Herbicide carrier water hardness and pH can be variable depending on the source and geographic location. Herbicide efficacy can be affected by the pH and hardness of water used for spray solution. Field and greenhouse studies were conducted to evaluate the effect of carrier water pH and hardness on premixed dicamba and glyphosate efficacy. Treatments were combinations of water pH at 4, 6.5, or 9; and water hardness at 0 (deionized water), 400, or 800 mg L−1 of CaCO3 equivalent. In the field study, dicamba and glyphosate were applied at 0.55 and 1.11 kg ae ha−1, respectively, and half of these rates were applied in the greenhouse study. There was no interaction between carrier water pH and hardness on dicamba and glyphosate efficacy; however, the main effects of carrier water pH and hardness were significant. Herbicide efficacy was reduced with carrier water at pH 9 compared with pH 4. In the field study, common lambsquarters, common ragweed, horseweed, or Palmer amaranth control was improved 6% or more at carrier water at pH 4 compared with pH 9. Similar results were observed with water pH for giant ragweed, Palmer amaranth, or pitted morningglory control in the greenhouse study. Carrier water hardness at 400 or 800 mg L−1 reduced common ragweed, giant ragweed, or horseweed control compared with 0 mg L−1. Similarly, common lambsquarters, Palmer amaranth, or pitted morningglory control was reduced at least 10% with carrier water hardness at 800 mg L−1 compared with 0 mg L−1. These results indicate carrier water at acidic pH and of no hardness is critical for dicamba and glyphosate application, and spray solution needs to be amended appropriately for an optimum efficacy.