It is well known that noctuid moths respond to ultrasound frequencies produced by insectivorous bats performing a series of evasive maneuvers such as loops, dives, rolls, and turns. Certain ultrasound frequencies may be considered an environmental stress factor for these moths, causing physiological and behavioral effects. We investigated changes in acetylcholinesterase activity of Helicoverpa armigera (Hübner) exposed to ultrasound produced from a commercial device (LHC20). Our results indicated that stress effects on acetylcholinesterase activity resulting from exposure to ultrasound do not differ according to sex, but effects on different developmental stages of H. armigera differ significantly depending on duration of exposure. Enzyme activity increased in adults after 20 min exposure to ultrasound and decreased in pupae after 30 and 50 min exposure. Enzyme activity in larvae was reduced after 20 min and increased after 40 and 60 min. The results of this study also indicate that stress caused by exposure to ultrasound could modulate the cholinergic system in H. armigera.