We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bipolar disorder I (BD-I) is defined by episodes of mania, depression and euthymic states. These episodes are among other symptoms characterized by altered reward processing and negative symptoms (NS), in particular apathy. However, the neural correlates of these deficits are not well understood.
Methods
We first assessed the severity of NS in 25 euthymic BD-I patients compared with 25 healthy controls (HC) and 27 patients with schizophrenia (SZ). Then, we investigated ventral (VS) and dorsal striatal (DS) activation during reward anticipation in a Monetary Incentive Delayed Task and its association with NS.
Results
In BD-I patients NS were clearly present and the severity of apathy was comparable to SZ patients. Apathy scores in the BD-I group but not in the SZ group correlated with sub-syndromal depression scores. At the neural level, we found significant VS and DS activation in BD-I patients and no group differences with HC or SZ patients. In contrast to patients with SZ, apathy did not correlate with striatal activation during reward anticipation. Explorative whole-brain analyses revealed reduced extra-striatal activation in BD-I patients compared with HC and an association between reduced activation of the inferior frontal gyrus and apathy.
Conclusion
This study found that in BD-I patients apathy is present to an extent comparable to SZ, but is more strongly related to sub-syndromal depressive symptoms. The findings support the view of different pathophysiological mechanisms underlying apathy in the two disorders and suggest that extra-striatal dysfunction may contribute to impaired reward processing and apathy in BD-I.
The neurobiological underpinnings of avolition in schizophrenia remain unclear. Most brain imaging research has focused on reward prediction deficit and on ventral striatum dysfunction, but findings are not consistent. In the light of accumulating evidence that both ventral striatum and dorsal caudate play a key role in motivation, we investigated ventral striatum and dorsal caudate activation during processing of reward or loss in patients with schizophrenia.
Method
We used functional magnetic resonance imaging to study brain activation during a Monetary Incentive Delay task in patients with schizophrenia, treated with second-generation antipsychotics only, and in healthy controls (HC). We also assessed the relationships of ventral striatum and dorsal caudate activation with measures of hedonic experience and motivation.
Results
The whole patient group had lower motivation but comparable hedonic experience and striatal activation than HC. Patients with high avolition scores showed lower dorsal caudate activation than both HC and patients with low avolition scores. A lower dorsal caudate activation was also observed in patients with deficit schizophrenia compared to HC and patients with non-deficit schizophrenia. Dorsal caudate activity during reward anticipation was significantly associated with avolition, but not with anhedonia in the patient group.
Conclusions
These findings suggest that avolition in schizophrenia is linked to dorsal caudate hypoactivation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.