We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the safety and feasibility of over-expansion of right ventricle to pulmonary artery conduits during transcatheter pulmonary valve placement.
Background:
Transcatheter pulmonary valve placement is an alternative to surgical pulmonary valve replacement. Traditionally, it was thought to be unsafe to expand a conduit to >110% of its original size.
Methods:
This retrospective cohort study from two centers includes patients with right ventricle to pulmonary artery conduits with attempted transcatheter pulmonary valve placement from 2010 to 2017. Demographic, procedural, echocardiographic and follow-up data, and complications were evaluated in control and overdilation (to >110% original conduit size) groups.
Results:
One hundred and seventy-two patients (51 overdilation and 121 control) had attempted transcatheter pulmonary valve placement (98% successful). The overdilation group was younger (11.2 versus 16.7 years, p < 0.001) with smaller conduits (15 versus 22 mm, p < 0.001); however, the final valve size was not significantly different (19.7 versus 20.2 mm, p = 0.2). Baseline peak echocardiographic gradient was no different (51.8 versus 55.6 mmHg, p = 0.3). Procedural complications were more frequent in overdilation (18%) than control (7%) groups (most successfully addressed during the procedure). One patient from each group required urgent surgical intervention, with no procedural mortality. Follow-up echocardiographic peak gradients were similar (24.1 versus 26 mmHg, p = 0.5).
Conclusions:
Over-expansion of right ventricle to pulmonary artery conduits during transcatheter pulmonary valve placement can be performed successfully. Procedural complications are more frequent with conduit overdilation, but there was no difference in the rate of life-threatening complications. There was no difference in valve function at most recent follow-up, and no difference in rate of reintervention. The long-term outcomes of transcatheter pulmonary valve placement with conduit over-expansion requires further study.
The rate of bleeding complications following arterial switch operation is too low to independently justify a prospective randomised study for benefit from recombinant factor VIIa. We aimed to evaluate factor VIIa in a pilot study.
Methods:
We performed a retrospective cohort study of patients undergoing arterial switch operation from 2012 to 2017. Nearest-neighbour propensity score matching on age, gender, weight, and associated cardiac defects was used to match 27 controls not receiving recombinant factor VIIa to 30 patients receiving recombinant factor VIIa. Fisher’s exact test was performed to compare categorical variables. Wilcoxon’s rank-sum test was used to compare continuous variables between cohorts.
Results:
Post-operative thrombotic complications were not associated with factor VIIa administration (Odds Ratio (OR) 0.28, 95% CI 0.005–3.77, p = 0.336), nor was factor VIIa administration associated with any re-explorations for bleeding. No intraoperative transfusion volumes were different between the recombinant factor VIIa cohort and controls. Post-operative prothrombin time (10.8 [10.3–12.3] versus 15.9 [15.1–17.2], p < 0.001) and international normalised ratio (0.8 [0.73–0.90] versus 1.3 [1.2–1.4], p < 0.001]) were lower in recombinant factor VIIa cohort relative to controls.
Conclusions:
In spite of a higher post-bypass packed red blood cell transfusion requirement, patients receiving recombinant factor VIIa had a similar incidence of bleeding post-operatively. With no difference in thrombotic complications, and with improved post-operative laboratory haemostasis, a prospective randomised study is warranted to evaluate recombinant factor VIIa.
Review a single-centre experience with pulmonary artery sling repair and evaluate risk factors for re-intervention.
Methods:
Patients with surgically repaired pulmonary artery sling at a single institution between 1996 and 2018 were retrospectively reviewed. A univariate Cox regression analysis was used to evaluate variables for association with freedom from re-intervention.
Results:
Eighteen patients had pulmonary artery sling repair. At operation, median age and weight were 6.9 months (interquartile range 4.1–18.1) and 9.5 kg (interquartile range 6.5–14.5), respectively. A median hospital length of stay was 12 days (interquartile range 5.8–55.3). Twelve patients (67%) had complete tracheal rings, of whom six (50%) underwent tracheoplasty (five concurrently with pulmonary artery sling repair). Airway re-intervention was required in five (83%) of the six patients who underwent tracheoplasty. One patient had intraoperative diagnosis and repair of pulmonary artery sling during unrelated lesion repair and required tracheoplasty 24 days post-operatively. One patient died 55 days after pulmonary artery sling repair and tracheoplasty following multiple arrests and re-interventions. Median post-operative follow-up for surviving patients was 6.3 years (interquartile range 11 months–13 years), at which time freedom from re-intervention was 61%. When controlling for patient and tracheal size, initial tracheoplasty was associated with decreased freedom from re-intervention (hazard ratio 21.9, 95% confidence interval 1.7–284.3, p = 0.018).
Conclusions:
In patients with pulmonary artery sling, tracheoplasty is associated with decreased freedom from re-intervention. In select patients with pulmonary artery sling and complete tracheal rings, conservative management without tracheoplasty is feasible. Further study is necessary to delineate objective indications for tracheoplasty.
The resection of a subaortic membrane remains far from a curative operation. We sought to examine factors associated with reoperation and the degree of aortic valve regurgitation as a potential long-term source for reoperation.
Methods:
All patients who underwent resection of an isolated subaortic membrane between 1995 and 2018 were included. Patients who underwent other procedures were excluded. Paired categorical data were compared using McNemar’s test. Univariate time-to-event analyses were performed using Kaplan–Meier methods with log-rank tests for categorical variables and univariate Cox models for continuous variables.
Results:
A total of 84 patients (median age 6.6, 31% females) underwent resection of isolated subaortic membrane. At a median follow-up of 9.3 years (interquartile range 0.6–22.5), 12 (14%) patients required one reoperation and 1 patient required two reoperations. Median time to first reoperation was 4.6 years. The degree of aortic valve regurgitation improved post-operatively from pre-operatively (p = 0.0007); however, the degree of aortic valve regurgitation worsened over the course of follow-up (p = 0.010) to equivalence with pre-operative aortic valve regurgitation (p = 0.18). Performance of a septal myectomy was associated with longer freedom from reoperation (p = 0.004).
Conclusions:
In patients with isolated subaortic membranes, performance of a septal myectomy can minimise risk for reoperation. Patients should be serially monitored for degradation of the aortic valve, even if aortic regurgitation is not present post-operatively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.