We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterise the Zoll Riemannian metrics on a given simply connected spin closed manifold as those Riemannian metrics for which two suitable min-max values in a finite dimensional loop space coincide. We also show that on odd dimensional Riemannian spheres, when certain pairs of min-max values in the loop space coincide, every point lies on a closed geodesic.
We prove a normal form for strong magnetic fields on a closed, oriented surface and use it to derive two dynamical results for the associated flow. First, we show the existence of invariant tori and trapping regions provided a natural non-resonance condition holds. Second, we prove that the flow cannot be Zoll unless (i) the Riemannian metric has constant curvature and the magnetic function is constant, or (ii) the magnetic function vanishes and the metric is Zoll. We complement the second result by exhibiting an exotic magnetic field on a flat two-torus yielding a Zoll flow for arbitrarily weak rescalings.
where $\unicode[STIX]{x1D6FE}$ ranges over all closed geodesics $\unicode[STIX]{x1D6FE}:\mathbb{S}^{1}\rightarrow \mathbb{T}^{2}$ and $|\unicode[STIX]{x1D6FE}|$ denotes its length. We prove that this supremum is always attained. Moreover, we can bound the length of the geodesic $\unicode[STIX]{x1D6FE}$ attaining the supremum in terms of the smoothness of the function: for all $s\geq 2$,
The Kirchhoff elastic rod is one of the mathematical models of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler–Lagrange equations associated to the energy with the effect of bending and twisting. In this paper, we consider Kirchhoff elastic rods in a space form. In particular, we give the existence and uniqueness of global solutions of the initial-value problem for the Euler–Lagrange equations. This implies that an arbitrary Kirchhoff elastic rod of finite length extends to that of infinite length.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.