We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Triaging plays an important role in providing suitable care to a large number of casualties in a disaster setting. A Pediatric Physiological and Anatomical Triage Score (PPATS) was developed as a new secondary triage method. This study aimed to validate the accuracy of the PPATS in identifying injured pediatric patients who are admitted at a high frequency and require immediate treatment in a disaster setting. The PPATS method was also compared with the current triage methods, such as the Triage Revised Trauma Score (TRTS).
Methods:
A retrospective review of pediatric patients aged ≤15 years, registered in the Japan Trauma Data Bank (JTDB) from 2012 through 2016, was conducted and PPATS was performed. The PPATS method graded patients from zero to 22, and was calculated based on vital signs, anatomical abnormalities, and the need for life-saving interventions. It categorized patients based on their priority, and the intensive care unit (ICU)-indicated patients were assigned a PPATS ≥six. The accuracy of PPATS and TRTS in predicting the outcome of ICU-indicated patients was compared.
Results:
Of 2,005 pediatric patients, 1,002 (50%) were admitted to the ICU. The median age of the patients was nine years (interquartile range [IQR]: 6-13 years). The sensitivity and specificity of PPATS were 78.6% and 43.7%, respectively. The area under the receiver-operating characteristic (ROC) curve (AUC) was larger for PPATS (0.61; 95% confidence interval [CI], 0.59-0.63) than for TRTS (0.57; 95% CI, 0.56-0.59; P <.01). Regression analysis showed a significant correlation between PPATS and the Injury Severity Score (ISS; r2 = 0.353; P <.001), predicted survival rate (r2 = 0.396; P <.001), and duration of hospital stay (r2 = 0.252; P <.001).
Conclusion:
The accuracy of PPATS for injured pediatric patients was superior to that of current secondary triage methods. The PPATS method is useful not only for identifying high-priority patients, but also for determining the priority ranking for medical treatments and evacuation.
Triage has an important role in providing suitable care to the largest number of casualties in a disaster setting, but there are no secondary triage methods suitable for children. This study developed a new secondary triage method named the Pediatric Physiological and Anatomical Triage Score (PPATS) and compared its accuracy with current triage methods.
Methods
A retrospective chart review of pediatric patients under 16 years old transferred to an emergency center from 2014 to 2016 was performed. The PPATS categorized the patients, defined the intensive care unit (ICU)-indicated patients if the category was highest, and compared the accuracy of prediction of ICU-indicated patients among PPATS, Physiological and Anatomical Triage (PAT), and Triage Revised Trauma Score (TRTS).
Results
Among 137 patients, 24 (17.5%) were admitted to ICU. The median PPATS score of these patients was significantly higher than that of patients not admitted to ICU (11 [IQR: 9-13] versus three [IQR: 2-4]; P<.001). The optimal cut-off value of the PPTAS was six, yielding a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 95.8%, 86.7%, 60.5%, and 99.0%. The area under the receiver-operating characteristic curve (AUC) was larger for PPTAS than for PAT or TRTS (0.95 [95% CI, 0.87-1.00] versus 0.65 [95% CI, 0.58-0.72]; P<.001 and 0.79 [95% CI, 0.69-0.89]; P=.003, respectively). Regression analysis showed a significant association between the PPATS and the predicted mortality rate (r2=0.139; P<.001), ventilation time (r2=0.320; P<.001), ICU stay (r2=0.362; P<.001), and hospital stay (r2=0.308; P<.001).
Conclusions
The accuracy of PPATS was superior to other methods for secondary triage of children.
ToidaC, MugurumaT, AbeT, ShinoharaM, GakumazawaM, YogoN, ShirasawaA, MorimuraN. Introduction of Pediatric Physiological and Anatomical Triage Score in Mass-Casualty Incident. Prehosp Disaster Med. 2018;33(2):147–152.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.