We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The measurement of X-ray continuous emission from laser-driven plasma was achieved through multiple monochromatic imaging utilizing a multilayer mirror array. This methodology was exemplified by the development of an eight-channel X-ray imaging system, capable of operating in the energy range of several keV with a spatial resolution of approximately 3 μm. By integrating this system with a streak camera, the temperature and trajectory of imploding capsules were successfully measured at the kJ-class Shenguang III prototype laser facility. This approach provides a synchronous diagnostic method for the spatial, temporal and spectral analysis of laser-driven plasma, characterized by its high efficiency and resolution.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
The velocity interferometer system for any reflector (VISAR) coupled with a streaked optical pyrometer (SOP) system is used as a diagnostic tool in inertial confinement fusion (ICF) experiments involving equations of state and shock timing. To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition (DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
The high overall plant-based diet index (PDI) is considered to protect against type 2 diabetes in the general population. However, whether the PDI affects gestational diabetes mellitus (GDM) risk among pregnant women is still unclear. We evaluated the association between PDI and GDM risk based on a Chinese large prospective cohort – the Tongji Maternal and Child Health Cohort. Dietary data were collected at 13–28 weeks of pregnancy by a validated semi-quantitative FFQ. The PDI was obtained by assigning plant food groups positive scores while assigning animal food groups reverse scores. GDM was diagnosed by a 75 g 2-h oral glucose tolerance test at 24–28 weeks of gestation. Logistic regression models were fitted to estimate OR of GDM, with associated 95 % CI, comparing women in different PDI quartiles. Among the total 2099 participants, 169 (8·1 %) were diagnosed with GDM. The PDI ranged from 21·0 to 52·0 with a median of 36·0 (interquartile range (IQR) 33·0–39·0). After adjusting for social-demographic characteristics and lifestyle factors etc., the participants with the highest quartile of PDI were associated with 57 % reduced odds of GDM compared with women in the lowest quartile of PDI (adjusted OR 0·43; 95 % CI 0·24, 0·77; Pfor trend = 0·005). An IQR increment in PDI was associated with 29 % decreased odds of GDM (adjusted OR 0·71; 95 % CI 0·56, 0·90). Findings suggest that adopting a plant-based diet during pregnancy could reduce GDM risk among Chinese women, which may be valuable for dietary counselling during pregnancy.
In this paper, dual-band and tri-band bandpass filters (BPFs) with fully independent and controllable passbands based on multipath-embedded resonators are presented. The dual-band BPF consists of two double open-ended stub-loaded terminal-shorted resonators (DOESL-TSRs) with a common via-hole connected along the symmetric plane of the filter. Based on DOESL-TSRs, a triple open-ended stub-loaded terminal-shorted resonator (TOESL-TSR) is proposed in the design of tri-band BPFs. The resonant characteristics of DOESL-TSR/TOESL-TSR are analyzed by the numerical calculation method. The measured results of the dual-band BPF show that the center frequencies (CFs) are located at 2.595 and 5.75 GHz, respectively, with 3 dB fraction bandwidth (FBWs) of 15 and 12.8%. The measured CFs of the tri-band BPF are located at 2.545, 3.775, and 5.95 GHz, respectively, with 3 dB FBWs of 9.8, 9.3, and 5.5%. Both of the filters exhibit the merits of fully independent and controllable passbands, high selectivity, and compact size.
Light-absorbing impurities (LAIs, e.g. black carbon (BC), organic carbon (OC), mineral dust (MD)) deposited on snow cover reduce albedo and accelerate its melting. Northern Xinjiang (NX) is an arid and semi-arid inland region, where snowmelt leads to frequent floods that have been a serious threat to local ecological security. There is still a lack of quantitative assessments of the effects of LAIs on snowmelt in the region. This study investigates spatial variations of LAIs in snow and its effect on snow albedo, radiative forcing (RF) and snowmelt across NX. Results showed that concentrations of BC, OC (only water-insoluble OC), MD ranged from 32 to 8841 ng g−1, 77 to 8568 ng g−1 and 0.46 to 236 µg g−1, respectively. Weather Research and Forecasting Chemistry model suggested that residential emission was the largest source of BC. Snow, Ice, and Aerosol Radiative modelling showed that the average contribution of BC and MD to snow albedo reduction was 17 and 3%, respectively. RF caused by BC significantly exceeded RF caused by MD. In different scenarios, changes in snow cover duration (SCD) caused by BC and MD decreased by 1.36 ± 0.61 to 6.12 ± 3.38 d. Compared with MD, BC was the main dominant factor in reducing snow albedo and SCD across NX.
Echinococcus granulosus sensu stricto (s.s.), Echinococcus multilocularis and Echinococcus canadensis are the common causes of human echinococcosis in China. An accurate species identification tool for human echinococcosis is needed as the treatments and prognosis are different among species. The present work demonstrates a method for the simultaneous detection of these three Echinococcus species based on multiplex polymerase chain reaction (mPCR). Specific primers of this mPCR were designed based on the mitochondrial genes and determined by extensive tests. The method can successfully detect either separated or mixed target species, and generate expected amplicons of distinct size for each species. Sensitivity of the method was tested by serially diluted DNA, showing a detection threshold as less as 0.32 pg for both E. granulosus s.s. and E. canadensis, and 1.6 pg for E. multilocularis. Specificity assessed against 18 other parasites was found to be 100% except weakly cross-react with E. shiquicus. The assay was additionally applied to 69 echinococcosis patients and 38 healthy persons, confirming the high reliability of the method. Thus, the mPCR described here has high application potential for clinical identification purposes, and can further provide a useful tool for evaluation of serology and imaging method.
In a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system, a study was conducted to determine the effects of different fertilization regimens (no fertilization, replacement of a portion of chemical fertilizer with composted pig manure, chemical fertilizer only, and straw return combined with chemical fertilizer) on the weed communities and wheat yields after 4 and 5 yr. The impact of the long-term recurrent fertilization regimen initiated in 2010 on the composition and diversity of weed communities and the impact of the components and total amount of fertilizer on wheat yields were assessed in 2014 and 2015. Totals of 19 and 16 weed species were identified in experimental wheat fields in 2014 and 2015, respectively, but the occurrence of weed species varied according to the fertilization regimen. American sloughgrass [Beckmannia syzigachne (Steud.) Fernald], water starwort [Myosoton aquaticum (L.) Moench], and lyrate hemistepta (Hemistepta lyrata Bunge.) were adapted to all fertilization treatments and were the dominant weed species in the experimental wheat fields. The greatest number of weed species were observed under the no-fertilization treatment, in which 40% of the weed community was composed of broadleaf weeds and the lowest wheat yields were obtained. With fertilizer application, the number of weed species was reduced, the height of weeds increased significantly, the density of broadleaf weeds was significantly reduced, the biodiversity indices of weed communities decreased significantly, and higher wheat yields were obtained. Only the chemical fertilizer plus composted pig manure treatment and the chemical fertilizer–only treatment increased the density of grassy weeds and the total weed community density. The treatment with chemical fertilizer only also resulted in the highest density of B. syzigachne. Rice straw return combined with chemical fertilizer yielded the lowest total weed density, which suggests that it inhibited occurrence of weeds. The different fertilizer regimens not only affected the weed species composition, distribution, and diversity, but also the weed density. Our study provides new information from a rice–wheat rotation system on the relationship between soil amendments and agricultural weed infestation.
Durable antibacterial PAN/Ag NPs nanofiber membrane was prepared by electrospinning. In this study, Ag NPs were composed by applying polyvinyl pyrrolidone as a dispersant and sodium borohydride (NaBH4) as a reductant. The composite nanofiber films and silver nanoparticles were characterized and tested by transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Brunauer Emmett Teller (BET) and thermogravimetric analysis test. The specific surface area of PAN/Ag NPs (1%) and PAN/Ag NPs (3%) nanofiber membrane were about 25.00 m2/g calculated by the BET equation. It can be seen that the pore sizes of PAN, PAN/Ag NPs (1%), and PAN/Ag NPs (3%) nanofiber membranes were mainly distributed between 30 and 40 nm. The maximum removal rate of PM10, PM2.5, and PM1.0 was about 94%, 89%, and 82%, respectively, indicating it has a good filtering effect. The results also demonstrated that this membrane has bacterial reduction of over 99.9% for E. coli and S. aureus, respectively. In addition, the thermal stability of the fiber membrane with Ag NPs has no clear difference when compared to pure PAN nanofiber membrane and also has better moisture conductivity, indicating it is a potential candidate applied in biopharmaceutical antiseptic protection products.
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
As a promising new way to generate a controllable strong magnetic field, laser-driven magnetic coils have attracted interest in many research fields. In 2013, a kilotesla level magnetic field was achieved at the Gekko XII laser facility with a capacitor–coil target. A similar approach has been adopted in a number of laboratories, with a variety of targets of different shapes. The peak strength of the magnetic field varies from a few tesla to kilotesla, with different spatio-temporal ranges. The differences are determined by the target geometry and the parameters of the incident laser. Here we present a review of the results of recent experimental studies of laser-driven magnetic field generation, as well as a discussion of the diagnostic techniques required for such rapidly changing magnetic fields. As an extension of the magnetic field generation, some applications are discussed.
We present laboratory measurement and theoretical analysis of silicon K-shell lines in plasmas produced by Shenguang II laser facility, and discuss the application of line ratios to diagnose the electron density and temperature of laser plasmas. Two types of shots were carried out to interpret silicon plasma spectra under two conditions, and the spectra from 6.6 Å to 6.85 Å were measured. The radiative-collisional code based on the flexible atomic code (RCF) is used to identify the lines, and it also well simulates the experimental spectra. Satellite lines, which are populated by dielectron capture and large radiative decay rate, influence the spectrum profile significantly. Because of the blending of lines, the traditional $G$ value and $R$ value are not applicable in diagnosing electron temperature and density of plasma. We take the contribution of satellite lines into the calculation of line ratios of He-$\unicode[STIX]{x1D6FC}$ lines, and discuss their relations with the electron temperature and density.
This article outlines the evolution of a rescue team in responding to adenovirus prevention with a deployable field hospital. The local governments mobilized a shelter hospital and a rescue team consisting of 59 members to assist with rescue and response efforts after an epidemic outbreak of adenovirus. We describe and evaluate the challenges of preparing for deployment, field hospital maintenance, treatment mode, and primary treatment methods. The field hospital established at the rescue scene consisted of a medical command vehicle, a computed tomography shelter, an X-ray shelter, a special laboratory shelter, an oxygen and electricity supply vehicle, and epidemic prevention and protection equipment. The rescue team comprised paramedics, physicians, X-ray technicians, respiratory therapists, and logistical personnel. In 22 days, more than 3000 patients with suspected adenovirus infection underwent initial examinations. All patients were properly treated, and no deaths occurred. After emergency measures were implemented, the spread of adenovirus was eventually controlled. An emergency involving infectious diseases in less-developed regions demands the rapid development of a field facility with specialized medical personnel when local hospital facilities are either unavailable or unusable. An appropriate and detailed prearranged action plan is important for infectious diseases prevention. (Disaster Med Public Health Preparedness. 2018;12:109–114)
A new approach is proposed to analyze Bremsstrahlung X-rays that are emitted from laser-produced plasmas (LPP) and are measured by a stack type spectrometer. This new method is based on a spectral tomographic reconstruction concept with the variational principle for optimization, without referring to the electron energy distribution of a plasma. This approach is applied to the analysis of some experimental data obtained at a few major laser facilities to demonstrate the applicability of the method. Slope temperatures of X-rays from LPP are determined with a two-temperature model, showing different spectral characteristics of X-rays depending on laser properties used in the experiments.
In this paper, we focus on studying the high energy emission of GRB 160625B. The lightcurve of prompt emission is composed of three episodes: short-soft precursor, hard main burst, and possible long extended emission. The spectra of first and third episode can be fitted by a multi-color blackbody and cutoff power-law model, respectively. However, the spectrum of second episode was contributed by both multi-color blackbody and cutoff power-law. One can estimate the Lorenz factor of jet of first two episodes by invoking photosphere model as Γ0 ~ 175 and 1694, respectively. It suggests that the ejecta of this case evolved from photosphere dominated initially to internal shock later. On the other hand, the optical emission is very bright during the second episode, which is likely a prompt optical emission. Finally, a more shallower normal decay segment appeared, which is consistent with standard external shock model.
The Lorentz factor (Γ) is an important parameter related to the relativistic jet physics. We study the evolution patterns of Γ within gamma-ray burst (GRB) and active galactic nuclear jets for individual GRB 090168, GRB 140508A, and 3C 454.3. By estimating the Γ values for well-separated pulses in GRBs 090618 and 140508A with an empirical relation derived from typical GRBs, we find that the Γ evolution pattern in the two GRBs are different. The increasing-to-coasting evolution pattern of Γ in GRB 090618 likely indicates that the GRB fireball is still being accelerated in the prompt phase. The clear decrease evolution pattern of Γ in GRB 140508A suggests the deceleration of the fireball components. By deriving the Γ value through fitting their spectral energy distribution in different flares of 3C 454.3, a pattern of Γ-tracking-γ-ray flux is clearly found, likely indicating that the observed gamma-ray flares are being due to the Doppler boosting effect to the jet emission.