the for-loop and does not terminate early.
Chu also shows that when the algorithm terminates early in step 2, a subgraph

%4 or �4 certifying that the graph is not a homogeneous chordal graph is easily
obtained (Chu 2008, Lemma 4).
Next we show that if the algorithm terminates successfully, the graph � is a

homogeneous chordal graph. Let (+1, . . . , + −1,,,,
′) be the partition (A.1)

at the end of cycle 8 in the for-loop (with , and , ′ possibly empty). Assume
that each set in this partition defines a homogeneous chordal graph, disconnected
from the graphs induced by the other sets. This is certainly true for 8 = 2,
since ! = (+1,,,,

′) with +1 = {f(1)} and , = , ′ = ∅. The set + at the
beginning of cycle 8 can be constructed by first adding a universal vertex E to
, ′ and then making the disjoint union with the graph induced by , . Therefore

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

730 L. Tunçel and L. Vandenberghe

2
1

9

12
6

11
4

7
3

10
5

8

(a)

2 1

1 2

9 3

6 4

12 5

11 6

4 7

7 8

3 9

10 10

5 11

8 12

(b)

FigureA.3. (a) The graph of Figure A.2 ordered using the ordering (A.2) and (b) the
corresponding elimination tree. The number next to node E in the elimination tree
is f−1(E).

+ induces a homogeneous chordal graph, disconnected from the graphs induced
by +1, . . . , + −1. We conclude that the sets in the partition ! = (+1, . . . , +)
at the beginning of cycle 8 induce mutually disconnected homogeneous chordal
subgraphs. Therefore, if the algorithm terminates the for-loop, the initial graph
� = (+, �) is a homogeneous chordal graph.

A.4. Elimination tree

We now discuss the ordering f produced by LBFS. We use the notation

adj+(E) = {F ∈ adj(E) : f−1(F) > f−1(E)},
adj−(E) = {F ∈ adj(E) : f−1(F) < f−1(E)}

for the higher and lower neighbourhoods of E. We also define

?(E) = arg min {f−1(F) : F ∈ adj+(E)}
with the convention that ?(E) = E if adj+(E) is empty. The graph with vertex set
+ and edges {E, ?(E)} for ?(E) ≠ E is acyclic, since, by definition, f−1(?(E)) >
f−1(E). It is a rooted forest if we take the vertices with ?(E) = E as its roots. The
vertex ?(E) is the parent of E in the rooted forest.

Figure A.3 illustrates these definitions for the example. In the array representa-
tion of the ordered graph, vertex E appears on the diagonal of the array in position
f−1(E). The elements of adj+(E) are found as the non-zeros below the diagonal in
column f−1(E). The elements of adj−(E) are the elements to the left of the diagonal
in row f−1(E). The parent ?(E) of E is the first non-zero below the diagonal.
The parent function can be computed by modifying the LBFS algorithm as

follows (Chu 2008, p. 11). Let E = f(8) be the vertex selected in step 1 of cycle 8
of the algorithm. This is called the pivot (Chu 2008). The set , ′ in step 3 is the

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 731

Table A.2. Parent function ?(F) at the end of cycle 8 = 12, . . . , 1.

Vertex

8 1 2 3 4 5 6 7 8 9 10 11 12

12 8 8 8 8 8 8 8 8 8 8 8 8
11 8 8 5 5 8 8 5 8 8 5 5 8
10 8 8 10 5 8 8 5 8 8 5 5 8

9 8 8 10 5 8 8 5 8 8 5 5 8
8 8 8 10 7 8 8 5 8 8 5 5 8
7 8 8 10 7 8 8 5 8 8 5 5 8
6 8 8 10 7 8 8 5 8 8 5 5 8
5 12 12 10 7 8 12 5 8 12 5 5 8
4 6 6 10 7 8 12 5 8 6 5 5 8
3 9 6 10 7 8 12 5 8 6 5 5 8
2 9 6 10 7 8 12 5 8 6 5 5 8
1 9 6 10 7 8 12 5 8 6 5 5 8

lower neighbourhood adj−(E), since it contains the vertices adjacent to E that will
be numbered after E. Since F ∈ adj−(E) if and only if E ∈ adj+(F), we find the
parent ?(F) as the last pivot E before F is numbered for which F ∈ adj−(E). To
construct the parent function, we initialize ?(E) = E for all E ∈ + at the start of the
algorithm. In step 3 of the algorithm we set ?(F) = E for all F ∈ , ′. Table A.2
shows the value of ?(E) at the end of each LBFS cycle in the example.
Assume now, without loss of generality, that the graph � is connected, so the

rooted forest defined by the parent function ?(E) is a tree, called the elimination
tree. Consider the partition (A.1) in cycle 8 = f−1(E), when E is the pivot. A vertex
F ∈ , ′ = adj−(E) receives ?(F) = E. This vertex is not adjacent to any of the
elements of+1, . . . , + −1,, . If, in subsequent cycles, the value of ?(F) is updated,
the new value can only be another element in adj−(E). It follows that the vertices in
adj−(E) form the subtree in the elimination tree with root E. Moreover, by definition
of , ′ = adj−(E), the vertex E is adjacent to every element in adj−(E), i.e. all the
descendants of E in the elimination tree. Equivalently, every vertex F is adjacent to
all its ancestors in the elimination tree (all vertices on the unique path between F
and the root). Finally, if two vertices F, I do not form an ancestor–descendant pair,
they were placed in different sets of the partition when their least common ancestor
was the pivot. Therefore F and I are not adjacent. In summary, two vertices in
� are adjacent if and only if they are comparable (form an ancestor–descendant
pair) in the elimination tree. In other words, � is the comparability graph of the
elimination tree. It also follows that f is a trivially perfect elimination ordering,

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

732 L. Tunçel and L. Vandenberghe

that is, adj+(E) induces a complete subgraph of � and adj+(E) contains the vertices
on the path from E to the root.
Finally, we note that placing , ′ last in the list (A.1) ensures that the computed

ordering is a postordering, that is, if f−1(E) = 8 and E has : descendants in the
elimination tree, then the descendants F will have consecutive positions f−1(F) =
8 − :, . . . , 8 − 1 in the ordering.

B. Matrix algorithms for homogeneous chordal sparsity
In this appendix we outline algorithms for the basic matrix operations discussed
in Sections 3 and 4. The algorithms are similar to the multifrontal algorithms for
matrices with chordal sparsity patterns described in Andersen, Dahl and Vanden-
berghe (2013) and Vandenberghe and Andersen (2014), with additional simplific-
ations to exploit homogeneous chordal sparsity.

We consider a sparsity pattern described by a homogeneous chordal graph � =

(+, �) with + = {1, 2, . . . , #}, and assume the numerical order 1, 2, . . . , # is a
trivially perfect elimination ordering of + . We let U8 denote the set of row indices
of the lower-triangular non-zeros in column 8, and let Ū8 be the set {8} ∪ U8 . The
parent of a non-root vertex 8 in the elimination tree is denoted by ?(8). By definition,
this is the first element of U8 .
If 1, . . . , # is a perfect elimination ordering of a chordal pattern, we have the

important property
U8 ⊆ Ū?(8) (B.1)

for all non-root vertices 8. By applying this recursively, we see that the vertices in-
dexed byU8 are on the path fromvertex 8 to the root, i.e.U8 ⊆ {?(8), ?2(8), . . . , ?:(8)},
if : is the depth (distance to the root) of vertex 8. If 1, . . . , # is a trivially perfect
elimination ordering of a homogeneous chordal pattern, we have equality:

U8 = Ū?(8). (B.2)

Therefore U8 = {?(8), ?2(8), . . . , ?:(8)}, the set of ancestors of vertex 8 in the
elimination tree.
The algorithms presented in the rest of this section use a recursion on the elim-

ination tree. A recursion in topological order visits each node of the elimination
tree before its parent. A recursion in inverse topological order visits each node
before its children. We also use the notation ch(8) for the set of children of node 8 in
the elimination tree. Supernodal elimination trees can be used to formulate faster
supernodal or blocked versions, but this extension will not be discussed in detail.

B.1. Cone automorphisms

Our main interest in this section is the evaluation of the linear mappings L and L∗
defined in (3.4) and (3.5). We first consider two simpler operations, matrix–matrix
products !!̃ and !!̃>, where !, !̃ ∈ T#

�
.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 733

B.1.1. Products of lower-triangular matrices
Let !, !̃ ∈ T#

�
. Column : of the product . = !!̃ can be computed by initializing

the column as zero, and running the iteration[
. 9:
.U9 :

]
≔

[
. 9:
.U9 :

]
+ !̃ 9:

[
! 9 9
!U9 9

]
, 9 ∈ Ū: .

Here we rely on the fact that the non-zero elements in column : of !̃ are in the
rows indexed by Ū: , and the non-zeros in column 9 of ! are in the rows indexed by
Ū 9 . Now, the property (3.2) implies that for a trivially perfect elimination ordering,
U 9 ⊂ U: for 9 ∈ U: . Therefore the non-zeros in the :th column of . are in the
rows indexed by Ū: . This again shows that . = !!̃ ∈ T#

�
, as already noted in

Theorem 3.1.
Next we consider products . = !!̃>, where !, !̃ ∈ T#

�
. The matrix . is not

symmetric but has a symmetric sparsity pattern, and if � is chordal and 1, . . . , # is
a perfect elimination order, then the sparsity pattern of. is � . To see this, consider
the formula for the 8 9 element of . :

.8 9 =

min{8, 9 }∑
:=1

!8: !̃ 9: .

For a perfect elimination ordering of a chordal graph, {8, :} ∈ � , { 9 , :} ∈ �
implies that {8, 9} ∈ � . So if ∑: !8: !̃ 9: is non-zero, then {8, 9} ∈ � .
An efficient method for computing . can be formulated as a recursion on the

elimination tree, using ideas from multifrontal Cholesky factorization (see Sec-
tion B.3). As in the multifrontal method, we start from the equation for the Ū8 × Ū8
block:[

.88 .8U8
.U88 .U8U8

]
=

[
!88
!U88

] [
!̃88
!̃U88

]>
+

∑
:<8

[
!8:
!U8:

] [
!̃8:
!̃U8:

]>
+

∑
:>8

[
0

!U8:

] [
0

!̃U8:

]>
.

(B.3)

We define for each vertex 9 a non-symmetric update matrix

* 9 = −
∑
:∈)9

!U9 : !̃
>
U9 :
, (B.4)

where)9 is the subtree of the elimination tree rooted at node 9 . With this notation,
the first column and row of equation (B.3), and the definition of the update matrix
*8 using (B.4), can be combined in the equation[

.88 .8U8
.U88 −*8

]
=

[
!88
!U88

] [
!̃88
!̃U88

]>
−

∑
9∈ch(8)

* 9 ,

where ch(8) is the set of children of node 8 in the elimination tree. This recursion
allows us to compute . . We enumerate the vertices 8 of the elimination tree

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

734 L. Tunçel and L. Vandenberghe

in topological order (i.e. visiting each node before its parent, e.g. in the order
1, . . . , #). For each 8 we compute .88, .8U8 , .U88 and*8 from column 8 of ! and !̃,
and from the update matrices of the children of 8. After the update at vertex 8 the
matrices* 9 for 9 ∈ ch(8) can be discarded.

B.1.2. Triangular scaling of symmetric matrix
We now turn to the computation of L(-) = !-!>, where - ∈ S#

�
and ! ∈ T#

�
.

The operation can be reduced to a combination of the previous cases by splitting
- as - = !̃ + !̃>, where !̃ is lower-triangular with non-zero elements !̃88 = -88/2,
!̃U88 = -U88 for 8 = 1, . . . , =. The other entries of !̃ are zero. Then L(-) can be
written as

L(-) = !(!̃ + !̃>)!> = (!!̃)!> + !(!!̃)>.

We first compute !̂ = !!̃ column by column using[
!̂88
!̂U88

]
=

[
!88 0
!U88 !U8U8

] [
-88/2
-U88

]
, 8 = 1, . . . , #.

Then . = L(-) can be computed via[
.88 .8U8
.U88 −*8

]
=

[
!̂88
!̂U88

] [
!88
!U88

]>
+

[
!88
!U88

] [
!̂88
!̂U88

]>
−

∑
9∈ch(8)

* 9

in topological order. Combining the two steps gives the formula[
.88 .8U8
.U88 −*8

]
=

[
!88 0
!U88 !U8U8

] [
-88/2
-U88

] [
!88
!U88

]>
+

[
!88
!U88

] [
-88/2
-U88

]> [
!88 !>

U88

0 !>U8U8

]
−

∑
9∈ch(8)

* 9

=

[
!88 0
!U88 !U8U8

] [
-88 ->

U88

-U88 0

] [
!88 !>

U88

0 !>U8U8

]
−

∑
9∈ch(8)

* 9 , (B.5)

which can be evaluated by a recursion in topological order. The algorithm is
summarized in Algorithm B.1. The intermediate variable, and the computation
in step 1 are introduced to clarify the adjoint relation with the algorithm for L∗
below.

B.1.3. Adjoint triangular scaling of symmetric matrix
The next operation is L∗(() = Π� (!>(!). The Ū8 × Ū8 block of . = !>(! is[

.88 .8U8
.U88 .U8U8

]
=

[
!88 !>

U88

0 !>U8U8

] [
(88 (>

U88

(U88 (U8U8

] [
!88 0
!U88 !U8U8

]
. (B.6)

This follows from the fact that the block column of ! indexed by U8 has no non-
zeros outside the rows U8 . This is not true for a general chordal pattern. For a

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 735

Algorithm B.1. Forward mapping L.

Input. A matrix - ∈ S#
�

with homogeneous chordal sparsity pattern and trivially
perfect elimination ordering f = (1, 2, . . . , #), a lower-triangular matrix ! ∈ T#

�

and the elimination tree for f.
Output. The matrix . = !-!>.

1. Define a lower-triangular matrix, ∈ T#
�
with

,88 = -88, ,U88 = !U8U8-U88 , 8 = 1, . . . , #.

2. Enumerate the vertices 8 = 1, 2, . . . , # of the elimination tree in topological
order. For each 8, compute*8 , .88, .U88 using the formula[

.88 .8U8
.U88 −*8

]
=

[
!88 0
!U88 �

] [
,88 ,>

U88

,U88 0

] [
!88 !>

U88

0 �

]
−

∑
9∈ch(8)

* 9 .

Algorithm B.2. Adjoint mapping L∗.

Input. A matrix (∈ S#
�
with a homogeneous chordal sparsity pattern and trivially

perfect elimination ordering f = (1, 2, . . . , #), a lower-triangular matrix ! ∈ T#
�
,

and the elimination tree for f.
Output. The matrix . = Π� (!>(!).

1. Compute a lower-triangular matrix, ∈ T#
�

by running the following recur-
sion in reverse topological order. For each 8, compute,88 and,8U8 from[

,88 ,>
8U8

,8U8 ×

]
=

[
!88 !>

U88

0 �

] [
(88 (>

U88

(U88 +8

] [
!88 0
!U88 �

]
,

and define

+ 9 =

[
(88 (>

U88

(U88 +8

]
, 9 ∈ ch(8).

2. For 8 = 1, . . . , # , set

.88 = ,88 , .U88 = !
>
U8U8

,U88 .

general chordal pattern the expression (B.6) gives the wrong value for the 22 block
.U8U8 , although the expressions for.88 and.U88 are correct. Even for a homogeneous
chordal pattern, we do not actually use the 22 block, since these elements are part of
other columns and we need to compute them only once. A possible implementation
is shown in Algorithm B.2. The intermediate variable+8 in this algorithm is simply
(U8U8 . Passing this dense matrix from nodes to their children is more efficient than
retrieving (U8U8 from a sparse matrix data structure (Andersen et al. 2013).

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

736 L. Tunçel and L. Vandenberghe

B.2. Inverse cone automorphisms

Next we consider the inverses of the mappings L and L∗. Again we start with some
observations about simpler operations with the inverse of a sparse lower-triangular
matrix.

B.2.1. Products with inverse of lower-triangular matrix
To solve !G = 1, we set G ≔ 1 and run the iteration[

G 9
GU9

]
≔

[
1/! 9 9 0

−!U9 9/! 9 9 �

] [
G 9
GU9

]
, 9 = 1, . . . , #. (B.7)

The algorithm does not require chordality or homogeneous chordality, but the
order of the recursion matters. If the pattern is chordal and the right-hand side 1
is sparse, we can simplify the iteration and iterate over a ‘pruned’ elimination tree,
defined by the vertices : with 1: ≠ 0 and their ancestors. This follows from (B.1):
all the elements of Ū 9 are on the path from vertex 9 to the root, so the iteration
(B.7) does not change entries outside this pruned elimination tree. In particular,
if 1 has only one non-zero entry 1: , then in (B.7) we can iterate over the vertices
9 = :, ?(:), ?2(:), . . . , on the path from : to the root of the elimination tree.
The product - = !−1 !̃ can be computed column by column, by forward substi-

tution. Set - = !̃. For each : = 1, . . . , =, run the iteration[
- 9:
-U9 :

]
≔

[
1/! 9 9 0

−!U9 9/! 9 9 �

] [
- 9:
-U9 :

]
, 9 = :, ?(:), ?2(:),

This works for any chordal sparsity pattern. In general, however, the sets U 9
for 9 = ?(:), ?2(:), . . . are not subsets of U: , so the final sparsity pattern of -:
can include non-zeros outside U: . For a homogeneous chordal pattern and trivially
perfect elimination ordering, the property (3.2) implies that the indices of all lower-
triangular non-zeros of -: are in U: . Therefore - = !−1 !̃ has the same sparsity
pattern as ! and !̃.
Applying this with !̃ = �, we see that the inverse !−1 has the same sparsity

pattern as !: !−1 ∈ T#
�
; see Theorem 5.3. This property does not hold for general

chordal sparsity patterns. As a consequence, the identities

(!−1)Ū9 Ū9 = !
−1
Ū9 Ū9

=

[
1/! 9 9 0

−(1/! 9 9)!−1
U9U9

!U9 9 !−1
U9U9

]
, 9 = 1, . . . , # (B.8)

(which hold for any non-singular triangular matrix and any index set Ū 9) charac-
terize all the non-zero elements in !−1.

B.2.2. Inverse of triangular scaling
The inverse of the mapping L(-) = !-!> is !−1-!−>. It can be evaluated via
the formula (B.5) applied to the inverse of !:[

.88 .8U8
.U88 −*8

]
= !−1

Ū8 Ū8

[
-88 ->

U88

-U88 0

]
!−>Ū8 Ū8 −

∑
9∈ch(8)

* 9 .

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 737

Algorithm B.3. Inverse forward mapping L−1.

Input. A matrix - ∈ S#
�

with homogeneous chordal sparsity pattern and trivially
perfect elimination ordering f = (1, 2, . . . , #), a non-singular lower-triangular
matrix ! ∈ T#

�
, and the elimination tree for f.

Output. The matrix . = !−1-!−>.

1. Enumerate the vertices 8 = 1, 2, . . . , # of the elimination tree in topological
order. For each 8, compute +8 ,,88 ,,U88 using the formula[

,88 ,8U8
,U88 −+8

]
=

[
1/!88 0
−!U88/!88 �

] ([
-88 ->

U88

-U88 0

]
−

∑
9∈ch(8)

+ 9

) [
1/!88 −!>U88/!88

0 �

]
.

2. For 8 = 1, . . . , # , compute

.88 = ,88, .U88 = !
−1
U8U8

,U88 .

This can be simplified if we define update matrices +8 = !U8U8*8!
>
U8U8

instead
of*8: [

.88 .8U8
.U88 −!−1

U8U8
+8!

−>
U8U8

]
= !−1

Ū8 Ū8

([
-88 ->

U88

-U88 0

]
−

∑
9∈ch(8)

+ 9

)
!−>Ū8 Ū8 ,

and, using (B.8),[
.88 .8U8!

>
U8U8

!U8U8.U88 −+8

]
=

[
1/!88 0
−!U88/!88 �

] ([
-88 ->

U88

-U88 0

]
−

∑
9∈ch(8)

+ 9

) [
1/!88 −!>U88/!88

0 �

]
.

This is summarized in Algorithm B.3.

B.2.3. Inverse of adjoint triangular scaling
Applying (B.6) with !−1 shows that L−∗(() = Π� (!−>(!−1) and that the Ū8 × Ū8
block of . = (L∗)−1(() is given by[

.88 .8U8
.U88 .U8U8

]
=

[
1/!88 −!>U88!

−>
U8U8
/!88

0 !−>U8U8

] [
(88 (>

U88

(U88 (U8U8

] [
1/!88 0

−!−1
U8U8

!U88/!88 !−1
U8U8

]
.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

738 L. Tunçel and L. Vandenberghe

Algorithm B.4. Inverse adjoint mapping (L∗)−1.

Input. A matrix (∈ S#
�

with homogeneous chordal sparsity pattern and trivially
perfect elimination ordering f = (1, 2, . . . , #), a non-singular lower-triangular
matrix ! ∈ T#

�
, and the elimination tree for f.

Output. The matrix . = Π� (!−>(!−1).

1. For 8 = 1, . . . , # , set

,88 = (88, ,U88 = !
−>
U8U8

(U88 .

2. Enumerate the vertices 8 = 1, . . . , # in reverse topological order. For each 8,
compute .88 and .8U8 from[

.88 .>
8U8

.U88 ×

]
=

[
1/!88 −!>U88/!88

0 �

] [
,88 ,>

U88

,U88 +8

] [
1/!88 0
−!U88/!88 �

]
,

and define

+ 9 =

[
.88 .>

U88

.U88 +8

]
, 9 ∈ ch(8).

It can be computed as shown in Algorithm B.4. Here the ‘update matrices’ + 9 are
defined as

+8 = .U8U8 = !
−>
U8U8

(U8U8!
−1
U8U8

.

B.3. Cholesky factorization

Assume - is positive definite with sparsity pattern � . We define the Cholesky
factorization as a factorization - = !!> with ! lower-triangular with positive
diagonal elements. If f = (1, 2, . . . , #) is a perfect elimination order, then !
has the same sparsity pattern as - , i.e. ! ∈ T#

�
. In this section we specialize

the multifrontal Cholesky factorization algorithm (Duff and Reid 1983, Liu 1990,
1992) to homogeneous chordal sparsity patterns.
Consider the Ū8 × Ū8 block of the factorization:[
-88 ->

U88

-U88 -U8U8

]
=

[
!88
!U88

] [
!88
!U88

]>
+

∑
:<8

[
!8:
!U8:

] [
!8:
!U8:

]>
+

∑
:>8

[
0

!U8:

] [
0

!U8:

]>
.

If we consider only the first row and column in this equation, we can drop the last
term on the right-hand side. In the second term, we can limit the sum to the vertices
: that are proper descendants of 8 in the elimination tree:[

-88 ->
U88

-U88 ×

]
=

[
!88
!U88

] [
!88
!U88

]>
+

∑
9∈ch(8)

∑
:∈)9

[
!8:
!U8:

] [
!8:
!U8:

]>
. (B.9)

Here)9 denotes the subtree of the elimination tree rooted at 9 . In the multifrontal

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 739

Algorithm B.5. Cholesky factorization.

Input. A matrix - ∈ S#
�
∩ S#++, with homogeneous chordal sparsity pattern and

trivially perfect elimination ordering f = (1, 2, . . . , #), and the elimination tree
for f.
Output. The Cholesky factorization - = !!>.

Enumerate the vertices 8 = 1, 2, . . . , # of the elimination tree in topological order.
For each 8, form the frontal matrix[

�11 �>21
�21 �22

]
=

[
-88 ->

U88

-U88 0

]
+

∑
9∈ch(8)

* 9 ,

and calculate !88 , !U88 , and the update matrix*8 from

!88 =
√
�11, !U88 =

1
!88
�21, *8 = �22 − !U88!>U88 .

method we define for each node 9 in the elimination tree an update matrix

* 9 = −
∑
:∈)9

!U9 :!
>
U9 :
.

For a trivially perfect elimination ordering, U 9 = Ū8 if 9 ∈ ch(8). The last term in
(B.9) is therefore equal to −∑

9∈ch(8)* 9 , and the 22 block of the entire right-hand
side is −*8 . Therefore[

-88 ->
U88

-U88 −*8

]
=

[
!88
!U88

] [
!88
!U88

]>
−

∑
9∈ch(8)

* 9 .

Rearranging this as[
-88 ->

U88

-U88 0

]
+

∑
9∈ch(8)

* 9 =

[
!88
!U88

] [
!88
!U88

]>
+

[
0 0
0 *8

]
(B.10)

suggests a recursive algorithm for computing the factorization, as shown in Algo-
rithm B.5.

B.4. Maximum-determinant positive definite completion.

A matrix with a chordal sparsity pattern has a positive definite completion if and
only if all completely specified principal submatrices are positive definite (Grone
et al. 1984). In our notation, (∈ Π� (S#++) if and only if (Ū8 Ū8 � 0 for all 8. The
positive definite completion with maximum determinant is the inverse of a matrix
- ∈ S#

�
∩ S#++. If we parametrize - = !!> by its Cholesky factor !, then ! ∈ T#

�

is the solution of the non-linear equation

Π� (!−>!−1) = (.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

740 L. Tunçel and L. Vandenberghe

Algorithm B.6. Maximum-determinant positive definite completion.

Input. A matrix (∈ Π� (S#++) with homogeneous chordal sparsity pattern and
trivially perfect elimination ordering f = (1, 2, . . . , #), and the elimination tree
for f.
Output. The non-singular matrix ! ∈ T#

�
that satisfies Π(!−>!−1) = (.

Enumerate the vertices 8 = 1, 2, . . . , # of the elimination tree in inverse topological
order. For each 8, compute

D = +>8 (U88 , !88 =
1

((88 − D>D)1/2 , !U88 = −!88+8D.

Then set

+ 9 =

[
!88 0
!U88 +8

]
, 9 ∈ ch(8).

The solution can be computed as follows (Andersen et al. 2013). Consider the
Ū8 × Ū8 block of the equation -−1! = !−>,

(Ū8 Ū8! Ū8 Ū8 = !
−>
Ū8 Ū8

. (B.11)

On the right-hand side we use (!−1)Ū8 Ū8 = !−1
Ū8 Ū8

, which holds for any non-singular
lower-triangular matrix and any index set Ū8 . On the left-hand side we use the fact
that the block column Ū8 of ! has no zeros outside the rows indexed by Ū8 , since
1, . . . , # is a trivially perfect elimination ordering. An algorithm for computing
the Cholesky factor ! follows from the first column of the equation (B.11):[

(88 (>
U88

(U88 (U8U8

] [
!88
!U88

]
=

[
1/!88

0

]
.

The subvector !U88/!88 satisfies
1
!88
!U88 = −(−1

U8U8
(U88 = −!U8U8!>U8U8(U88 .

Substituting this in the first equation gives an expression for !88:

!88 = ((88 + (>U88(!U88/!88))
−1/2 = ((88 − (>U88!U8U8!

>
U8U8

(U88)
−1/2.

In other words, if we define D = !>U8U8(U88 , then

!88 = ((88 − ‖D‖2)−1/2, !U88 = −!88!U8U8D.
In Algorithm B.6 we define +8 = !U8U8 .

B.5. Gradient and Hessian of primal barrier

In Section 4we introduced the function �(-) = − ln det - as the logarithmic barrier
function for the cone = S#+ ∩S#� . DefineL(.) = !.!>, where ! is the Cholesky

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 741

Algorithm B.7. Projected inverse.

Input. The Cholesky factor ! of a positive definite matrix - ∈ S#++ ∩ S#� , with
a homogeneous chordal sparsity pattern and trivially perfect elimination ordering
1, . . . , # , and the elimination tree for f.
Output. The projected inverse . = Π� (!−>!−1).

Enumerate the vertices 8 = 1, 2, . . . , # in inverse topological order. For each 8,
calculate

.U88 = −
1
!88
+8!U88 , .88 =

1
!88

(
1
!88
− !>U88.U88

)
and define the update matrices

+ 9 =

[
.88 .>

U88

.U88 +8

]
, 9 ∈ ch(8).

factor of - . Then the gradient of � at - , which is given by � ′(-) = −Π� (-−1),
can be computed as

� ′(-) = −Π� (!−>!−1) = −(L∗)−1(�).

Algorithm B.7 is Algorithm B.4 with - = �. It is also easily derived directly by
considering the Ū8 × 8 block of the equation -−1! = !−>, that is,[

.88 .>
U88

.U88 .U8U8

] [
!88
!U88

]
=

[
1/!88

0

]
. (B.12)

We define +8 = (-−1)U8U8 . The Hessian of � at - is the linear mapping

� ′′(-;.) = (L ◦ L∗)−1(.)

(see (4.7)), and can be evaluated by calling Algorithms B.3 and B.4.

B.6. Gradient and Hessian of dual barrier

The barrier for the cone Π� (S#+) is

�∗(() = sup
-

(−Tr((-) − �(-)) = # − �(-̂),

where -̂ is the maximizer in the definition, i.e. the solution of the equation
Π� (-−1) = (. Define L(.) = !.!>, where ! is the Cholesky factor of -̂ ,
which can be computed by Algorithm B.6. The gradient of �∗ at (is

� ′∗(() = −-̂ = −L(�)

and can be computed by applying Algorithm B.1 with - = �, as shown in Algo-
rithm B.8. The Hessian of �∗ is given by � ′′∗ (() = � ′′(-̂)−1 = L ◦ L∗ and can be
evaluated via Algorithms B.1 and B.2.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

742 L. Tunçel and L. Vandenberghe

Algorithm B.8. Dual gradient.

Input. The Cholesky factor ! of the inverse of the maximum-determinant positive
definite completion of a matrix (∈ Π� (S#++), with a homogeneous chordal sparsity
pattern and trivially perfect elimination ordering f = (1, 2, . . . , #), and the elim-
ination tree for f.
Output. The matrix . = !!>.

Enumerate the vertices 8 = 1, 2, . . . , # of the elimination tree in topological order.
For each 8, compute*8 , .88 , .U88 using the formula[

.88 .8U8
.U88 −*8

]
=

[
!88
!U88

] [
!88
!U88

]>
−

∑
9∈ch(8)

* 9 .

References
J. Agler, J.W.Helton, S.McCullough andL.Rodman (1988), Positive semidefinitematrices

with a given sparsity pattern, Linear Algebra Appl. 107, 101–149.
M. S. Andersen, J. Dahl and L. Vandenberghe (2010a), Implementation of nonsymmetric

interior-point methods for linear optimization over sparse matrix cones,Math. Program.
Comput. 2, 167–201.

M. S. Andersen, J. Dahl and L. Vandenberghe (2013), Logarithmic barriers for sparse
matrix cones, Optim. Methods Softw. 28, 396–423.

M. S. Andersen, L. Vandenberghe and J. Dahl (2010b), Linear matrix inequalities with
chordal sparsity patterns and applications to robust quadratic optimization, in Proceed-
ings of the 2010 IEEE International Symposium on Computer-Aided Control System
Design (CACSD), pp. 7–12.

S. A. Andersson and G. G. Wojnar (2004), Wishart distributions on homogeneous cones,
J. Theoret. Probab. 17, 781–818.

G. Averkov (2019), Optimal size of linear matrix inequalities in semidefinite approaches
to polynomial optimization, SIAM J. Appl. Algebra Geom. 3, 128–151.

J. J. Bartholdi, III (1981/82), A good submatrix is hard to find,Oper. Res. Lett. 1, 190–193.
A. Ben-Tal andA.Nemirovski (2001), Lectures onModern ConvexOptimization: Analysis,

Algorithms, and Engineering Applications, SIAM.
A. Ben-Tal, L. El Ghaoui and A. Nemirovski (2009), Robust Optimization, Princeton

University Press.
S. J. Benson, Y. Ye and X. Zhang (2000), Solving large-scale sparse semidefinite programs

for combinatorial optimization, SIAM J. Optim. 10, 443–461.
Å. Björck (1996), Numerical Methods for Least Squares Problems, SIAM.
J. R. S. Blair and B. Peyton (1993), An introduction to chordal graphs and clique trees,

in Graph Theory and Sparse Matrix Computation (A. George et al., eds), Springer,
pp. 1–29.

I. Boutouria, A. Hassairi and H. Massam (2011), Extension of the Olkin and Rubin
characterization to theWishart distribution on homogeneous cones, Infin. Dimens. Anal.
Quantum Probab. Relat. Top. 14, 591–611.

S. Boyd and L. Vandenberghe (2004), Convex Optimization, Cambridge University Press.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 743

S. Burer (2003), Semidefinite programming in the space of partial positive semidefinite
matrices, SIAM J. Optim. 14, 139–172.

P. R. Chares (2009), Cones and interior-point algorithms for structured convex optimization
involving powers and exponentials. PhD thesis, Université Catholique de Louvain.

S. Chaudhuri, M. Drton and T. S. Richardson (2007), Estimation of a covariance matrix
with zeros, Biometrika 94, 199–216.

F. P. M. Chu (2008), A simple linear time certifying LBFS-based algorithm for recognizing
trivially perfect graphs and their complement, Inform. Process. Lett. 107, 7–12.

C. B. Chua (2003), Relating homogeneous cones and positive definite cones via)-algebras,
SIAM J. Optim. 14, 500–506.

C. B. Chua (2009), A)-algebraic approach to primal–dual interior-point algorithms, SIAM
J. Optim. 20, 503–523.

C. B. Chua and L. Tunçel (2008), Invariance and efficiency of convex representations,
Math. Program. 111, 113–140.

D. G. Corneil (2004), Lexicographic breadth first search: A survey, in Graph-Theoretic
Concepts in Computer Science, Vol. 3353 of Lecture Notes in Computer Science,
Springer, pp. 1–19.

J. Dahl and E. D. Andersen (2022), A primal–dual interior-point algorithm for nonsym-
metric exponential-cone optimization, Math. Program. 194, 341–370.

S. Diamond and S. Boyd (2016), CVXPY: A Python-embedded modeling language for
convex optimization, J. Mach. Learn. Res. 17, 1–5.

M. Drton and T. S. Richardson (2008), Graphical methods for efficient likelihood inference
in Gaussian covariance models, J. Mach. Learn. Res. 9, 893–914.

I. S. Duff and J. K. Reid (1983), The multifrontal solution of indefinite sparse symmetric
linear equations, ACM Trans. Math. Softw. 9, 302–325.

I. S. Duff, A. M. Erisman and J. K. Reid (2017), Direct Methods for Sparse Matrices,
Oxford University Press.

L. El Ghaoui and H. Lebret (1997), Robust solutions to least-squares problems with
uncertain data, SIAM J. Matrix Anal. Appl. 18, 1035–1064.

E. S. El-Mallah andC. J. Colbourn (1988), The complexity of some edge deletion problems,
IEEE Trans. Circuits Systems 35, 354–362.

H. Fawzi (2020), Lifts of convex sets, in Sum of Squares: Theory and Applications, Vol. 77
of Proceedings of Symposia in Applied Mathematics, American Mathematical Society,
pp. 37–57.

H. Fawzi and J. Saunderson (2022), Optimal self-concordant barriers for quantum relative
entropies. Available at arXiv:2205.04581.

L. Faybusovich (2002), On Nesterov’s approach to semi-infinite programming, Acta Appl.
Math. 74, 195–215.

L. Faybusovich and C. Zhou (2022), Long-step path-following algorithm for quantum
information theory: Some numerical aspects and applications, Numer. Algebra Control
Optim. 12, 445–467.

A. Fu, B. Narasimhan and S. Boyd (2020), CVXR: An R package for disciplined convex
optimization, J. Statist. Softw. 94, 1–34.

M. Fukuda, M. Kojima, K. Murota and K. Nakata (2000/01), Exploiting sparsity in semi-
definite programming via matrix completion, I: General framework, SIAM J. Optim. 11,
647–674.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://arxiv.org/abs/2205.04581
https://doi.org/10.1017/S0962492922000113

744 L. Tunçel and L. Vandenberghe

D. R. Fulkerson and O. Gross (1965), Incidence matrices and interval graphs, Pacific J.
Math. 15, 835–855.

A. George and J. W. H. Liu (1981), Computer Solution of Large Sparse Positive Definite
Systems, Prentice-Hall.

S. Gindikin (1992), Tube Domains and the Cauchy Problem, Vol. 111 of Translations of
Mathematical Monographs, American Mathematical Society.

G. H. Golub and R. J. Plemmons (1980), Large-scale geodetic least-squares adjustment by
dissection and orthogonal decomposition, Linear Algebra Appl. 34, 3–27.

M. C. Golumbic (1978), Trivially perfect graphs, Discrete Math. 24, 105–107.
M. C. Golumbic (2004), Algorithmic Graph Theory and Perfect Graphs, second edition,

Elsevier.
J. Gouveia, P. A. Parrilo and R. R. Thomas (2013), Lifts of convex sets and cone factoriz-

ations, Math. Oper. Res. 38, 248–264.
M. Grant and S. Boyd (2014), CVX: Matlab software for disciplined convex programming,

version 2.1. Available at http://cvxr.com/cvx.
A. Griewank and P. L. Toint (1984), On the existence of convex decompositions of partially

separable functions, Math. Program. 28, 25–49.
R. Grone, C. R. Johnson, E. M. Sá and H. Wolkowicz (1984), Positive definite completions

of partial Hermitian matrices, Linear Algebra Appl. 58, 109–124.
O. Güler (1996), Barrier functions in interior point methods,Math. Oper. Res. 21, 860–885.
O. Güler (1997), Hyperbolic polynomials and interior point methods for convex program-

ming, Math. Oper. Res. 22, 350–377.
O. Güler and L. Tunçel (1998), Characterization of the barrier parameter of homogeneous

convex cones, Math. Program. 81, 55–76.
M.Habib, R.McConnell, C. Paul and L. Viennot (2000), Lex-BFS and partition refinement,

with applications to transitive orientation, interval graph recognition and consecutive
ones testing, Theoret. Comput. Sci. 234, 59–84.

J. W. Helton and J. Nie (2010), Semidefinite representation of convex sets,Math. Program.
122, 21–64.

J. W. Helton and V. Vinnikov (2007), Linear matrix inequality representation of sets,
Commun. Pure Appl. Math. 60, 654–674.

H. Ishi (2013), On a class of homogeneous cones consisting of real symmetric matrices,
Josai Math. Monogr. 6, 71–80.

H. Ishi (2015), Matrix realization of a homogeneous cone, inGeometric Science of Informa-
tion (F. Nielsen and F. Barbaresco, eds), Springer International Publishing, pp. 248–256.

H. Ishi (2016), Explicit formula of Koszul–Vinberg characteristic functions for a wide class
of regular convex cones, Entropy 18, 383.

B. Jansen, C. Roos and T. Terlaky (1996), A polynomial primal–dual Dikin-type algorithm
for linear programming, Math. Oper. Res. 21, 341–353.

M. Karimi and L. Tunçel (2020a), Domain-driven solver (DDS) version 2.0: AMATLAB-
based software package for convex optimization problems in domain-driven form. Avail-
able at arXiv:1908.03075.

M. Karimi and L. Tunçel (2020b), Primal–dual interior-point methods for domain-driven
formulations, Math. Oper. Res. 45, 591–621.

K. Khare and B. Rajaratnam (2011), Wishart distributions for decomposable covariance
graph models, Ann. Statist. 39, 514–555.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

http://cvxr.com/cvx
https://arxiv.org/abs/1908.03075
https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 745

K. Khare and B. Rajaratnam (2012), Sparse matrix decompositions and graph characteriz-
ations, Linear Algebra Appl. 437, 932–947.

M. Kočvara (2021), Decomposition of arrow type positive semidefinite matrices with
application to topology optimization, Math. Program. 190, 105–134.

M. Kojima, N. Megiddo, T. Noma and A. Yoshise (1991), A Unified Approach to Interior
Point Algorithms for Linear Complementarity Problems, Vol. 538 of Lecture Notes in
Computer Science, Springer.

L. Kong, L. Tunçel and N. Xiu (2012), Existence and uniqueness of solutions for homo-
geneous cone complementarity problems, J. Optim. Theory Appl. 153, 357–376.

L. S. Lasdon (2002), Optimization Theory for Large Systems, Dover Publications. First
published in 1970 by the Macmillan Company.

G. Letac and H. Massam (2007), Wishart distributions for decomposable graphs, Ann.
Statist. 35, 1278–1323.

J. W. H. Liu (1990), The role of elimination trees in sparse factorization, SIAM J. Matrix
Anal. Appl. 11, 134–172.

J. W. H. Liu (1992), The multifrontal method for sparse matrix solution: Theory and
practice, SIAM Review 34, 82–109.

J. W. H. Liu, E. G. Ng and B. W. Peyton (1993), On finding supernodes for sparse matrix
computations, SIAM J. Matrix Anal. Appl. 14, 242–252.

J. Lofberg (2004), YALMIP: A toolbox for modeling and optimization in MATLAB,
in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.
04CH37508), IEEE, pp. 284–289.

T.Myklebust and L. Tunçel (2014), Interior-point algorithms for convex optimization based
on primal–dual metrics. Available at arXiv:1411.2129.

A. Natanzon, R. Shamir and R. Sharan (2000), A polynomial approximation algorithm for
the minimum fill-in problem, SIAM J. Comput. 30, 1067–1079.

A. Nemirovski (2007), Advances in convex optimization: Conic programming, in In-
ternational Congress of Mathematicians Madrid 2006, Vol. I: Plenary Lectures and
Ceremonies, European Mathematical Society, pp. 413–444.

A. S. Nemirovski and M. J. Todd (2008), Interior-point methods for optimization, Acta
Numer. 17, 191–234.

Y. Nesterov (2000), Squared functional systems and optimization problems, in High Per-
formanceOptimization Techniques (J. Frenk et al., eds), KluwerAcademic, pp. 405–440.

Y. Nesterov (2008), Parabolic target space and primal–dual interior-pointmethods,Discrete
Appl. Math. 156, 2079–2100.

Y. Nesterov (2012), Towards non-symmetric conic optimization, Optim. Methods Softw.
27, 893–917.

Y. Nesterov and A. Nemirovskii (1994), Interior-Point Polynomial Algorithms in Convex
Programming, Vol. 13 of SIAM Studies in Applied Mathematics, SIAM.

Y. Nesterov and M. J. Todd (1997), Self-scaled barriers and interior-point methods for
convex programming, Math. Oper. Res. 22, 1–42.

Y. Nesterov and M. J. Todd (1998), Primal–dual interior-point methods for self-scaled
cones, SIAM J. Optim. 8, 324–364.

Y.Nesterov andM. J. Todd (2002), On theRiemannian geometry defined by self-concordant
barriers and interior-point methods, Found. Comput. Math. 2, 333–361.

Y. Nesterov and L. Tunçel (2016), Local superlinear convergence of polynomial-time
interior-point methods for hyperbolicity cone optimization problems, SIAM J. Optim.
26, 139–170.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://arxiv.org/abs/1411.2129
https://doi.org/10.1017/S0962492922000113

746 L. Tunçel and L. Vandenberghe

D. Papp and F. Alizadeh (2013), Semidefinite characterization of sum-of-squares cones in
algebras, SIAM J. Optim. 23, 1398–1423.

D. Papp and S. Yıldız (2022), Alfonso: Matlab package for nonsymmetric conic optimiz-
ation, INFORMS J. Comput. 34, 11–19.

J. Pearl and N. Wermuth (1994), When can association graphs admit a causal interpreta-
tion?, in Selecting Models from Data, Springer, pp. 205–214.

J. Renegar (2001), AMathematical View of Interior-Point Methods in Convex Optimization,
MPS/SIAM Series on Optimization, SIAM and Mathematical Programming Society
(MPS).

J. Renegar and M. Sondjaja (2014), A polynomial-time affine-scaling method for semidef-
inite and hyperbolic programming. Available at arXiv:1410.6734.

R. T. Rockafellar (1970), Convex Analysis, Princeton University Press.
D. J. Rose, R. E. Tarjan and G. S. Lueker (1976), Algorithmic aspects of vertex elimination

on graphs, SIAM J. Comput. 5, 266–283.
O. S. Rothaus (1963), The construction of homogeneous convex cones, Bull. Amer. Math.

Soc. 69, 248–250.
O. S. Rothaus (1966), The construction of homogeneous convex cones, Ann. of Math. (2)

83, 358–376.
O. S. Rothaus (1968), Correction to: ‘The construction of homogeneous convex cones’,

Ann. of Math. (2) 87, 399.
S. Roy and L. Xiao (2022), On self-concordant barriers for generalized power cones,Optim.

Lett. 16, 681–694.
G. Sagnol and M. Stahlberg (2022), PICOS: A Python interface to conic optimization

solvers, J. Open Source Software 7, 3915.
M. A. Saunders (1972), Product form of the Cholesky factorization for large-scale linear

programming. Technical report STAN-CS-72-301, Stanford University.
C. Scheiderer (2018), Spectrahedral shadows, SIAM J. Appl. Algebra Geom. 2, 26–44.
R. B. Schnabel (1983), Quasi-Newton methods using multiple secant equations. Technical

report, University of Colorado at Boulder.
A. Skajaa and Y. Ye (2015), A homogeneous interior-point algorithm for nonsymmetric

convex conic optimization, Math. Program. 150, 391–422.
D. C. Sorensen (1982), Collinear scaling and sequential estimation in sparse optimization

algorithms, in Algorithms and Theory in Filtering and Control (D. C. Sorensen and
R. J.-B. Wets, eds), Vol. 18 of Mathematical Programming Studies, Springer, pp. 135–
159.

G. Srijuntongsiri and S. Vavasis (2004), A fully sparse implementation of a primal–dual
interior-point potential reduction method for semidefinite programming. Available at
arXiv.cs:0412009.

J. F. Sturm and S. Zhang (1999), Symmetric primal–dual path-following algorithms for
semidefinite programming, Appl. Numer. Math. 29, 301–315.

R. E. Tarjan and M. Yannakakis (1984), Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM
J. Comput. 13, 566–579.

M. J. Todd (2009), Largest dual ellipsoids inscribed in dual cones, Math. Program. 117,
425–434.

V. A. Truong and L. Tunçel (2004), Geometry of homogeneous convex cones, duality
mapping, and optimal self-concordant barriers, Math. Program. 100, 295–316.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://arxiv.org/abs/1410.6734
https://arxiv.org/abs/cs/0412009
https://doi.org/10.1017/S0962492922000113

Linear optimization over homogeneous matrix cones 747

L. Tunçel (1998), Primal–dual symmetry and scale invariance of interior-point algorithms
for convex optimization, Math. Oper. Res. 23, 708–718.

L. Tunçel (2001), Generalization of primal–dual interior-point methods to convex optim-
ization problems in conic form, Found. Comput. Math. 1, 229–254.

L. Vandenberghe and M. S. Andersen (2014), Chordal graphs and semidefinite optimiza-
tion, Found. Trends Optim. 1, 241–433.

E. B. Vinberg (1965a), Structure of the group of automorphisms of a homogeneous convex
cone, Trudy Moskov. Mat. Obšč. 13, 56–83.

E. B. Vinberg (1965b), The theory of homogeneous cones, Trans. Moscow Math. Soc. 12,
340–403.

E. S. Wolk (1962), The comparability graph of a tree, Proc. Amer. Math. Soc. 13, 789–795.
E. S. Wolk (1965), A note on ‘The comparability graph of a tree’, Proc. Amer. Math. Soc.

16, 17–20.
T. Yamasaki and T. Nomura (2015), Realization of homogeneous cones through oriented

graphs, Kyushu J. Math. 69, 11–48.
J.-H. Yan, J.-J. Chen and G. J. Chang (1996), Quasi-threshold graphs,Discrete Appl. Math.

69, 247–255.
M. Yannakakis (1981), Computing the minimum fill-in is NP-complete, SIAM J. Algebraic

Discrete Methods 2, 77–79.
Y. Zheng, G. Fantuzzi and A. Papachristodoulou (2021), Chordal and factor-width decom-

positions for scalable semidefinite and polynomial optimization, Annu. Rev. Control 52,
243–279.

https://doi.org/10.1017/S0962492922000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000113

	Introduction
	Homogeneous chordal sparsity
	Homogeneous sparse matrix cones
	Logarithmic barriers
	Homogeneous matrix cones
	Algebraic structure of homogeneous cones
	Primal–dual interior-point methods
	Conclusion
	Background on homogeneous chordal graphs
	Matrix algorithms for homogeneous chordal sparsity
	References

