We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present here a multiplicative version of the classical Kowalski–Słodkowski theorem, which identifies the characters among the collection of all functionals on a complex and unital Banach algebra A. In particular, we show that, if A is a $C^\star $-algebra, and if $\phi :A\to \mathbb C $ is a continuous function satisfying $ \phi (x)\phi (y) \in \sigma (xy) $ for all $x,y\in A$ (where $\sigma $ denotes the spectrum), then either $\phi $ is a character of A or $-\phi $ is a character of A.
If $A$ is a commutative $C^{\star }$-algebra and if $\unicode[STIX]{x1D719}:A\rightarrow \mathbb{C}$ is a continuous multiplicative functional such that $\unicode[STIX]{x1D719}(x)$ belongs to the spectrum of $x$ for each $x\in A$, then $\unicode[STIX]{x1D719}$ is linear and hence a character of $A$. This establishes a multiplicative Gleason–Kahane–Żelazko theorem for $C(X)$.
In this paper, semidefinite optimization method is proposed to estimate bounds on linear functionals defined on solutions of linear ordinary differential equations (ODEs) with smooth coefficients. The method can get upper and lower bounds by solving two semidefinite programs, not solving ODEs directly. Its convergence theorem is proved. The theorem shows that the upper and lower bounds series of linear functionals discussed can approach their exact values infinitely. Numerical results show that the method is effective for the estimation problems discussed. In addition, in order to reduce calculation amount, Cheybeshev polynomials are applied to replace Taylor polynomials of smooth coefficients in computing process.
This paper considers the problem of estimating the growth rate ρ of a p-type Galton–Watson process {Zn}. To this end, a general approach of possible independent interest to central limit theorems for discrete-time branching processes is developed. The idea is to adapt martingale central limit theory to martingale difference triangular arrays indexed by the set of all individuals ever alive. Iterated logarithm laws are derived by similar methods. Asymptotic distribution results and the a.s. asymptotic behaviour are derived for a maximum likelihood estimator based upon all parent–offspring combinations in a given number N of generations, and for the estimator which depends on the total generation sizes only.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.