We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the distribution of the parthenopid crab species Distolambrus maltzami from the North-east Atlantic with a first record from UK seas. The distribution of D. maltzami in the Celtic-Biscay area in the eastern Atlantic, is both described based on recent records from survey data and estimated from modelling its environmental niche. The predicted probability of occurrence is greatest in areas with fluctuating tidal currents and water masses that are rich in chlorophyll-a, cold (minimum bottom temperature lower than 10°C) and oxygen-rich. We include a simple key to distinguish the two parthenopid crab species previously encountered in the region and highlight the importance of a multidisciplinary approach to fisheries data collection.
Psychologists typically measure beliefs and preferences using self-reports, whereas economists are much more likely to infer them from behavior. Prediction markets appear to be a victory for the economic approach, having yielded more accurate probability estimates than opinion polls or experts for a wide variety of events, all without ever asking for self-reported beliefs. We conduct the most direct comparison to date of prediction markets to simple self-reports using a within-subject design. Our participants traded on the likelihood of geopolitical events. Each time they placed a trade, they first had to report their belief that the event would occur on a 0–100 scale. When previously validated aggregation algorithms were applied to self-reported beliefs, they were at least as accurate as prediction-market prices in predicting a wide range of geopolitical events. Furthermore, the combination of approaches was significantly more accurate than prediction-market prices alone, indicating that self-reports contained information that the market did not efficiently aggregate. Combining measurement techniques across behavioral and social sciences may have greater benefits than previously thought.
Conducting market research to find solutions, identifying opportunities and defining the value of new inventions are some of the key points covered in this chapter. A carefully defined indication can make the difference between success and failure in medical product development and this chapter explains how to get better at nailing the exact problem to be solved. Market segmentation examples and cases show how to prevent being misled on market size and market projections. A referral chain tool is presented for closely analyzing market positioning and value proposition of the new technology or product. Key market drivers and hurdles used to dynamically determine market size, adoption rates, and strategize on product development cycles are discussed and presented in this chapter.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
A pilot project has been proceeded to map
$1\, \textrm{deg}^2$
on the Galactic plane for radio recombination lines (RRLs) using the Five-hundred-metre Aperture Spherical Telescope (FAST). The motivation is to verify the techniques and reliabilities for a large-scale Galactic plane RRL survey with FAST aiming to investigate the ionised environment in the Galaxy. The data shows that the bandpass of the FAST 19 beam L-band is severely affected by radio frequency interferences and standing wave ripples, which can hardly be corrected by traditional low order polynomials. In this paper, we investigate a series of penalised least square (PLS) based baseline correction methods for radio astronomical spectra that usually contain weak signals with high level of noise. Three promising penalised least squares based methods, AsLS, arPLS, and asPLS are evaluated. Adopting their advantages, a modified method named rrlPLS is developed to optimise the baseline fitting to our RRL spectra. To check their effectiveness, the four methods are tested by simulations and further verified using observed data sets. It turns out that the rrlPLS method, with optimised parameter
$\lambda=2\times10^8$
, reveals the most sensitive and reliable emission features in the RRL map. By injecting artificial line profiles into the real data cube, a further evaluation of profile distortion is conducted for rrlPLS. Comparing to simulated signals, the processed lines with low signal-to-noise ratio are less affected, of which the uncertainties are mainly caused by the rms noise. The rrlPLS method will be applied for baseline correction in future data processing pipeline of FAST RRL survey. Configured with proper parameters, the rrlPLS technique verified in this work may also be used for other spectroscopy projects.
The discovery of new clear windows in the Galactic plane using the VVV near-IR extinction maps allows the study of the structure of the Milky Way (MW) disk. The ultimate goal of this work is to map the spiral arms in the far side of the MW, which is a relatively unexplored region of our Galaxy, using red clump (RC) giants as distance indicators. We search for near-IR clear windows located at low Galactic latitudes (
$|b|< 1$
deg) in the MW disk using the VVV near-IR extinction maps. We have identified two new windows named VVV WIN 1607–5258 and VVV WIN 1475–5877, respectively, that complement the previously known window VVV WIN 1713–3939. We analyse the distribution of RC stars in these three clear near-IR windows and measure their number density along the line of sight. This allows us to find overdensities in the distribution and measure their distances along the line of sight. We then use the VVV proper motions in order to measure the kinematics of the RC stars at different distances. We find enhancements in the distance distribution of RC giants in all the studied windows, interpreting them as the presence of spiral arms in the MW disk. These structures are absent in the current models of synthetic population for the same MW lines of sight. We were able to trace the end of the Galactic bar, the Norma arm, as well as the Scutum–Centaurus arm in the far disk. Using the VVV proper motions, we measure the kinematics for these Galactic features, confirming that they share the bulk rotation of the Galactic disk.
We present a catalogue of isolated field elliptical (IfE) galaxies drawn from the W1 field of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). 228 IfEs were identified from a flux-limited
$(r<21.8)$
galaxy catalogue which corresponds to a density of 3 IfE/sq.deg. For comparison we consider a sample of elliptical galaxies living in dense environments, based on identification of the brightest cluster galaxies (BGCs) in the same survey. Using the same dataset for the comparison sample ensures a uniform selection, including in the redshift range as IfEs (i.e.
$0.1<z<0.9$
). A comparison of elliptical galaxies in different environments reveals that IfEs and BCGs have similar behaviours in their colours, star formation activities, and scaling relations of mass–size and size–luminosity. IfEs and BCGs have similar slopes in the scaling relations with respect to cluster ellipticals within the
$-24 \leq M_{r} \leq -22$
magnitude and
$10.2< \textrm{log}(M_{*}/ \textrm M_\odot)\leq12.0$
mass ranges. Three IfEs identified in this study can be associated with fossil groups found in the same survey area which gives clues for future studies.
Finding the population of pulsars in the Milky Way galaxy requires a knowledge of the parameters and limitations of the various surveys made with different instruments and in different regions of the sky. We list the available survey data and show how models of the galactic population can be compared with the observational data, allowing estimates of pulsar birthrate and lifetime. Determination of accurate positions of individual pulsars require a Solar System ephemeris and a complex geometrical computation. Binary pulsar orbits display reletivistic effects which can be measured with remarkable precision to yield parameters of orbits and checks on relativistic theory.
Digitisation of incoming signals at nanosecond intervals allows complex manipulation of radio signals to provide for simultaneous multi-beam and multi-frequency operation. The periodic signals from pulsars must be extracted from background noise, allowing for frequency dispersion in propagation through the interstellar medium.
Courts and scholars need to be judicious in translating the lessons of consumer neuroscience into new trademark doctrine. The chapter begins by cautioning against the motivated use of science in the courtroom, using the introduction of trademark survey evidence from trained psychologists in the early 1900s as a cautionary tale. Psychologists recognize two models of consumer reasoning: an automatic, emotional model and a deliberative, cognitive model. Neuroscience offers a window into both processes, but courts should be wary of admitting evidence purporting to measure non-deliberative changes in mark meaning. Trademark law has historically limited its remit to the informational components of advertising, in part because changes in a brand’s emotional meaning have been difficult to calculate. Neuroscientific evidence of these changes may now be available, but using them to decide trademark cases could lead to anti-competitive outcomes.
Copyright’s test for infringement takes a uniform approach to aesthetics by treating all audiences and modalities of creative expression the same. We now know that this is not how aesthetic judgment works. The chapter describes how the law can be reformed to take differences in audiences and artistic media into account. The chapter also responds to potential objections to the use of neuroaesthetics in this legal context. A better understanding of how audiences perceive art, if implemented in the right manner, can help protect both economic and non-economic values embedded in copyright law in a more transparent way.
The FAST Ultra-Deep Survey (FUDS) is a blind survey that aims for the direct detection of H i in galaxies at redshifts
$z<0.42$
. The survey uses the multibeam receiver on the Five-hundred-metre Aperture Spherical Telescope (FAST) to map six regions, each of size
$0.72\ \textrm{deg}^2$
at high sensitivity (
${\sim}50\,\mu \textrm{Jy}$
) and high-frequency resolution (23 kHz). The survey will enable studies of the evolution of galaxies and their H i content with an eventual sample size of
${\sim}1\,000$
. We present the science goals, observing strategy, the effects of radio frequency interference at the FAST site, our mitigation strategies and the methods for calibration, data reduction and imaging as applied to initial data. The observations and reductions for the first field, FUDS0, are completed, with around 128 H i galaxies detected in a preliminary analysis. Example spectra are given in this paper, including a comparison with data from the overlapping GAL2577 field of Arecibo Ultra-Deep Survey.
We survey the empirical literature on ethical preferences, covering both survey studies and incentivized laboratory experiments. Crucial axioms such as the Pigou-Dalton transfer principle are not accepted by a large fraction of the subjects. Moreover, in formulating their distributive preferences, subjects attach much importance to the sources of income differences. Their preferences behind a veil of ignorance do not coincide with their preferences in the position of a social planner. These results suggest that prioritarian policy proposals will not necessarily be supported by a majority of the population. Although the majority opinion does not necessarily reflect the ethically desirable perspective, the empirical results still raise some interesting normative challenges
The aim of this study was to pilot test the Household Emergency Preparedness Instrument (HEPI) with a diverse sample, allowing for assessment of reliability and validity of the instrument. The HEPI is an international, all-hazards questionnaire created to measure disaster preparedness of households, which results in data that can be used to enhance health promotion/disease prevention for individuals and promote resilience for communities.
Methods:
A cross-sectional study of faculty, staff, and students (N = 284) was completed to perform factor analysis to establish the HEPI’s construct validity and compare preparedness across groups.
Results:
The factor analysis revealed 2 dimensions of general preparedness, explaining 35% of the sample variance (Cronbach’s α = 0.89): preparedness actions and planning (α = 0.86) and disaster supplies and resources (α = 0.80). This factor analysis resulted in the revision of the subscaling of HEPI questions. Consistent with previous studies, faculty/staff, older age, higher income, and those with previous disaster experience were more prepared. The mean score was 15.28 out of 40 points.
Conclusions:
The HEPI is easy to administer and explains an acceptable amount of variance. The reliability was strong in this assessment, particularly for a pilot test. Construct, criterion, face, and content validity support the adequacy of the HEPI to capture essentials of household emergency preparedness.
We describe the scientific goals and survey design of the First Large Absorption Survey in H i (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (H i) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of
$\delta \approx +40\,\deg$
at frequencies between 711.5 and 999.5 MHz. At redshifts between
$z = 0.4$
and
$1.0$
(look-back times of 4 – 8 Gyr), the H i content of the Universe has been poorly explored due to the difficulty of carrying out radio surveys for faint 21-cm line emission and, at ultra-violet wavelengths, space-borne searches for Damped Lyman-
$\alpha$
absorption in quasar spectra. The ASKAP wide field of view and large spectral bandwidth, in combination with a radio-quiet site, will enable a search for absorption lines in the radio spectra of bright continuum sources over 80% of the sky. This survey is expected to detect at least several hundred intervening 21-cm absorbers and will produce an H i-absorption-selected catalogue of galaxies rich in cool, star-forming gas, some of which may be concealed from optical surveys. Likewise, at least several hundred associated 21-cm absorbers are expected to be detected within the host galaxies of radio sources at
$0.4 < z < 1.0$
, providing valuable kinematical information for models of gas accretion and jet-driven feedback in radio-loud active galactic nuclei. FLASH will also detect OH 18-cm absorbers in diffuse molecular gas, megamaser OH emission, radio recombination lines, and stacked H i emission.
In Autumn 2021 the British and Irish Association of Law Librarians (BIALL) carried out a follow-up survey to the May 2020 ‘Covid-19 Industry Survey'. BIALL President, Catherine Bowl, gives an overview of the findings of ‘State of the Nation' survey which was published in December 2021. The results of the survey are to be found on the pages that follow this introduction.
Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars (
$\epsilon_r\lesssim10^{-4}$
), the fraction of magnetic energy in the GRB jet (
$\epsilon_B\lesssim2\times10^{-4}$
), and the radio emission efficiency of the magnetar remnant (
$\epsilon_r\lesssim10^{-3}$
). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of
$z\sim0.6$
. Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.
The Rapid ASKAP Continuum Survey (RACS) is the first large sky survey using the Australian Square Kilometre Array Pathfinder (ASKAP), covering the sky south of
$+41^\circ$
declination. With ASKAP’s large, instantaneous field of view,
${\sim}31\,\mathrm{deg}^2$
, RACS observed the entire sky at a central frequency of 887.5 MHz using 903 individual pointings with 15 minute observations. This has resulted in the deepest radio survey of the full Southern sky to date at these frequencies. In this paper, we present the first Stokes I catalogue derived from the RACS survey. This catalogue was assembled from 799 tiles that could be convolved to a common resolution of
$25^{\prime\prime}$
, covering a large contiguous region in the declination range
$\delta=-80^{\circ}$
to
$+30^\circ$
. The catalogue provides an important tool for both the preparation of future ASKAP surveys and for scientific research. It consists of
$\sim$
2.1 million sources and excludes the
$|b|<5^{\circ}$
region around the Galactic plane. This provides a first extragalactic catalogue with ASKAP covering the majority of the sky (
$\delta<+30^{\circ}$
). We describe the methods to obtain this catalogue from the initial RACS observations and discuss the verification of the data, to highlight its quality. Using simulations, we find this catalogue detects 95% of point sources at an integrated flux density of
$\sim$
5 mJy. Assuming a typical sky source distribution model, this suggests an overall 95% point source completeness at an integrated flux density
$\sim$
3 mJy. The catalogue will be available through the CSIRO ASKAP Science Data Archive (CASDA).
One of the principal systematic constraints on the Epoch of Reionisation (EoR) experiment is the accuracy of the foreground calibration model. Recent results have shown that highly accurate models of extended foreground sources, and including models for sources in both the primary beam and its sidelobes, are necessary for reducing foreground power. To improve the accuracy of the source models for the EoR fields observed by the Murchison Widefield Array (MWA), we conducted the MWA Long Baseline Epoch of Reionisation Survey (LoBES). This survey consists of multi-frequency observations of the main MWA EoR fields and their eight neighbouring fields using the MWA Phase II extended array. We present the results of the first half of this survey centred on the MWA EoR0 observing field (centred at RA (J2000)
$0^\mathrm{h}$
, Dec (J2000)
$-27^{\circ}$
). This half of the survey covers an area of 3 069 degrees
$^2$
, with an average rms of 2.1 mJy beam–1. The resulting catalogue contains a total of 80 824 sources, with 16 separate spectral measurements between 100 and 230 MHz, and spectral modelling for 78
$\%$
of these sources. Over this region we estimate that the catalogue is 90
$\%$
complete at 32 mJy, and 70
$\%$
complete at 10.5 mJy. The overall normalised source counts are found to be in good agreement with previous low-frequency surveys at similar sensitivities. Testing the performance of the new source models we measure lower residual rms values for peeled sources, particularly for extended sources, in a set of MWA Phase I data. The 2-dimensional power spectrum of these data residuals also show improvement on small angular scales—consistent with the better angular resolution of the LoBES catalogue. It is clear that the LoBES sky models improve upon the current sky model used by the Australian MWA EoR group for the EoR0 field.
This chapter tests two intermediate links in the chain connecting police integration and citizens’ behavior. Interviews and focus groups reveal that citizens use cues like officers’ accents, names, and facial hair styles to determine their identities. Comparing survey responses with data on officer demographics suggests that citizens’ perceptions correlate closely with actual local integration. On the other hand, marginalized-group citizens appear not to translate their local-level observations of integration into perceptions that the institution overall is integrated. I demonstrate that citizens process observations of police demographics through their accumulated experiences with the police and the state. In the shadow of historical exclusion, citizens update perceptions of the institution incrementally.