We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we present dynamical systems and their probabilistic description. We distinguish between system descriptions with discrete and continuous state-spaces as well as discrete and continuous time. We formulate examples of statistical models including Markov models, Markov jump processes, and stochastic differential equations. In doing so, we describe fundamental equations governing the evolution of the probability of dynamical systems. These equations include the master equation, Langevin equation, and Fokker–Plank equation. We also present sampling methods to simulate realizations of a stochastic dynamical process such as the Gillespie algorithm. We end with case studies relevant to chemistry and physics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.