We made aperture masking optical interferometry experiments using up to 30 apertures and with a tip-tilt correction of wavefront error. We examined the performance of minimum redundant configurations of 11–30 sub-apertures on the pupil plane mask. These configurations have two advantages; the redundancy noise is as small as realized in non-redundant masking method, and the uv-coverage is as high as in speckle interferometry enabling to get reconstructed images without mask exchange. We also examined the effect of tip-tilt wavefront correction within a telescope pupil in front of the aperture masking optics. The light coherency between sub-apertures was shown to increase by the correction.