We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A growth monitoring study (0–7 day of age) was conducted involving 87, one-day old Ross 308 male broilers to evaluate organ weights, bone parameters and ileal transcriptomic profile of broiler chicks as influenced by day 7 bodyweight (BW) grouping. The chicks were raised in a deep-litter house under common controlled environmental conditions and commercial starter diet. Chicks were grouped on day 7 into two distinct BW, super performer (SP) and under performer (UP) with bodyweights >260, and <200 g respectively. Results revealed that the SP chicks had significantly higher bone ash, sodium (Na), phosphorus (P) and rubidium (Rb) concentrations compared to the UP chicks on D7. In contrast, the UP chicks had significantly higher tibial cadmium (Cd), caesium (Cs) and lead (Pb) compared to the SP group; the UP chicks also had proportionally heavier relative gizzard weight than the SP chicks. The ileal transcriptomic data revealed differentially expressed genes (DEG) between the two groups of chicks, with 150 upregulated and 83 down-regulated genes with a fold change of ≥1.25 or ≤ 1.25 in the SP chicks relative to the UP chicks. Furthermore, functional annotation and pathway analysis revealed that some of these DEG were involved in various pathways including calcium signalling, Wnt signalling, cytokine-cytokine receptor interaction and mucin type O-glycan biosynthesis. This study revealed that chicks of the same breed and of uniform environmental and diet management exhibited differences in digestive organ weights, tibial bone characteristics and ileal gene expression that may be related to BW.
Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days.
Methods:
C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis.
Results:
The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways.
Conclusion:
This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.
The Lecythidaceae family tree, Couroupita guianensis Aubl, popularly known as Nagpushpa, is a widely cultivated ornamental tree with several uses in traditional medicine. The tree is revered as highly sacred in Indian traditional culture due to its uniquely shaped, fragrant flowers. Considering the significance, we were prompted to carry out the metabolite and transcriptome analysis of Nagapushpa. The flower, petals, stamen, stem and leaf of C. guianensis were metabolically profiled, and it was discovered that the flower tissue contained the highest terpenoid reservoir. A number of terpenoid pathway transcripts were also found in the flower tissue after transcriptome profiling. KEGG pathway mapping was carried out to correlate transcript sequences with the biosynthesis of different types of terpenes. We were able to clone three full-length terpene synthase gene candidates, i.e. monoterpene ocimene synthase, diterpene ent-kaurene synthase and sesquiterpene farnesene synthase. The transcript expression of selected terpene synthase genes was also verified in flower tissue. These cloned sequences were used for in silico structural investigations and protein function prediction at the level of 3D structure. The data presented in this study provide a comprehensive resource for the metabolic and transcriptomic profiles of C. guianensis. The study paves the way towards the elucidation of terpene biosynthetic pathway in C. guianensis and heterologous production of useful terpenoids in the future.
While first gene-drug pairs have emerged to be clinically actionable in the treatment of major depressive disorders (MDD) (e.g., CYP2D6 and TCAs/SSRIs), genomic studies have not yet been successful in identifying replicable and valid biomarkers of pharmacological treatment outcome. While some trials suggest that candidates such as CYP2D6, CYP2C19, CYP1A2, SLC6A4 and HTR2A polymorphisms may improve the prediction of response/remission, these results should be interpreted cautiously and required confirmation in larger samples. This presentation will cover state of the art of pharmacogenomics for MDD as well as the emerging field of pharmacotranscriptomics and functional genomics analyses in MDD. Specifically, pharmacotranscriptomics in combination with genomics may be a promising avenue in overcoming some of the current limitations in treatment response prediction research. More recently, the combined genetic effect of polygenic risk scores has shown promising results in predicting treatment response. Importantly, adequately large and well phenotyped clinical trials are required to be conducted with pharmacogenomics/-transcriptomics prospectively in mind.
Venom, a specialized form of poison, is actively injected by the venomous organism into its target animal to facilitate several quotidian functions. Over a hundred convergent origins of this remarkable functional trait, along with intricate mechanisms of venom delivery, have been documented across animals. Pinpointing the emergence of venom in squamate reptiles has important implications for understanding the evolutionary history of snakes, but it has been challenging. Several competing hypotheses have been put forth to explain the evolutionary origin of squamate venom, including assertions of single, dual and multiple origins. In this chapter, in addition to a summary of this ongoing dialogue, we provide an overview of ecology, composition, delivery mechanisms, and evolutionary models that explain the possible origin and diversification of venom in squamate reptiles.
Preterm birth (PTB) is one of the leading causes of deaths in infants under the age of five. Known risk factors of PTB include genetic factors, lifestyle choices or infection. Identification of omic biomarkers associated with PTB could aid clinical management of women at high risk of early labour and thereby reduce neonatal morbidity. This systematic literature review aimed to identify and summarise maternal omic and multi-omic (genomics, transcriptomics, proteomics and metabolites) biomarker studies of PTB. Original research articles were retrieved from three databases: PubMed, Web of Science and Science Direct, using specified search terms for each omic discipline. PTB studies investigating genomics, transcriptomics, proteomics or metabolomics biomarkers prior to onset of labour were included. Data were collected and reviewed independently. Pathway analyses were completed on the biomarkers from non-targeted omic studies using Reactome pathway analysis tool. A total of 149 omic studies were identified; most of the literature investigated proteomic biomarkers. Pathway analysis identified several cellular processes associated with the omic biomarkers reported in the literature. Study heterogeneity was observed across the research articles, including the use of different gestation cut-offs to define PTB. Infection/inflammatory biomarkers were identified across majority of papers using a range of targeted and non-targeted approaches.
Global human activities, such as greenhouse emissions and pollution, are promoting global warming, environmental changes and biodiversity reduction. Pristine environments such as those of Antarctica are not immune to these phenomena, as is noticeable from the increasing pace of the temperature shift registered within the continent in recent decades. In this study, we describe the first de novo transcriptome analysis of the endemic Antarctic springtail (= collembolan) Cryptopygus terranovus and we evaluate its global gene expression response following a mid-term exposure of 20 days to 18°C. Expression data are compared with wild specimens sampled from their native environment to outline the molecular mechanisms triggered by the thermal exposure. Although individual plasticity in transcript modulation is assessed, several pathways appear to be differentially modulated in springtails subjected to the heat treatment vs wild specimens. Through enrichment analysis, we show that protein catabolism, fatty acid metabolism and a sexual response characterized by spermatid development are induced, while carbohydrate consumption, lipid catabolism and tissue development are downregulated in treated samples compared to controls.
Autism spectrum disorder (autism) is a heterogeneous group of neurodevelopmental conditions characterized by early childhood-onset impairments in communication and social interaction alongside restricted and repetitive behaviors and interests. This review summarizes recent developments in human genetics research in autism, complemented by epigenetic and transcriptomic findings. The clinical heterogeneity of autism is mirrored by a complex genetic architecture involving several types of common and rare variants, ranging from point mutations to large copy number variants, and either inherited or spontaneous (de novo). More than 100 risk genes have been implicated by rare, often de novo, potentially damaging mutations in highly constrained genes. These account for substantial individual risk but a small proportion of the population risk. In contrast, most of the genetic risk is attributable to common inherited variants acting en masse, each individually with small effects. Studies have identified a handful of robustly associated common variants. Different risk genes converge on the same mechanisms, such as gene regulation and synaptic connectivity. These mechanisms are also implicated by genes that are epigenetically and transcriptionally dysregulated in autism. Major challenges to understanding the biological mechanisms include substantial phenotypic heterogeneity, large locus heterogeneity, variable penetrance, and widespread pleiotropy. Considerable increases in sample sizes are needed to better understand the hundreds or thousands of common and rare genetic variants involved. Future research should integrate common and rare variant research, multi-omics data including genomics, epigenomics, and transcriptomics, and refined phenotype assessment with multidimensional and longitudinal measures.
Posttraumatic stress disorder (PTSD) is a complex mental disorder afflicting approximately 7% of the population. The diverse number of traumatic events and the wide array of symptom combinations leading to PTSD diagnosis contribute substantial heterogeneity to studies of the disorder. Genomic and complimentary-omic investigations have rapidly increased our understanding of the heritable risk for PTSD. In this review, we emphasize the contributions of genome-wide association, epigenome-wide association, transcriptomic, and neuroimaging studies to our understanding of PTSD etiology. We also discuss the shared risk between PTSD and other complex traits derived from studies of causal inference, co-expression, and brain morphological similarities. The investigations completed so far converge on stark contrasts in PTSD risk between sexes, partially attributed to sex-specific prevalence of traumatic experiences with high conditional risk of PTSD. To further understand PTSD biology, future studies should focus on detecting risk for PTSD while accounting for substantial cohort-level heterogeneity (e.g. civilian v. combat-exposed PTSD cases or PTSD risk among cases exposed to specific traumas), expanding ancestral diversity among study cohorts, and remaining cognizant of how these data influence social stigma associated with certain traumatic events among underrepresented minorities and/or high-risk populations.
Protein undernutrition contributes to the development of various diseases in broad generations. Urinary metabolites may serve as non-invasive biomarkers of protein undernutrition; however, this requires further investigation. We aimed to identify novel urinary metabolites as biomarker candidates responsive to protein undernutrition. Adult rats were fed control (CT; 14 % casein) or isoenergetic low-protein (LP; 5 % casein) diets for 4 weeks. 1H NMR metabolomics was applied to urine, plasma and liver samples to identify metabolites responsive to protein undernutrition. Liver samples were subjected to mRNA microarray and quantitative PCR analyses to elucidate the mechanisms causing fluctuations in identified metabolites. Urinary taurine levels were significantly lower in the LP group than in the CT group at week 1 and remained constant until week 4. Hepatic taurine level and gene expression level of cysteine dioxygenase type 1 were also significantly lower in the LP group than in the CT group. Urinary trimethylamine N-oxide (TMAO) levels were significantly higher in the LP group than in the CT group at week 2 and remained constant until week 4. Hepatic TMAO level and gene expression levels of flavin-containing mono-oxygenase 1 and 5 were also significantly higher in the LP group than in the CT group. In conclusion, urinary taurine and TMAO levels substantially responded to protein undernutrition. Furthermore, changes in hepatic levels of these metabolites and gene expressions associated with their metabolic pathways were also reflected in their fluctuating urinary levels. Thus, taurine and TMAO could act as non-invasive urinary biomarker candidates to detect protein undernutrition.
Lifestyle intervention may be effective in reducing type 2 diabetes mellitus incidence and cardiometabolic risk. A more personalised nutritional approach based on an individual or subgroup-based metabolic profile may optimise intervention outcome. Whole body insulin resistance (IR) reflects defective insulin action in tissues such as muscle, liver, adipose tissue, gut and brain, which may precede the development of cardiometabolic diseases. IR may develop in different organs but the severity may vary between organs. Individuals with more pronounced hepatic IR have a distinct plasma metabolome and lipidome profile as compared with individuals with more pronounced muscle IR. Additionally, genes related to extracellular modelling were upregulated in abdominal subcutaneous adipose tissue in individuals with more pronounced hepatic IR, whilst genes related to inflammation as well as systemic low-grade inflammation were upregulated in individuals with primarily muscle IR. There are indications that these distinct IR phenotypes may also respond differentially to dietary macronutrient composition. Besides metabolic phenotype, microbial phenotype may be of importance in personalising the response to diet. In particular fibres or fibre mixtures, leading to a high distal acetate and SCFA production may have more pronounced effects on metabolic health. Notably, individuals with prediabetes may have a reduced response to diet-induced microbiota modulation with respect to host insulin sensitivity and metabolic health outcomes. Overall, we need more research to relate metabolic subphenotypes to intervention outcomes to define more optimal diets for individuals with or predisposed to chronic metabolic diseases.
For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.
Bloodfeeding requires several adaptations that allow the parasite to feed efficiently. Leeches and other hematophagous animals have developed different mechanisms to inhibit hemostasis, one of the main barriers imposed by their hosts. Limnobdella mexicana is a member of the leech family Praobdellidae, a family of host generalists known for their preference to attach on mucosal membranes of mammals, such as those in nasopharyngeal cavities, bladders and ocular orbits. Previous studies have hypothesized a positive relationship between diversity of anticoagulants and diversity of hosts in bloodfeeding leeches. However, orthology determination of putative anticoagulants and the lack of standardization of sequencing effort and method hinder comparisons between publicly available transcriptomes generated in different laboratories. In the present study, we examine the first transcriptome of a praobdellid leech and identify 15 putative anticoagulants using a phylogeny-based inference approach, amino-acid conservation, Pfam domains and BLAST searches. Our phylogenetic analyses suggest that the ancestral leech was able to inhibit factor Xa and that some hirudins that have been reported in previous studies on leech anticoagulants may not be orthologous with the archetypal hirudin.
In salmon farming, the scarcity of fish oil has driven a shift towards the use of plant-based oil from vegetable or seed, leading to fish feed low in long-chain PUFA (LC-PUFA) and cholesterol. Atlantic salmon has the capacity to synthesise both LC-PUFA and cholesterol, but little is known about the regulation of synthesis and how it varies throughout salmon life span. Here, we present a systemic view of lipid metabolism pathways based on lipid analyses and transcriptomic data from salmon fed contrasting diets of plant or fish oil from first feeding. We analysed four tissues (stomach, pyloric caeca, hindgut and liver) at three life stages (initial feeding 0·16 g, 2·5 g fingerlings and 10 g juveniles). The strongest response to diets higher in plant oil was seen in pyloric caeca of fingerlings, with up-regulation of thirty genes in pathways for cholesterol uptake, transport and biosynthesis. In juveniles, only eleven genes showed differential expression in pyloric caeca. This indicates a higher requirement of dietary cholesterol in fingerlings, which could result in a more sensitive response to plant oil. The LC-PUFA elongation and desaturation pathway was down-regulated in pyloric caeca, probably regulated by srebp1 genes. In liver, cholesterol metabolism and elongation and desaturation genes were both higher on plant oil. Stomach and hindgut were not notably affected by dietary treatment. Plant oil also had a higher impact on fatty acid composition of fingerlings compared with juveniles, suggesting that fingerlings have less metabolic regulatory control when primed with plant oil diet compared with juveniles.
A previous study showed that flesh quality of large yellow croaker (LYC) was improved by feeding dietary hydroxyproline (Hyp, 0·69 %). The aim of the present study was to explore the underlying mechanisms using transcriptomics and metabolomics analysis. The metabolomics analysis showed that muscle metabolite profiles could be clearly separated between the basal diet and Hyp supplementation diet. Metabolites including betaine, Hyp, lactate, glucose-6-phosphate, trimethylamine N-oxide, taurine, creatine, inosine monophosphate, histamine and serine made significant contribution to the separation. Compared with the control diet, the transcriptomics analysis identified a total of 334 different expressed genes, of which 298 genes were up-regulated and thirty-six genes were down-regulated in the Hyp supplementation group. The altered genes of the Hyp supplementation group were involved in collagen metabolism, lipid metabolism and energy metabolism. The integrated results revealed that the increased muscle collagen content in the Hyp supplementation diet was partly because of its enhancement of biosynthesis and the reduction of degradation. The improvement of muscle quality by dietary Hyp supplementation could also be related to a good utilisation of glucose through enhancement of glycolysis. It was concluded that dietary Hyp supplementation could improve flesh quality because of comprehensive metabolism changes including elevated collagen content, glycolysis, lipid metabolism and flesh flavour of LYC. The present study provided a novel strategy to understand the underlying molecular mechanism of flesh quality of LYC fed diet with Hyp supplementation.
Leafy spurge (Euphorbia esula L.) is an invasive perennial weed infesting range and recreational lands of North America. Previous research and omics projects with E. esula have helped develop it as a model for studying many aspects of perennial plant development and response to abiotic stress. However, the lack of an assembled genome for E. esula has limited the power of previous transcriptomics studies to identify functional promoter elements and transcription factor binding sites. An assembled genome for E. esula would enhance our understanding of signaling processes controlling plant development and responses to environmental stress and provide a better understanding of genetic factors impacting weediness traits, evolution, and herbicide resistance. A comprehensive transcriptome database would also assist in analyzing future RNA-seq studies and is needed to annotate and assess genomic sequence assemblies. Here, we assembled and annotated 56,234 unigenes from an assembly of 589,235 RNA-seq-derived contigs and a previously published Sanger-sequenced expressed sequence tag collection. The resulting data indicate that we now have sequence for >90% of the expressed E. esula protein-coding genes. We also assembled the gene space of E. esula by using a limited coverage (18X) genomic sequence database. In this study, the programs Velvet and Trinity produced the best gene-space assemblies based on representation of expressed and conserved eukaryotic genes. The results indicate that E. esula contains as much as 23% repetitive sequences, of which 11% are unique. Our sequence data were also sufficient for assembling a full chloroplast and partial mitochondrial genome. Further, marker analysis identified more than 150,000 high-quality variants in our E. esula L-RNA–scaffolded, whole-genome, Trinity-assembled genome. Based on these results, E. esula appears to have limited heterozygosity. This study provides a blueprint for low-cost genomic assemblies in weed species and new resources for identifying conserved and novel promoter regions among coordinately expressed genes of E. esula.
The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic information about nontarget resistance mechanisms in any of them ranges from none to little. Here, we report a study combining iGentifier transcriptome analysis, cDNA sequencing, and a heterologous microarray analysis to explore potential molecular and transcriptomic mechanisms of nontarget glyphosate resistance of horseweed. The results indicate that similar molecular mechanisms might exist for nontarget herbicide resistance across multiple resistant plants from different locations, even though resistance among these resistant plants likely evolved independently and available evidence suggests resistance has evolved at least four separate times. In addition, both the microarray and sequence analyses identified non–target-site resistance candidate genes for follow-on functional genomics analysis.
Infection by Xanthomonas axonopodis pv. manihotis (Xam) of the perennial rangeland weed leafy spurge was tested to see whether Xam might serve a potential biological control agent for this invasive weed. Although leafy spurge was susceptible to Xam infection, it recovered within 21 d after inoculation (DAI). Microarray resources available for leafy spurge allowed us to follow the physiological and signaling pathways that were altered as leafy spurge was infected and then recovered from Xam infection. The first physiological effect of Xam infection was a down-regulation of photosynthetic processes within 1 DAI. By 7 DAI, numerous processes associated with well-documented pathogenesis responses of plants were observed. Although some pathogenesis responses were still detectable at 21 DAI, other processes associated with meristem development were noted. Ontological analysis of potential signaling systems indicated jasmonic acid plays a significant role in the recovery processes.
Schistosomiasis is a significant cause of human morbidity and mortality. We performed a genome-wide transcriptional survey of liver biopsies obtained from Chinese patients with chronic schistosomiasis only, or chronic schistosomiasis with a current or past history of viral hepatitis B. Both disease groups were compared with patients with no prior history or indicators of any liver disease. Analysis showed in the main, downregulation in gene expression, particularly those involved in signal transduction via EIF2 signalling and mTOR signalling, as were genes associated with cellular remodelling. Focusing on immune associated pathways, genes were generally downregulated. However, a set of three genes associated with granulocytes, MMP7, CLDN7, CXCL6 were upregulated. Differential gene profiles unique to schistosomiasis included the gene Granulin which was decreased despite being generally considered a marker for liver disease, and IGBP2 which is associated with increased liver size, and was the most upregulated gene in schistosomiasis only patients, all of which presented with hepatomegaly. The unique features of gene expression, in conjunction with previous reports in the murine model of the cellular composition of granulomas, granuloma formation and recovery, provide an increased understanding of the molecular immunopathology and general physiological processes underlying hepatic schistosomiasis.
The principles embodied by the Developmental Origins of Health and Disease (DOHaD) view of ‘life history’ trajectory are increasingly underpinned by biological data arising from molecular-based epigenomic and transcriptomic studies. Although a number of ‘omic’ platforms are now routinely and widely used in biology and medicine, data generation is frequently confounded by a frequency distribution in the measurement error (an inherent feature of the chemistry and physics of the measurement process), which adversely affect the accuracy of estimation and thus, the inference of relationships to other biological measures such as phenotype. Based on empirical derived data, we have previously derived a probability density function to capture such errors and thus improve the confidence of estimation and inference based on such data. Here we use published open source data sets to calculate parameter values relevant to the most widely used epigenomic and transcriptomic technologies Then by using our own data sets, we illustrate the benefits of this approach by specific application, to measurement of DNA methylation in this instance, in cases where levels of methylation at specific genomic sites represents either (1) a response variable or (2) an independent variable. Further, we extend this formulation to consideration of the ‘bivariate’ case, in which the co-dependency of methylation levels at two distinct genomic sites is tested for biological significance. These tools not only allow greater accuracy of measurement and improved confidence of functional inference, but in the case of epigenomic data at least, also reveal otherwise cryptic information.