We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist scheme is recommended.
The importance of buoyancy relative to free-stream flow is described using an adapted Froude number $Fr' = U/f_0^{1/3}$, where $U$ is the flow speed and $f_0$ is the exhaust buoyancy flux per unit length. We varied $Fr'$ by changing the free-stream flow rate, the exhaust flow rate and the buoyancy of the exhaust. We have experimentally identified two flow regimes, depending on the value of $Fr'$. For high $Fr'$ (low buoyancy), dispersion is driven by inertial forces in the wake and the amount of a pollutant in the wake is independent of $Fr'$. For moderate $Fr'$, a wall plume develops up the back of the step, directly feeding the pollutant into the shear layer, but without altering the shape of the wake. This wall plume reduces the amount of pollutant trapped behind the step. We developed an analytic model to describe the quantity of pollutant trapped behind the step. The model predicts the transition from buoyancy being negligible to being the dominant transport mechanism within the wake. We have hypothesised and observed some evidence of a third regime at low $Fr'$, when the buoyancy is sufficient to distort the macrostructure of the shear layer and wake.
This chapter introduces the mechanical property of a fluid when it is at rest. In the absence of shear force, fluid is balanced between pressure force and body force. A universal differential equation is derived to describe the pressure distribution in a static fluid. This equation, can be called hydrostatic equilibrium equation, is the key to solve any fluid static problems. Two typical situations are then discussed as applications of the hydrostatic equilibrium equation, one is static fluid under the action of gravity, the other is fluid under the action of inertial forces. Differences and similarities of fluids and solids in the transfer of force are discussed in the end. Atmospheric pressure at different heights is calculated in the “Expanded Knowledge” section.
Planets and stars have liquid layers that can support internal gravity waves and inertial waves respectively restored by the buoyancy and Coriolis forces. Both types of waves are excited by tides, leading to resonantly amplified dissipation. We review the theoretical formalism to compute these resonances and present some challenges and methods to overcome them.
We present a discussion of the structure of line fires, a canonical configuration in wildland fire research. This configuration allows detailed studies of the effects of wind and sloped terrain on heat transfer and fire spread mechanisms at flame scale. We emphasize in the discussion the existence of two limiting flame regimes in line fires: the plume-dominated regime, in which the flame is detached from the ground, and the wind or slope-driven regime, in which the flame is attached to that surface. These two regimes correspond to dramatically different flame structures, flow patterns, modes of heat transfer, and flame spread mechanisms. The transition between the two flame regimes is discussed in terms of critical values of Byram's convection number or slope angle. We limit our discussion to a simplified configuration corresponding to gas-fueled flames. Hence the heat release rate of the flame is controlled and the flame is non-spreading; difficulties associated with real wildland fuel are left out of the discussion. The structure of the line fires is discussed through results from high-resolution simulations of laboratory-scale flames based on a large eddy simulation (LES) approach. Additional insight is also obtained through a scaling analysis based on an integral model.
Chapter 5 is mainly devoted to the interaction between waves and immersed bodies. In general, an immersed body may oscillate in six different modes, three translating modes (surge, sway, heave) and three rotating modes (roll, pitch, yaw). An oscillating body radiates waves, and an incident wave may induce a corresponding excitation force for each one of the six modes. When a body oscillates, it radiates waves. Such radiated waves and excitation forces are related by so-called reciprocity relationships. Such relations are derived not only for a single oscillating body but even for a group (or 'array') of immersed bodies. Axisymmeric bodies and two-dimensional bodies are discussed in separate sections of the chapter. Although most of this chapter discusses wave-body dynamics in the frequency domain, a final section treats an immersed body in the time domain.
This review presents a synthesis of four decades of palsa studies based on field experiments and observations mainly in Fennoscandia, as well as laboratory measurements. Palsas are peat-covered mounds with a permanently frozen core; in Finnish Lapland, they range from 0.5 to 7 m in height and from 2 to 150 m in diameter. These small landforms are characteristic of the southern margin of the discontinuous permafrost zone. Palsa formation requires certain environmental conditions: long-lasting air temperature below 0°C, thin snow cover, and low summer precipitation. The development and persistence of their frozen core is sensitive to the physical properties of peat. The thermal conductivity of wet and frozen peat is high, and it decreases significantly as the peat dries and thaws. This affects the development of the active layer and makes its response to climate change complex. The insulating properties of dry peat during hot and dry summers moderate the thawing of the active layer on palsas. In contrast, humid and wet weather during the summer causes deep thawing and may destroy the frozen core of palsas. Ice layers in palsas have previously been interpreted as ice segregation features but because peat is not frost-susceptible, the ice layers are now reinterpreted as resulting from ice growth at the base of a frozen core that is effectively floating in a mire.
The study of foraging success in marine predators is complicated by a lack of direct observations and relies mostly on proxy measures of foraging success. This study assessed spatial and temporal patterns of changes in body condition of southern elephant seals (Mirounga leonina) from Marion Island, based on changes in drift rates (which are related to gains and losses of blubber). Seals showed substantial individual variation in condition changes throughout migrations, which was not explained by age-, sex- or reproductive stages. Substantial variation was also evident in the spatial patterns of condition changes, although an area south of the Antarctic Polar Front (APF) between 10°E and 35°E was evidently associated with moderate, yet consistent gains in condition. Seals that foraged more distantly from Marion Island displayed more extreme gains and losses in condition, suggesting a possible risk/reward trade-off associated with foraging further afield versus closer to the island. Increased condition was consistently negatively related to sea surface temperature, suggesting that seals were generally improving their condition faster in cooler water masses. These results support previous studies predicting that continued warming of the Southern Ocean will result in changes to the habitat use patterns exhibited by southern elephant seals at sea.
Improper activation and swelling of in vitro produced eggs of European eel, Anguilla anguilla, has been shown to negatively affect embryonic development and hatching. We investigated this phenomenon by examining the effects of salinity and sea salt type on egg dimensions, cell cleavage patterns and egg buoyancy. Egg diameter after activation, using natural seawater adjusted to different salinities, varied among female eels, but no consistent pattern emerged. Activation salinities between 30–40 practical salinity unit (psu) produced higher quality eggs and generally larger egg diameters. Chorion diameters reached maximal values of 1642 ± 8 μm at 35 psu. A positive relationship was found between egg neutral buoyancy and activation salinity. Nine salt types were investigated as activation and incubation media. Five of these types induced a substantial perivitelline space (PVS), leading to large egg sizes, while the remaining four salt types resulted in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study points to the importance of considering ionic composition of the media when rearing fish eggs and further studies are encouraged.
We investigate the longitudinal dispersion of a passive tracer by a gravity-driven flow in a porous medium consisting of a series of independent horizontal layers connected to a constant pressure source. We show that in a formation of given vertical extent, the total flux is only weakly dependent on the number of layers, and is very similar to that in a single layer of the same total depth. However, although the flow speed in each layer is approximately uniform, the speed gradually increases with layer depth. As a result, if a pulse of tracer is released in the flow it will migrate more rapidly through the lower layers, leading to longitudinal dispersion of the tracer. Eventually, the location of the tracer in the different layers may become separated in space so that a sufficiently distant observation well would detect a series of discrete pulses of tracer rather than the original coherent input, as would occur in a single permeable layer. For a constant pressure source, at long times, the standard deviation of the longitudinal distribution of tracer asymptotes to a fraction of order 0.1 of the position of the centre of mass, depending on the number of layers and the overpressure of the source.
In this work, we have studied the superhydrophobicity and buoyancy of two types of nanostructured surfaces: the cabbage leaf and a vertically aligned carbon nanotubes (VACNTs) carpet. The wettability of these surfaces were characterized by contact angle, tilting angle, sliding volume and sliding speed measurements. The results were correlated to the related surface topologies, which were investigated by scanning electron microscopy. Buoyancy of different surfaces has been investigated through measurements of the forces acting on the surface. Finally, we demonstrate that cabbage leaves and VACNT carpets have some common features with the water strider’s leg, better understanding the mechanisms of buoyancy related to the structural shape and size of natural or artificial nanostructures.
Nineteen specimens of the rare dragonfish Vomeridens infuscipinnis were evaluated for meristic counts, morphometric measurements, vomerine teeth and the supratemporal canal, anatomical and histological observations of bone, cartilage and lipid, diet, and reproductive status. Seven individuals were measured for buoyancy. All specimens had small vomerine teeth that varied in number. There was also variability in the arrangement of the supratemporal pores and canals. Vomeridens possess a body with little bone and considerable amounts of cartilage and lipid. A mean percentage buoyancy of 1.61% indicated that Vomeridens is nearly neutrally buoyant. Inferences from measurements of buoyancy and from morphological data suggest that Vomeridens lives in an epibenthic water column habitat at 400–900 m. Facilitated by its reduced body density, Vomeridens are likely to forage in the water column by hovering above the substrate. The stomach contents consisted of krill (Euphausia superba), some as large as 46–50 mm.The absolute and relative fecundity in seven female was 1576–2296 oocytes (mean 1889) and 21.3–28.9 oocytes g-1 body weight (mean 25.3), respectively. The reproductive effort in terms of egg diameter, GSI, and absolute and relative fecundity is similar to that for other bathydraconids.
We have explored the combined long-wave Marangoni and Rayleigh instability ofthe quiescent state of a binary- liquid layer heated from below or from above in the presenceof the Soret effect. We found that in the case of small Biot numbers there are two long-wave regions of interest k ~ Bi1/2 and k ~ Bi1/4. The dependence of both monotonic andoscillatory thresholds of instability in these regions on both the Soret and dynamic Bondnumbers has been investigated. The complete linear stability analysis reveals the diversityof instability types in the long-wave region, and a need in the development of the nonlineartheory of the discovered phenomena becomes obvious.
On propose, dans ce présent travail, des solutions numériques pour un écoulement stationnaire de type jet axisymétrique en régime laminaire. La variation des propriétés comme la masse volumique, la viscosité et la conductivité thermique avec la température est tenue en compte dans la formulation du problème. La variation du nombre de Prandtl avec la température est négligée. L'effet de l'écart de température entre le jet et le milieu ambiant est analysé en fonction du rapport des températures initiales Λ, pour les deux cas (Λ = T0/T∞ > 1 et Λ = T0/T∞ < 1). L'effet des conditions d'émission (dites initiales) est aussi pris en compte dans cette étude, pour deux types de profils de vitesse et de température : uniforme et parabolique. La solution des équations régissant l'écoulement de type jet à propriétés variables est obtenue par une méthode aux différences finies. Les grandeurs analysées sont la vitesse et la température au centre, la vitesse et la température modifiées au centre, la demi-épaisseur dynamique et thermique du jet. Les deux régimes de convection mixte et forcée sont étudiés. Les résultats obtenus sont comparés à ceux proposés par d'autres auteurs, qui ont considéré deux contraintes d'intégration basées sur la conservation de la quantité de mouvement et de l'énergie qui remplacent, pour la résolution des équations, les conditions d'émission à la sortie de la buse. La comparaison des résultats obtenus par le présent modèle et ceux obtenus pour le cas où les propriétés sont prises constantes ainsi que ceux obtenus par d'autres auteurs est réalisée. Nos résultats et ceux proposés par ces auteurs montrent un accord satisfaisant uniquement dans la région loin de la buse, où les forces de flottabilité l'emportent sur les forces d'inertie.
Two specimens of Kondakovia longimana were recently obtained from the Indian Ocean sector of the Southern Ocean. One specimen, damaged but near the known maximum size, was found floating on the surface, and the other, a male subadult specimen, was captured by a pelagic trawl. Examination of the specimens, histological sections and analyses of tissue samples revealed that the muscular tissues of the tentacular stalks and the mantle contain a large amount of ammonium, more than 328 mM, a quantity that far exceeds that of Moroteuthis ingens (206.9 mM) and Moroteuthis robsoni (199.6 mM) from the South Tasman Rise. Catch data and published records suggest that the juveniles and subadults of K. longimana feed on krill in the epipelagic zone.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.