We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 7 explores the ability of GPUs to perform multiple tasks simultaneously, including overlapping IO with computation and the simultaneous running of multiple kernels. CUDA streams and events are advanced features that allow users to manage multiple asynchronous tasks running on the GPU. Examples are given and the NVIDIA visual profiler (NVVP) is used to visualise the timeline for tasks in multiple CUDA streams. Asynchronous disk IO on the host PC can also be performed and examples using the C++ <threads> are given. Finally, the new CUDA graphs feature is introduced. This provides a wrapper for efficiently launching large numbers of kernel calls for complex workloads.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.