We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $r\in(0,1)$, let $\mu \left( r\right) $ be the modulus of the plane Grötzsch ring $\mathbb{B}^2\setminus[0,r]$, where $\mathbb{B}^2$ is the unit disk. In this paper, we prove that
with $\theta _{n}\in \left( 0,1\right)$. Employing this series expansion, we obtain several absolutely monotonic and (logarithmically) completely monotonic functions involving $\mu \left( r\right) $, which yields some new results and extend certain known ones. Moreover, we give an affirmative answer to the conjecture proposed by Alzer and Richards in H. Alzer and K. Richards, On the modulus of the Grötzsch ring, J. Math. Anal. Appl. 432(1): (2015), 134–141, DOI 10.1016/j.jmaa.2015.06.057. As applications, several new sharp bounds and functional inequalities for $\mu \left( r\right) $ are established.
Syphilis remains a serious public health problem in mainland China that requires attention, modelling to describe and predict its prevalence patterns can help the government to develop more scientific interventions. The seasonal autoregressive integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs (SARIMA-NARX) model were used to simulate the time series data of the syphilis incidence from January 2004 to November 2023 respectively. Compared to the SARIMA, LSTM, and SARIMA-LSTM models, the median absolute deviation (MAD) value of the SARIMA-NARX model decreases by 352.69%, 4.98%, and 3.73%, respectively. The mean absolute percentage error (MAPE) value decreases by 73.7%, 23.46%, and 13.06%, respectively. The root mean square error (RMSE) value decreases by 68.02%, 26.68%, and 23.78%, respectively. The mean absolute error (MAE) value decreases by 70.90%, 23.00%, and 21.80%, respectively. The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases more accurately than the basic SARIMA and LSTM methods, so that can be used for governments to develop long-term syphilis prevention and control programs. In addition, the predicted cases still maintain a fairly high level of incidence, so there is an urgent need to develop more comprehensive prevention strategies.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
The rising antimicrobial resistance (AMR) and the difficulty in developing new antibiotics are causing a global public health problem. This analysis aims to better understand the clinical and economic value of new antibiotic treatment strategies, in order to inform clinical and antibiotic formulary decisions.
Methods
We applied a published and validated dynamic disease transmission and cost-effectiveness model of AMR with a 10-year time horizon and discount rate of five percent to evaluate the clinical and economic outcomes of introducing a new antibiotic, namely, Ceftazidime/Avibactam (CAZ-AVI) for treating AMR infections in Zhejiang Province, China. Together with piperacillin-tazobactam (pip/taz) and meropenem, we explored the impact of six treatment strategies across three common infections (complicated intra-abdominal infection (cIAI), hospital-acquired/ventilator-associated pneumonia (HAP/VAP) and infections with limited treatment options (LTO)), and pathogens (Escherichia coli, Klebsiella spp., and Pseudomonas aeruginosa). These treatment strategies included (i) current treatment strategy (pip/taz and meropenem, no CAZ-AVI), (ii) CAZ-AVI at the third line, (iii) CAZ-AVI at the second line, (iv) CAZ-AVI at the first line, (v) first line diversity (i.e., equal pip/taz and CAZ-AVI at the first line; meropenem at the last line) and (vi) all-lines diversity (pip/taz, meropenem and CAZ-AVI used randomly and only once). The data with a total of 10,905 patients were collected from a tier-3 hospital from 2018 to 2021.
Results
Under the current treatment strategy, the hospital length of stay (LOS) and costs over ten years were estimated to be 1,588,763 days and CNY3,898,198,802 (USD559,781,348), respectively, associated with 142,999 quality-adjusted life-years (QALYs) lost, resulting in the resistance of pip/taz and meropenem being 42.0 percent and 49.9 percent respectively. In contrast, the other five treatment strategies all have shown improved outcomes, among which the “all-lines diversity” carried the greatest benefit, saving CNY1,646.04 (USD236.37) for each additional QALY gained, with the net monetary benefit being CNY24,727,102,215 (USD3,550,811,878).
Conclusions
Introducing CAZ-AVI had positive impact on clinical and economic outcomes for treating AMR, and diversifying early the antibiotics might yield the best benefits.
We review the progress on the applications of the vortex-surface field (VSF). The VSF isosurface is a vortex surface consisting of vortex lines. Based on the generalized Helmholtz theorem, the VSF isosurfaces of the same threshold at different times have strong coherence. As a general flow diagnostic tool for studying vortex evolution, the numerical VSF solution is first constructed in a given flow field by solving a pseudo-transport equation driven by the instantaneous frozen vorticity, and then the VSF evolution is calculated by the two-time method. From the database of numerical simulations or experiments, the VSF can elucidate mechanisms in the flows with essential vortex dynamics, such as isotropic turbulence, wall flow transition, flow past a flapping plate and turbulence–flame interaction. The characterization of VSFs reveals the correlation between robust statistical features and the critical quantities needed to be predicted in engineering applications, such as the friction coefficient in transition, thrust in bio-propulsion and growth rate in interface instability. Since the VSF evolution captures the essential Lagrangian-based dynamics of vortical flows, it inspires novel numerical methods on cutting-edge hardware, e.g. graphic and quantum processors.
The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium. A novel measurement method of plasma channel density profiles has been employed, where the role of plasma channels guiding the advantages of lasers has shown strong appeal. Here, we have studied the high-order transverse plasma density profile distribution using a channel-guided laser, and made detailed measurements of its evolution under various parameters. The paraxial wave equation in a plasma channel with high-order density profile components is analyzed, and the approximate propagation process based on the Gaussian profile laser is obtained on this basis, which agrees well with the simulation under phase conditions. In the experiments, by measuring the integrated transverse laser intensities at the outlet of the channels, the radial quartic density profiles of the plasma channels have been obtained. By precisely synchronizing the detection laser pulses and the plasma channels at various moments, the reconstructed density profile shows an evolution from the radial quartic profile to the quasi-parabolic profile, and the high-order component is indicated as an exponential decline tendency over time. Factors affecting the evolution rate were investigated by varying the incentive source and capillary parameters. It can be found that the discharge voltages and currents are positive factors quickening the evolution, while the electron-ion heating, capillary radii and pressures are negative ones. One plausible explanation is that quartic profile contributions may be linked to plasma heating. This work helps one to understand the mechanisms of the formation, the evolutions of the guiding channel electron-density profiles and their dependences on the external controllable parameters. It provides support and reflection for physical research on discharged capillary plasma and optimizing plasma channels in various applications.
The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.
We investigate the energy transport and heat transfer efficiency in turbulent Rayleigh–Bénard (RB) convection laden with radiatively heated inertial particles. Direct numerical simulations combined with the Lagrangian point-particle mode were carried out in the range of density ratio $854.7\le \rho _p/\rho _0 \le 8547$ and radiation intensity $1\le \phi /\phi _{solar}\le 100$ for both two-dimensional (2-D) and three-dimensional (3-D) simulations. The Rayleigh number ranges from $2\times 10^6$ to $10^8$ for 2-D cases, and is $10^7$ for 3-D cases for $Pr=0.71$. It is found that particles with small density ratio that encounter strong radiation significantly alter the flow momentum transport and fluid heat transfer, so the fluid temperature of bulk is remarkably heated. We then derived the theoretical relation of the Nusselt number for interphase heat transfer in the heated particle-laden RB convection, which reveals that the heat transfer difference between the top and bottom plates stems from the interphase heat transfer. We further found that both the interphase heat transfer and the interphase thermal energy transport exhibit universal properties. They are both increased linearly with the reciprocal of the normalized density ratio. Additionally, both the interphase heat transfer and the interphase thermal energy transport increase linearly with the increase of radiation intensity. The growth rates exhibit specific scaling relations versus Rayleigh number and density ratio. Two different regimes distinguished by the critical density ratio, i.e. the exothermic particle regime and the endothermic particle regime, are observed. We further derived the power-law relation of the critical density ratios versus Rayleigh number and radiation intensity, i.e. $\rho _p/\rho _c \sim (\phi /\phi _{solar})^{1/2}\,Ra^{1/3}$, which is in remarkable agreement with the 3-D simulations.
Electronic skin (e-skin) is playing an increasingly important role in health detection, robotic teleoperation, and human-machine interaction, but most e-skins currently lack the integration of on-site signal acquisition and transmission modules. In this paper, we develop a novel flexible wearable e-skin sensing system with 11 sensing channels for robotic teleoperation. The designed sensing system is mainly composed of three components: e-skin sensor, customized flexible printed circuit (FPC), and human-machine interface. The e-skin sensor has 10 stretchable resistors distributed at the proximal and metacarpal joints of each finger respectively and 1 stretchable resistor distributed at the purlicue. The e-skin sensor can be attached to the opisthenar, and thanks to its stretchability, the sensor can detect the bent angle of the finger. The customized FPC, with WiFi module, wirelessly transmits the signal to the terminal device with human-machine interface, and we design a graphical user interface based on the Qt framework for real-time signal acquisition, storage, and display. Based on this developed e-skin system and self-developed robotic multi-fingered hand, we conduct gesture recognition and robotic multi-fingered teleoperation experiments using deep learning techniques and obtain a recognition accuracy of 91.22%. The results demonstrate that the developed e-skin sensing system has great potential in human-machine interaction.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Participants:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used, which can provide the information of participants.
Results:
Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose–response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
Due to the merits of high rigidity and good dynamics, hybrid machine tools have been gradually applied to efficient machining of thin-walled workpiece with complex geometries. However, the discontinuity of tangential component of toolpath in hybrid machine tools may cause velocity fluctuations, leading to poor surface quality of workpiece. In this paper, a novel 5-axis hybrid machine tool is taken as an example to demonstrate a smooth toolpath interpolation method. First, an adaptive acceleration and deceleration control algorithm is presented to realize the smooth transition between two constrained velocity points. Second, a spline curve-based interpolation algorithm is proposed to realize the smoothness of the trajectory. Meanwhile, a parameter synchronization method is proposed to ensure the synchronization of the interpolated tool-axis vector and the interpolated tool tip. Thirdly, an inverse kinematic analysis is conducted based on an inverse position solution model and a velocity mapping model. Finally, a set of machining tests on S-shape workpiece in line with the ISO standard is carried out to verify the effectiveness of the proposed smooth toolpath interpolation method.
Autism spectrum disorder (ASD) is a neurodevelopmental condition, with symptoms appearing in the early developmental period. Little is known about its current burden at the global, regional and national levels. This systematic analysis aims to summarise the latest magnitudes and temporal trends of ASD burden, which is essential to facilitate more detailed development of prevention and intervention strategies.
Methods
The data on ASD incidence, prevalence, disability-adjusted life years (DALYs) in 204 countries and territories between 1990 and 2019 came from the Global Burden of Disease Study 2019. The average annual percentage change was calculated to quantify the secular trends in age-standardised rates (ASRs) of ASD burden by region, sex and age.
Results
In 2019, there were an estimated 60.38 × 104 [95% uncertainty interval (UI) 50.17–72.01] incident cases of ASD, 283.25 × 105 (95% UI 235.01–338.11) prevalent cases and 43.07 × 105 (95% UI 28.22–62.32) DALYs globally. The ASR of incidence slightly increased by around 0.06% annually over the past three decades, while the ASRs of prevalence and DALYs both remained stable over the past three decades. In 2019, the highest burden of ASD was observed in high-income regions, especially in high-income North America, high-income Asia Pacific and Western Europe, where a significant growth in ASRs was also observed. The ASR of ASD burden in males was around three times that of females, but the gender difference was shrunk with the pronounced increase among females. Of note, among the population aged over 65 years, the burden of ASD presented increasing trends globally.
Conclusions
The global burden of ASD continues to increase and remains a major mental health concern. These substantial heterogeneities in ASD burden worldwide highlight the need for making suitable mental-related policies and providing special social and health services.
The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ.
Methods:
By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ.
Results:
LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = −0.165, p value = 0.035) and SCZ (coefficient = −0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10−6) and SCZ (OR = 0.90, p value = 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level.
Conclusion:
This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
Numerous animal models and epidemiological and observational studies have demonstrated that enterovirus (EV) infection could be involved in the development of clinical type 1 diabetes mellitus (T1DM), but its aetiology is not fully understood. Therefore, we reviewed the association between EV infection and clinical T1DM. We searched PubMed and Embase from inception to April 2021 and reference lists of included studies without any language restrictions in only human studies. The correlation between EV infection and clinical T1DM was calculated as the pooled odds ratio (OR) and 95% confidence intervals (CIs), analysed using random-effects models. Subgroup and sensitivity analyses were performed to evaluate the robustness of the associations. A total of 25 articles (22 case–control studies and three nested case–control studies) met the inclusion criterion including 4854 participants (2948 cases and 1906 controls) with a high level of statistical heterogeneity (I2 = 80%, P < 0.001) mainly attributable to methods of EV detection, study type, age distribution, source of EV sample and control subjects. Meta-analysis showed a significant association between EV infection and clinical T1DM (OR 5.75, 95% CI 3.61–9.61). There is a clinically significant association between clinical T1DM and EV infection.
Using near miss data detected from non-accident information to analyse marine traffic risk can alleviate some of the limitations of accident-based methods. A model based on an arena for detecting scenes of near miss is proposed to detect comprehensively those ship encounters with potential collision risk. To eliminate the influence of data sampling frequency on the detection of scenes of near miss, a single near miss is defined as the whole progress of traffic state from the time the target ship sails into the arena of the subject ship to the time it leaves the arena of the subject ship. To research the geographical distribution characteristics of marine traffic risk, first, a statistical model for the scenes of near miss based on the water grid method is proposed, and then a macroscopic collision risk model based on near miss is developed. The geographical distribution characteristics of marine traffic risk in the Bohai Sea are analysed, and the water areas of high marine traffic risk are obtained. The findings can provide theoretical support for marine safety management.
The aim of this study was to explore the application of the flipped classroom approach in the training of Mass Casualty Triage (MCT) to medical undergraduate students.
Methods:
In this study, 103 fourth-year medical students were randomly divided into a Flipped Classroom (FC) group (n = 51) and a Traditional Lecture-based Classroom (TLC) group (n = 52). A post-class quiz, simulated field triage (SFT) and feedback questionnaires were performed to assess both groups of students for their learning of the course.
Results:
In the post-quiz, the median (IQR) scores achieved by students from the FC and TLC groups were 42(5) and 39(5.5), respectively. Significant differences were found between the two groups. In the SFT, overall triage accuracy was 67.06% for FC, and 64.23% for TLC students. Over-triage and under-triage errors occurred in 18.43% and 14.50% of the FC group, respectively. The TLC group had a similar pattern of 20.77% over-triage and 15.0% under-triage errors. No significant differences were found regarding overall triage accuracy or triage errors between the two groups.
Conclusions:
The FC approach could enhance course grades reflected in the post-quiz and improve students’ satisfaction with the class. However, there was no significant difference of competency between the two groups demonstrated in the SFT exercise.
Building on past reviews on affect research (e.g. Akinola, 2010; Ashkanasy & Dorris, 2017; Larsen & Fredrickson, 1999; Mauss & Robinson, 2009; Peterson, Reina, Waldman, & Becker, 2015), in this chapter we review existing quantitative methods to measure workplace affect and affect regulation, and propose directions for future development in quantitative measurement of these processes. We endorse that affect is a multifaceted, dynamic process comprised of psychological and physiological experiences that informs thought and motivates action (Izard, 2009). Affect can be understood as a trait (general tendency to experience positive or negative feelings) or a state (momentary emotions in response to certain events). Consistent with the rest of this handbook, we use “affect” as an umbrella term that encompasses emotion, feeling, and other related terms.
Dolostones are widely developed in the middle Permian rocks of East Yunnan, China, mainly in the shoal-facies Maokou Formation. The previously reported dolostone formation mechanisms cannot explain the distribution and geochemical characteristics of these dolostones, in particular their strontium, magnesium and oxygen isotope signatures. To help predict the distribution of dolostone reservoirs and reduce the exploration risk and cost, this study proposes a new model of dolomitization: open thermal convection dolomitization. In this new dolomitization model, Mg2+ in dolomitizing fluids originates mostly from seawater, with a minor component coming from deep hydrothermal fluids. Elevated heat flux (in this case due to the nearby Emei mantle plume) causes spatial temperature variations in the fluid along the circulation flow pathways, resulting in fast and pervasive dolomitization of limestone. The proposed model not only explains the characteristics and distribution of dolostones in the study area but also serves as a reference for predicting the distribution of dolostones in other areas subjected to thermal convection.
A solution to the problem of Gaussian beam scattering by a circular perfect electric conductor coated with eccentrically anisotropic media is presented. The incident Gaussian beam source is expanded as an approximate expression in the simple form with Taylor's series. The transmitted field in the anisotropically coated region is expressed as an infinite summation of Eigen plane waves with different polar angles. The unknown coefficients of the scattered fields are obtained with the aid of the boundary conditions. The addition theorem for cylindrical functions is applied to transfer from the local coordinates to the global ones. The infinite series can be truncated under the prerequisite of achieving the solution convergence. Only the case of transverse-electric polarization is discussed. The similar formulation of transverse-magnetic polarization can be obtained by adopting a similar method. Some numerical results are presented and discussed. The result is in agreement with that available as expected when the eccentric geometry comes to the concentric one.
Social anxiety disorder (SAD) is a prevalent mental disorder diagnosed in childhood and adolescence. Theories regarding brain development and SAD suggest a close link between neurodevelopmental dysfunction at the adolescent juncture and SAD, but direct evidence is rare. This study aims to examine brain structural abnormalities in adolescents with SAD.
Methods
High-resolution T1-weighted images were obtained from 31 adolescents with SAD (15–17 years) and 42 matching healthy controls (HC). We evaluated symptom severity with the Social Anxiety Scale for Children (SASC) and the Screen for Child Anxiety Related Emotional Disorders (SCARED). We used voxel-based morphometry analysis to detect regional gray matter volume abnormalities and structural co-variance analysis to investigate inter-regional coordination patterns.
Results
We found significantly higher gray matter volume in the orbitofrontal cortex (OFC) and the insula in adolescents with SAD compared to HC. We also observed significant co-variance of the gray matter volume between the OFC and amygdala, and the OFC and insula in HC, but these co-variance relationships diminished in SAD.
Conclusions
These findings provide the first evidence that the brain structural deficits in adolescents with SAD are not only in the core regions of the fronto-limbic system, but also represented by the diminished coordination in the development of these regions. The delayed and unsynchronized development pattern of the fronto-limbic system supports SAD as an adolescent-sensitive developmental mental disorder.