We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recommender systems are ubiquitous in modern life and are one of the main monetization channels for Internet technology giants. This book helps graduate students, researchers and practitioners to get to grips with this cutting-edge field and build the thorough understanding and practical skills needed to progress in the area. It not only introduces the applications of deep learning and generative AI for recommendation models, but also focuses on the industry architecture of the recommender systems. The authors include a detailed discussion of the implementation solutions used by companies such as YouTube, Alibaba, Airbnb and Netflix, as well as the related machine learning framework including model serving, model training, feature storage and data stream processing.
Prior research on status has focused primarily on the cognitive perspective, exploring the effects of status and offering a limited understanding of the impact of positive status change and its emotional mechanisms. This study draws upon the two-facet model of pride to examine how positive status change influences the behaviors of new status holders. Specifically, we propose that when status differentiation is low, positive status change enhances new status holders' prosocial behavior through their authentic pride, while in cases of high status differentiation, it increases their self-interested behavior through their hubristic pride. To test our hypotheses, we conducted a series of studies, including a laboratory experiment, a scenario experiment, and a time-lagged multilevel and multisource field study. Our multilevel analyses of the data provided strong support for our hypotheses. Our findings shed light on when and why positive status change triggers different behaviors among new status holders, offering important insights into the emotional mechanisms that underlie the effects of status change.
This paper explores the international higher education (IHE) fever gripping China's middle-class families. Drawing on data gathered from 69 qualitative interviews with Chinese middle-class international students whose education is financially supported by their families, the paper points out that the desire for IHE is influenced by the pursuit of the “normative biography,” a term conceptualized by the authors to refer to the societal expectations that prescribe the specific life milestones and sequences that young middle-class adults should follow on their life trajectories. IHE is perceived as an important pathway to help such young adults meet these social expectations. Moreover, parental support for IHE is not only an educational investment but also assists offspring in conforming to the normative biography. This paper enriches the understanding of how educational practices are influenced by broader sociocultural contexts in contemporary China.
Understanding the genetic basis of porcine mental health (PMH)-related traits in intensive pig farming systems may promote genetic improvement animal welfare enhancement. However, investigations on this topic have been limited to a retrospective focus, and phenotypes have been difficult to elucidate due to an unknown genetic basis. Intensively farmed pigs, such as those of the Duroc, Landrace, and Yorkshire breeds, have undergone prolonged selection pressure in intensive farming systems. This has potentially subjected genes related to mental health in these pigs to positive selection. To identify genes undergoing positive selection under intensive farming conditions, we employed multiple selection signature detection approaches. Specifically, we integrated disease gene annotations from three human gene–disease association databases (Disease, DisGeNET, and MalaCards) to pinpoint genes potentially associated with pig mental health, revealing a total of 254 candidate genes related to PMH. In-depth functional analyses revealed that candidate PMH genes were significantly overrepresented in signaling-related pathways (e.g., the dopaminergic synapse, neuroactive ligand‒receptor interaction, and calcium signaling pathways) or Gene Ontology terms (e.g., dendritic tree and synapse). These candidate PMH genes were expressed at high levels in the porcine brain regions such as the hippocampus, amygdala, and hypothalamus, and the cell type in which they were significantly enriched was neurons in the hippocampus. Moreover, they potentially affect pork meat quality traits. Our findings make a significant contribution to elucidating the genetic basis of PMH, facilitating genetic improvements for the welfare of pigs and establishing pigs as valuable animal models for gaining insights into human psychiatric disorders.
The measurement of X-ray continuous emission from laser-driven plasma was achieved through multiple monochromatic imaging utilizing a multilayer mirror array. This methodology was exemplified by the development of an eight-channel X-ray imaging system, capable of operating in the energy range of several keV with a spatial resolution of approximately 3 μm. By integrating this system with a streak camera, the temperature and trajectory of imploding capsules were successfully measured at the kJ-class Shenguang III prototype laser facility. This approach provides a synchronous diagnostic method for the spatial, temporal and spectral analysis of laser-driven plasma, characterized by its high efficiency and resolution.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
In the absence of the necessary valley topography, karst depressions are sometimes used to construct conventional impoundments in order to contain tailings. Leakage is a primary concern for such impoundments. The purpose of the current study was to determine the characteristics and barrier performance of laterite mantling karst depressions, using, as an example, the Wujiwatang (WJWT) tailings impoundment, located in the Gejiu mining area, southwestern China. The geotechnical-hydrogeological properties, geochemistry, mineral compositions, and particle shapes of the laterite were investigated by geotechnical techniques, chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the laterite contained poorly sorted particles that covered a wide spectrum of grain sizes (<5 mm to <50 nm), and was unexpectedly categorized as silty clay or silt with a high liquid limit. The continuous gradation and small D90 value helped the laterite achieve saturated hydraulic conductivities in the range of <10–6 cm/s required for impoundment liners. The laterite beneath the tailings impoundment was finer-grained and had a lower permeability than that of the laterite on the depression walls within the same depression. Geochemically and mineralogically, the laterite was classified as true laterite and its major mineralogical constituents were gibbsite and goethite with chlorite occurring in trace amounts. The laterite was dominated by subspherolitic–spherolitic cohesionless grains (concretions) made up of Al, Fe, Ti, and Mn oxides and hydroxides. The laterite did not have plasticity indices in the clay range. Fortunately, slopewash prior to tailings containment selectively transported the finer oxide concretions to the depression floor, creating a natural low-permeability barrier for the WJWT tailings impoundment. This is undoubtedly important for the planning and design of future karst depression-type tailings impoundments around the world.
Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure–function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ).
Methods
We quantified the dynamic structure–function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure–function coupling with the topological features of functional networks to examine how the structure–function relationship facilitates brain information communication over time.
Results
The dynamic structure–function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure–function coupling and the topological features of functional networks are altered in a manner indicative of state specificity.
Conclusions
These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure–function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.
Chronic total coronary occlusion is among the most complex coronary artery diseases. Elevated homocysteine is a risk factor for coronary artery diseases. However, few studies have assessed the relationship between homocysteine and chronic total coronary occlusion.
Methods:
1295 individuals from Southwest China were enrolled in the study. Chronic total coronary occlusion was defined as complete occlusion of coronary artery for more than three months. Homocysteine was divided into quartiles according to its level. Univariate and multivariate logistic regression models, receiver operating characteristic curves, and subgroup analysis were applied to assess the relationship between homocysteine and chronic total coronary occlusion.
Results:
Subjects in the higher homocysteine quartile had a higher rate of chronic total coronary occlusion (P < 0.001). After adjustment, the odds ratio for chronic total coronary occlusion in the highest quartile of homocysteine compared with the lowest was 1.918 (95% confidence interval 1.237–2.972). Homocysteine ≥ 15.2 μmol/L was considered an independent indicator of chronic total coronary occlusion (odds ratio 1.53, 95% confidence interval 1.05–2.23; P = 0.0265). The area under the receiver operating characteristic curve was 0.659 (95% confidence interval, 0.618–0.701; P < 0.001). Stronger associations were observed in elderly and in those with hypertension and diabetes.
Conclusions:
Elevated homocysteine is significantly associated with chronic total coronary occlusion, particularly in elderly and those with hypertension and diabetes.
We consider Poisson hail models and characterize up to boundaries the collection of critical moments which guarantee stability. In particular, we treat the case of infinite speed of propagation.
In this note, assuming the nonvanishing result of explicit theta correspondence for the symplectic–orthogonal dual pair over quaternion algebra $\mathbb {H}$, we show that, for metapletic–orthogonal dual pair over $\mathbb {R}$ and the symplectic–orthogonal dual pair over quaternion algebra $\mathbb {H}$, the theta correspondence is compatible with tempered condition by directly estimating the matrix coefficients, without using the classification theorem.
In this paper, we consider the convergence rate with respect to Wasserstein distance in the invariance principle for deterministic non-uniformly hyperbolic systems. Our results apply to uniformly hyperbolic systems and large classes of non-uniformly hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others. Furthermore, as a non-trivial application to the homogenization problem, we investigate the Wasserstein convergence rate of a fast–slow discrete deterministic system to a stochastic differential equation.
To explore the effect of yield stress on the secondary breakup of gel drops, experimental and theoretical investigations are carried out by employing a high-speed camera. A unique hemline-type breakup, as a modified behaviour of sheet-thinning breakup, occurs when the air velocity increases to a high region. The edges of the drops constantly deform into thin membranes when the high-velocity air skims over the gel drops. These membranes vibrate vertically, and breaking points occur at high amplitudes, causing the formation of reticular fragments. The results of linear stability analysis indicated that the yield stress of the gel drops has an influence on the formation and breakup of the gel membranes. The breakup regime map and breakup times are also studied.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
Based on a real-world collaboration with innovators in applying early health economic modeling, we aimed to offer practical steps that health technology assessment (HTA) researchers and innovators can follow and promote the usage of early HTA among research and development (R&D) communities.
Methods
The HTA researcher was approached by the innovator to carry out an early HTA ahead of the first clinical trial of the technology, a soft robotic sock for poststroke patients. Early health economic modeling was selected to understand the potential value of the technology and to help uncover the information gap. Threshold analysis was used to identify the target product profiles. Value-of-information analysis was conducted to understand the uncertainties and the need for further research.
Results
Based on the expected price and clinical effectiveness by the innovator, the new technology was found to be cost-saving compared to the current practice. Risk reduction in deep vein thrombosis and ankle contracture, the incidence rate of ankle contracture, the compliance rate of the new technology, and utility scores were found to have high impacts on the value-for-money of the new technology. The value of information was low if the new technology can achieve the expected clinical effectiveness. A list of parameters was recommended for data collection in the impending clinical trial.
Conclusions
This work, based on a real-world collaboration, has illustrated that early health economic modeling can inform medical innovation development. We provided practical steps in order to achieve more efficient R&D investment in medical innovation moving forward.
Transverse arrangement is one of the main methods used in the polar inertial navigation system (INS). In the traditional algorithm, the calculation of using the earth ellipsoid model is complex, while using the earth sphere model cannot satisfy a high-accuracy application. Therefore, an approach based on the virtual sphere model is proposed, which has been proved in simulation experiments to reduce the computational complexity and maintain the same accuracy as the ellipsoid algorithm, but its accuracy has not yet been proved in theory. Starting from the basic principles of the ellipsoid and virtual sphere model algorithm, this paper compares the key formulations of the two. Finally, it is proved that the two arrangements are actually the same.
The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossil Wutubus and discoidal fossils Aspidella and Hiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, including Pteridinium, Rangea, Arborea, and Charnia. In this paper, we report two species of the rangeomorph genus Charnia, including the type species Charnia masoni Ford, 1958 emend. and Charnia gracilis new species, from the Shibantan biota. Most of the Shibantan Charnia specimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to other Charnia species, the Shibantan specimens of Charnia gracilis n. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle. Charnia fossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups.
Do US Circuit Courts' decisions on criminal appeals influence sentence lengths imposed by US District Courts? This Element explores the use of high-dimensional instrumental variables to estimate this causal relationship. Using judge characteristics as instruments, this Element implements two-stage models on court sentencing data for the years 1991 through 2013. This Element finds that Democratic, Jewish judges tend to favor criminal defendants, while Catholic judges tend to rule against them. This Element also finds from experiments that prosecutors backlash to Circuit Court rulings while District Court judges comply. Methodologically, this Element demonstrates the applicability of deep instrumental variables to legal data.
The sequential occurrence of three layers of smooth muscle layers (SML) in human embryos and fetus is not known. Here, we investigated the process of gut SML development in human embryos and fetuses and compared the morphology of SML in fetuses and neonates. The H&E, Masson trichrome staining, and Immunohistochemistry were conducted on 6–12 gestation week human embryos and fetuses and on normal neonatal intestine. We showed that no lumen was seen in 6–7th gestation week embryonic gut, neither gut wall nor SML was developed in this period. In 8–9th gestation week embryonic and fetal gut, primitive inner circular SML (IC-SML) was identified in a narrow and discontinuous gut lumen with some vacuoles. In 10th gestation week fetal gut, the outer longitudinal SML (OL-SML) in gut wall was clearly identifiable, both the inner and outer SML expressed α-SMA. In 11–12th gestation week fetal gut, in addition to the IC-SML and OL-SML, the muscularis mucosae started to develop as revealed by α-SMA immune-reactivity beneath the developing mucosal epithelial layer. Comparing with the gut of fetuses of 11–12th week of gestation, the muscularis mucosae, IC-SML, and OL-SML of neonatal intestine displayed different morphology, including branching into glands of lamina propria in mucosa and increased thickness. In conclusions, in the human developing gut between week-8 to week-12 of gestation, the IC-SML develops and forms at week-8, followed by the formation of OL-SML at week-10, and the muscularis mucosae develops and forms last at week-12.
Prior research documents that asset growth is negatively associated with future firm performance. In contrast, we show that growth financed by product market stakeholders (i.e., “operating growth”) is positively associated with future firm performance. Investors and security analysts underestimate the positive effects of operating growth on future performance, resulting in return predictability and overly pessimistic earnings forecasts for firms with high operating growth. Future stock returns largely concentrate around subsequent earnings announcements with declining magnitudes, consistent with the error-in-expectation explanation. Results from cross-sectional tests further support the hypothesis that operating growth signals high future performance but investors underreact to it.