We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
A well-known conjecture, often attributed to Serre, asserts that any motive over any number field has infinitely many ordinary reductions (in the sense that the Newton polygon coincides with the Hodge polygon). In the case of Hilbert modular cuspforms $f$ of parallel weight $(2,\ldots ,2)$, we show how to produce more ordinary primes by using the Sato–Tate equidistribution and combining it with the Galois theory of the Hecke field. Under the assumption of stronger forms of Sato–Tate equidistribution, we get stronger (but conditional) results. In the case of higher weights, we formulate the ordinariness conjecture for submotives of the intersection cohomology of proper algebraic varieties with motivic coefficients, and verify it for the motives whose $\ell$-adic Galois realisations are abelian on a finite-index subgroup. We get some results for Hilbert cuspforms of weight $(3,\ldots ,3)$, weaker than those for $(2,\ldots ,2)$.
Let $L/F$ be a quadratic extension of totally real number fields. For any prime $p$ unramified in $L$, we construct a $p$-adic $L$-function interpolating the central values of the twisted triple product $L$-functions attached to a $p$-nearly ordinary family of unitary cuspidal automorphic representations of $\text{Res}_{L\times F/F}(\text{GL}_{2})$. Furthermore, when $L/\mathbb{Q}$ is a real quadratic number field and $p$ is a split prime, we prove a $p$-adic Gross–Zagier formula relating the values of the $p$-adic $L$-function outside the range of interpolation to the syntomic Abel–Jacobi image of generalized Hirzebruch–Zagier cycles.
Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct $p$-adic $L$-functions for non-critical slope rational modular forms, the theory has been extended to construct $p$-adic $L$-functions for non-critical slope automorphic forms over totally real and imaginary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous construction over a general number field. In particular, we start by proving a control theorem stating that the specialisation map from overconvergent to classical modular symbols is an isomorphism on the small slope subspace. We then show that if one takes the modular symbol attached to a small slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding overconvergent symbol, which moreover interpolates critical values of the $L$-function of the eigenform. We prove that this distribution is independent of the choices made in its construction. We define the $p$-adic $L$-function of the eigenform to be this distribution.
The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.
We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
We prove a general formula for the $p$-adic heights of Heegner points on modular abelian varieties with potentially ordinary (good or semistable) reduction at the primes above $p$. The formula is in terms of the cyclotomic derivative of a Rankin–Selberg $p$-adic $L$-function, which we construct. It generalises previous work of Perrin-Riou, Howard, and the author to the context of the work of Yuan–Zhang–Zhang on the archimedean Gross–Zagier formula and of Waldspurger on toric periods. We further construct analytic functions interpolating Heegner points in the anticyclotomic variables, and obtain a version of our formula for them. It is complemented, when the relevant root number is $+1$ rather than $-1$, by an anticyclotomic version of the Waldspurger formula. When combined with work of Fouquet, the anticyclotomic Gross–Zagier formula implies one divisibility in a $p$-adic Birch and Swinnerton-Dyer conjecture in anticyclotomic families. Other applications described in the text will appear separately.
We prove the explicit version of the Buzzard–Diamond–Jarvis conjecture formulated by Dembele et al. (Serre weights and wild ramification in two-dimensional Galois representations, Preprint (2016), arXiv:1603.07708 [math.NT]). More precisely, we prove that it is equivalent to the original Buzzard–Diamond–Jarvis conjecture, which was proved for odd primes (under a mild Taylor–Wiles hypothesis) in earlier work of the third author and coauthors.
We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.
Given $k\geqslant 2$, we show that there are at most finitely many rational numbers $x$ and $y\neq 0$ and integers $\ell \geqslant 2$ (with $(k,\ell )\neq (2,2)$) for which
In this paper we perform an extensive study of the spaces of automorphic forms for $\text{GL}_{2}$ of weight $2$ and level $\mathfrak{n}$, for $\mathfrak{n}$ an ideal in the ring of integers of the quartic CM field $\mathbb{Q}({\it\zeta}_{12})$ of twelfth roots of unity. This study is conducted through the computation of the Hecke module $H^{\ast }({\rm\Gamma}_{0}(\mathfrak{n}),\mathbb{C})$, and the corresponding Hecke action. Combining this Hecke data with the Faltings–Serre method for proving equivalence of Galois representations, we are able to provide the first known examples of modular elliptic curves over this field.
In this paper, we study real-dihedral harmonic Maass forms and their Fourier coefficients. The main result expresses the values of Hilbert modular forms at twisted CM 0-cycles in terms of these Fourier coefficients. This is a twisted version of the main theorem in Bruinier and Yang [CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229–288] and provides evidence that the individual Fourier coefficients are logarithms of algebraic numbers in the appropriate real-quadratic field. From this result and numerical calculations, we formulate an algebraicity conjecture, which is an analogue of Stark’s conjecture in the setting of harmonic Maass forms. Also, we give a conjectural description of the primes appearing in CM-values of Hilbert modular functions.
In this paper we establish a Chowla–Selberg formula for abelian CM fields. This is an identity which relates values of a Hilbert modular function at CM points to values of Euler’s gamma function ${\rm\Gamma}$ and an analogous function ${\rm\Gamma}_{2}$ at rational numbers. We combine this identity with work of Colmez to relate the CM values of the Hilbert modular function to Faltings heights of CM abelian varieties. We also give explicit formulas for products of exponentials of Faltings heights, allowing us to study some of their arithmetic properties using the Lang–Rohrlich conjecture.
Suppose E is an elliptic curve over $\Bbb Q$, and p>3 is a split multiplicative prime for E. Let q ≠ p be an auxiliary prime, and fix an integer m coprime to pq. We prove the generalised Mazur–Tate–Teitelbaum conjecture for E at the prime p, over number fields $K\subset \Bbb Q\big(\mu_{{q^{\infty}}},\;\!^{q^{\infty}\!\!\!\!}\sqrt{m}\big)$ such that p remains inert in $K\cap\Bbb Q(\mu_{{q^{\infty}}})^+$. The proof makes use of an improved p-adic L-function, which can be associated to the Rankin convolution of two Hilbert modular forms of unequal parallel weight.
We use a relative trace formula on $\text{GL}(2)$ to compute a sum of twisted modular $L$-functions anywhere in the critical strip, weighted by a Fourier coefficient and a Hecke eigenvalue. When the weight $k$ or level $N$ is sufficiently large, the sum is nonzero. Specializing to the central point, we show in some cases that the resulting bound for the average is as good as that predicted by the Lindelöf hypothesis in the $k$ and $N$ aspects.
Let ${\mathcal{K}}$ be an imaginary quadratic field. Let ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ be irreducible generic cohomological automorphic representation of $\text{GL}(n)/{\mathcal{K}}$ and $\text{GL}(n-1)/{\mathcal{K}}$, respectively. Each of them can be given two natural rational structures over number fields. One is defined by the rational structure on topological cohomology, and the other is given in terms of the Whittaker model. The ratio between these rational structures is called a Whittaker period. An argument presented by Mahnkopf and Raghuram shows that, at least if ${\rm\Pi}$ is cuspidal and the weights of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ are in a standard relative position, the critical values of the Rankin–Selberg product $L(s,{\rm\Pi}\times {\rm\Pi}^{\prime })$ are essentially algebraic multiples of the product of the Whittaker periods of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$. We show that, under certain regularity and polarization hypotheses, the Whittaker period of a cuspidal ${\rm\Pi}$ can be given a motivic interpretation, and can also be related to a critical value of the adjoint $L$-function of related automorphic representations of unitary groups. The resulting expressions for critical values of the Rankin–Selberg and adjoint $L$-functions are compatible with Deligne’s conjecture.
We describe algorithms for computing central values of twists of $L$-functions associated to Hilbert modular forms, carry out such computations for a number of examples, and compare the results of these computations to some heuristics and predictions from random matrix theory.
In this paper, we construct a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight. The Kohnen plus space can be characterized by the eigenspace of a certain Hecke operator. It can be also characterized by the behavior of the Fourier coefficients. For example, in the parallel weight case, a modular form of weight $\kappa + (1/ 2)$ with $\xi \mathrm{th} $ Fourier coefficient $c(\xi )$ belongs to the Kohnen plus space if and only if $c(\xi )= 0$ unless $\mathop{(- 1)}\nolimits ^{\kappa } \xi $ is congruent to a square modulo $4$. The Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a generalization of the Kohnen–Zagier formula.
Let $p\gt 2$ be prime, and let $F$ be a totally real field in which $p$ is unramified. We give a sufficient criterion for a $\mathrm{mod} \hspace{0.167em} p$ Galois representation to arise from a $\mathrm{mod} \hspace{0.167em} p$ Hilbert modular form of parallel weight one, by proving a ‘companion forms’ theorem in this case. The techniques used are a mixture of modularity lifting theorems and geometric methods. As an application, we show that Serre’s conjecture for $F$ implies Artin’s conjecture for totally odd two-dimensional representations over $F$.