We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study a class of optimal stopping problems under g-expectation, that is, the cost function is described by the solution of backward stochastic differential equations (BSDEs). Primarily, we assume that the reward process is
$L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$
-integrable with
$\mu>\mu_0$
for some critical value
$\mu_0$
. This integrability is weaker than
$L^p$
-integrability for any
$p>1$
, so it covers a comparatively wide class of optimal stopping problems. To reach our goal, we introduce a class of reflected backward stochastic differential equations (RBSDEs) with
$L\exp\bigl(\mu\sqrt{2\log\!(1+L)}\bigr)$
-integrable parameters. We prove the existence, uniqueness, and comparison theorem for these RBSDEs under Lipschitz-type assumptions on the coefficients. This allows us to characterize the value function of our optimal stopping problem as the unique solution of such RBSDEs.
We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.
In this paper, we first give a sufficient condition on the coefficients of a class of infinite time interval backward stochastic differential equations (BSDEs) under which the infinite time interval BSDEs have a unique solution for any given square integrable terminal value, and then, using the infinite time interval BSDEs, we study the convergence of g-martingales introduced by Peng via a kind of BSDEs. Finally, we study the applications of g-expectations and g-martingales in both finance and economics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.