We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Widely distributed Mid-Neoproterozoic mafic rocks of the Qilian – Qaidam – East Kunlun region record the tectonic evolution of the northeastern Tibetan Plateau. This study presents whole-rock geochemistry, zircon U–Pb geochronology and Hf isotopes for the Xialanuoer gabbros of the central South Qilian Belt (SQB). Zircon laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) U–Pb dating indicates that the gabbros were emplaced at ca. 738 Ma, indicating they are contemporaneous with mafic magmatism elsewhere in the northeastern Tibetan Plateau. The gabbros have low SiO2, Cr and Ni contents and Mg# values, are relatively enriched in light rare-earth elements (LREEs) and depleted in high-field-strength elements (HFSEs; e.g. Nb and Ta), have no positive Zr or Hf anomalies and have relatively high Nb/Ta but low Nb/La ratios. These data indicate that the Xialanuoer gabbros formed from calc-alkaline basaltic magmas that were originally generated by the partial melting of an enriched mantle of type-I (EMI-type) enriched region of the lithospheric mantle, underwent little to no crustal contamination prior to their emplacement, and have within-plate basalt geochemical affinities. Combining these data with the presence of widespread contemporaneous continental rift-related magmatism and sedimentation in the North Qilian, Central Qilian, South Qilian, Quanji, North Qaidam and East Kunlun regions suggests that the northeastern Tibetan Plateau underwent Mid-Neoproterozoic continental rifting, which also affected other Rodinian blocks (e.g. Tarim, South China, Australia, North America and Southern Africa).
Resistant starch (RS) has received increased attention due to its potential health benefits. This study was aimed to investigate the effects of dietary corn RS on immunological characteristics of broilers. A total of 320 broiler chicks were randomly allocated to five dietary treatments: normal corn–soyabean (NC) diet group, corn starch diet group, 4 %, 8 % and 12 % RS diet groups. This trial lasted for 42 d. The relative weights of spleen, thymus and bursa, the concentrations of nitric oxide (NO) and IL-4 in plasma at 21 d of age, as well as the activities of total nitric oxide synthase (TNOS) and inducible nitric oxide synthase (iNOS) in plasma at 21 and 42 d of age showed positive linear responses (P < 0·05) to the increasing dietary RS level. Meanwhile, compared with the birds from the NC group at 21 d of age, birds fed 4 % RS, 8 % RS and 12 % RS diets exhibited higher (P < 0·05) relative weight of bursa and concentrations of NO and interferon-γ in plasma. Birds fed 4 % RS and 8 % RS diets showed higher (P < 0·05) number of IgA-producing cells in the jejunum. While compared with birds from the NC group at 42 d of age, birds fed 12 % RS diet showed higher (P < 0·05) relative weight of spleen and activities of TNOS and iNOS in plasma. These findings suggested that dietary corn RS supplementation can improve immune function in broilers.
Many waterflooding oil fields, injecting water into an oil-bearing reservoir for pressure maintenance, are in their middle to late stages of development. To explore the geological conditions and improve oilfield recovery of the most important well group of the Hu 136 block, located on the border areas of three provinces (Henan, Shandong, and Hebei), Zhongyuan Oilfield, Sinopec, central China, a 14C cross-well tracer monitoring technology was developed and applied in monitoring the development status and recognize the heterogeneity of oil reservoirs. The tracer response in the production well was tracked, and the water drive speed, swept volume of the injection fluid were obtained. Finally, the reservoir heterogeneity characteristics, such as the dilution coefficient, porosity, permeability, and average pore-throat radius, were fitted according to the mathematical model of the heterogeneous multi-layer inter-well theory. The 14C-AMS technique developed in this work is expected to be a potential analytical method for evaluating underground reservoir characteristics and providing crucial scientific guidance for the mid to late oil field recovery process.
The Lancang-Mekong River Basin (LMRB) is Asia's most important transboundary river. The precipitation-dependent agriculture and the world's largest inland fishery in the basin feed more than 70 million people. Floods are the main natural disasters which pose a serious threat to the local agriculture and human life. In the future, climate change will affect the streamflow and lead to changes in flood events. Based on the GMDF and GCM data, the SPI and the VIC model were used to assess the impact of climate change on streamflow and flood events during the historical (1985–2016) and future periods (2020–2050) in the LMRB. The results show that the LMRB will become more humid in the future and annual precipitation will change from about -2 to 6 per cent under RCP4.5 and RCP8.5. In the future, this basin should experience a higher flood risk, with more flood events and a relative increase in the flood peak and frequency reaching up to +15 and +58 per cent, respectively. This study contributes to improve our understanding of the role of climate change on streamflow and flood events and provides a scientific reference for the development of local water resources management in the LMRB.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
A direct numerical simulation database of a weakly compressible turbulent channel flow with bulk Mach number 1.56 is studied in detail, including the geometrical relationships between the pressure-Hessian tensor and the vorticity/strain-rate tensor, as well as the mechanism of the pressure-Hessian tensor contributing to the evolution of invariants of the velocity gradient tensor. The results show that the geometrical relationships between the pressure-Hessian tensor and the vorticity/strain-rate tensor in the central region of the channel are consistent with that of isotropic turbulence. However, in the buffer layer with relatively stronger inhomogeneity and anisotropy, the vorticity tends to be aligned with the first or second eigenvector of the pressure-Hessian tensor in the unstable focus/compressing topological region, and tends to be aligned with the first eigenvector of the pressure-Hessian tensor in the stable focus/stretching topological region. In the unstable node/saddle/saddle and stable node/saddle/saddle topological regions, the vorticity prefers to lie in the plane of the first and second eigenvectors of the pressure-Hessian tensor. The strain-rate and the pressure-Hessian tensors tend to share their second principal direction. Moreover, for the coupling between the pressure-Hessian tensor and the principal strain rates, we clarify the influence on dissipation, the nonlinear generation of dissipation and the enstrophy generation. The decomposition of the pressure-Hessian tensor further shows that the slow pressure-related term dominates the pressure-Hessian tensor's contribution, and the influence of inhomogeneity and anisotropy mainly originates from the inhomogeneity and anisotropy of the fluctuating velocity. These statistical properties would be instructive in formulating dynamical models of the velocity gradient tensor for wall turbulence.
A high-order transition route from inertial to elasticity-dominated turbulence (EDT) in Taylor–Couette flows of polymeric solutions has been discovered via direct numerical simulations. This novel two-step transition route is realized by enhancing the extensional viscosity and hoop stresses of the polymeric solution via increasing the maximum chain extension at a fixed polymer concentration. Specifically, in the first step inertial turbulence is stabilized to a laminar flow much like the modulated wavy vortex flow. The second step destabilizes this laminar flow state to EDT, i.e. a spatially smooth and temporally random flow with a $-3.5$ scaling law of the energy spectrum reminiscent of elastic turbulence. The flow states involved are distinctly different to those observed in the reverse transition route from inertial turbulence via a relaminarization of the flow to elasto-inertial turbulence in parallel shear flows, underscoring the importance of polymer-induced hoop stresses in realizing EDT that are absent in parallel shear flows.
The flow physics of inertio-elastic turbulent Taylor–Couette flow for a radius ratio of $0.5$ in the Reynolds number ($Re$) range of $500$ to $8000$ is investigated via direct numerical simulation. It is shown that as $Re$ is increased the turbulence dynamics can be subdivided into two distinct regimes: (i) a low $Re \leqslant 1000$ regime where the flow physics is essentially dominated by nonlinear elastic forces and the main contribution to transport and mixing of momentum, stress and energy comes from large-scale flow structures in the bulk region and (ii) a high $Re \geqslant 5000$ regime where inertial forces govern the flow physics and the flow dynamics is mainly governed by small-scale flow structures in the near-wall region. Flow–microstructure coupling analysis reveals that the elastic Görtler instability in the near-wall region is triggered via significant polymer extension and commensurately high hoop stresses. This instability gives rise to small-scale elastic vortical structures identified as elastic Görtler vortices which are present at all $Re$ considered. In fact, these vortices develop herringbone streaks near the inner wall that have a longer average life span than their Newtonian counterparts due to their elastic origin. Examination of the budgets of mean streamwise enstrophy, mean kinetic energy, turbulent kinetic energy and Reynolds shear stress demonstrates that increasing fluid inertia hinders the generation of elastic stresses, leading to a monotonic reduction of the elastic-related effects on the flow physics.
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82–39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
Tetralogy of Fallot is a common CHD. Studies have shown a close link between heart failure and myocardial fibrosis. Interleukin-6 has been suggested to be a post-independent factor of heart failure. This study aimed to explore the relationship between IL-6 and myocardial fibrosis during cardiopulmonary bypass.
Material and Methods:
We downloaded the expression profile dataset GSE132176 from Gene Expression Omnibus. After normalising the raw data, Gene Set Enrichment Analysis and differential gene expression analysis were performed using R. Further, a weighted gene correlation network analysis and a protein–protein interaction network analysis were used to identify HUB genes. Finally, we downloaded single-cell expression data for HUB genes using PanglaoDB.
Results:
There were 119 differentially expressed genes in right atrium tissues comparing the post-CPB group with the pre-CPB group. IL-6 was found to be significantly up-regulated in the post-CPB group. Six genes (JUN, FOS, ATF3, EGR1, IL-6, and PTGS2) were identified as HUB genes by a weighted gene correlation network analysis and a protein–protein interaction network analysis. Gene Set Enrichment Analysis showed that IL-6 affects the myocardium during CPB mainly through the JAK/STAT signalling pathway. Finally, we used PanglaoDB data to analyse the single-cell expression of the HUB genes.
Conclusion:
Our findings suggest that high expression of IL-6 and the activation of the JAK/STAT signalling pathway during CPB maybe the potential mechanism of myocardial fibrosis. We speculate that the high expression of IL-6 might be an important factor leading to heart failure after ToF surgery. We expect that these findings will provide a basis for the development of targeted drugs.
This study aimed to evaluate to what extent the different interval times between trophectoderm (TE) biopsy and vitrification influence the clinical outcomes in preimplantation genetic testing (PGT) cycles. Patients who underwent frozen embryo transfer (FET) after PGT between 2015 and 2019 were recruited. In total, 297 cycles with single day 5 euploid blastocyst transfer were included. These cycles were divided into three groups according to the interval times: <1 h group, 1–2 h group, and ≥2 h group. Blastocyst survival, clinical pregnancy, miscarriage, and ongoing pregnancy rates were compared. The results showed that, in PGT-SR cycles, survival rate in the ≥2 h group (96.72%) was significantly lower than in the <1 h group (100%, P = 0.047). The clinical pregnancy rate in the ≥2 h group was 55.93%, significantly lower than in the <1 h group (74.26%, P = 0.017). The ongoing pregnancy rates in the 1–2 h group and the ≥2 h group were 48.28% and 47.46%, respectively, significantly lower than that in the <1 h group (67.33%, P < 0.05). The miscarriage rate in the 1–2 h group was 18.42%, significantly higher than that in the <1 h group (5.33%, P = 0.027). In PGT-A cycles, the clinical pregnancy and ongoing pregnancy rates in the <1 h group were 67.44% and 53.49%, respectively, higher than that in the 1–2 h group (52.94%, 47.06%, P > 0.05) and the ≥2 h group (52.63%, 36.84%, P > 0.05). In conclusion, vitrification of blastocysts beyond 1 h after biopsy significantly influences embryo survival and clinical outcomes and is therefore not recommended.
The coronavirus disease 2019 (COVID-19) pandemic is a major threat to the public. However, the comprehensive profile of suicidal ideation among the general population has not been systematically investigated in a large sample in the age of COVID-19.
Methods
A national online cross-sectional survey was conducted between February 28, 2020 and March 11, 2020 in a representative sample of Chinese adults aged 18 years and older. Suicidal ideation was assessed using item 9 of the Patient Health Questionnaire-9. The prevalence of suicidal ideation and its risk factors was evaluated.
Results
A total of 56,679 participants (27,149 males and 29,530 females) were included. The overall prevalence of suicidal ideation was 16.4%, including 10.9% seldom, 4.1% often, and 1.4% always suicidal ideation. The prevalence of suicidal ideation was higher in males (19.1%) and individuals aged 18–24 years (24.7%) than in females (14.0%) and those aged 45 years and older (11.9%). Suicidal ideation was more prevalent in individuals with suspected or confirmed infection (63.0%), frontline workers (19.2%), and people with pre-existing mental disorders (41.6%). Experience of quarantine, unemployed, and increased psychological stress during the pandemic were associated with an increased risk of suicidal ideation and its severity. However, paying more attention to and gaining a better understanding of COVID-19-related knowledge, especially information about psychological interventions, could reduce the risk.
Conclusions
The estimated prevalence of suicidal ideation among the general population in China during COVID-19 was significant. The findings will be important for improving suicide prevention strategies during COVID-19.
Nicotine 3,5-dihydroxybenzoate dihydrate is a nicotine salt and can be used as compositions in tobacco products. X-ray powder diffraction data, unit-cell parameters, and space group for nicotine 3,5-dihydroxybenzoate, C10H15N2⋅C7H5O4⋅2H2O, are reported [a = 8.424(1) Å, b = 13.179(8) Å, c = 8.591(1) Å, α = 90°, β = 102.073(8)°, γ = 90°, unit-cell volume V = 932.765(3) Å3, Z = 2, ρcal = 1.256 g⋅cm−3, and space group P21] at room temperature. All measured lines were indexed and are consistent with the P21 space group.
The prognostic factor for in-hospital mortality in tuberculosis (TB) patients requiring intensive care unit (ICU) care remains unclear. Therefore, a retrospective study was conducted aiming to estimate the in-hospital mortality rate and the risk factors for mortality in a high-burden setting. All patients with culture-confirmed TB that were admitted to the ICU of the hospital between March 2012 and April 2019 were identified retrospectively. Data, such as demographic characteristics, comorbidities, laboratory measures and mortality, were obtained from medical records. The Cox proportional hazards regression model was used to identify prognostic factors that influence in-hospital mortality. A total of 82 ICU patients with confirmed TB were included in the analysis, and 22 deaths were observed during the hospital stay, 21 patients died in the ICU. In the multivariable model adjusted for sex and age, the levels of serum albumin and white blood cell (WBC) count were significantly associated with mortality in TB patients requiring ICU care (all P < 0.01), the hazard ratios were 0.8 (95% confidence interval (CI): 0.7–0.9) per 1 g/l and 1.1 (95% CI: 1.0–1.2) per 1 × 109/l, respectively. In conclusion, in-hospital mortality remains high in TB patients requiring ICU care. Low serum albumin level and high WBC count significantly impact the risk of mortality in these TB patients in China.
The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.
Kinetic energy and enstrophy transfer in compressible Rayleigh–Taylor (RT) turbulence were investigated by means of direct numerical simulation. It is revealed that compressibility plays an important role in the kinetic energy and enstrophy transfer based on analyses of transport and large-scale equations. For the generation and transfer of kinetic energy, some findings have been obtained as follows. The pressure-dilatation work dominates the generation of kinetic energy in the early stage of flow evolution. The baropycnal work and deformation work handle the kinetic energy transfer from large to small scales on average for RT turbulence. The baropycnal work is mainly responsible for the kinetic energy transfer on large scales, and the deformation work for the kinetic energy transfer on small scales. The baropycnal work is also disclosed to be related to the compressibility from the finding that the expansion motion enhances the positive baropycnal work and the compression motion strengthens the negative baropycnal work. For the generation and transfer of enstrophy, the horizontal enstrophy is generated by the baroclinic effect and the vertical enstrophy by vortex stretching and tilting. Then the enstrophy is strengthened by the vortex stretching and tilting during the evolution of RT turbulence and the vorticity tends to be isotropic in the turbulent mixing region. The large-scale enstrophy equation in compressible flow has also been derived to deal with the enstrophy transfer. It is identified that the enstrophy is transferred from large to small scales on average and tends to stabilize for RT turbulence.
Supported by (1) medical research grants CMRPG3C0041/42 from Chang Gung Memorial Hospital and NRRPG2H0031 from Ministry of Science and Technology, Taiwan to Chemin Lin (2) NMRPG3G6031/32 from Ministry of Science and Technology, Taiwan to Shwu-Hua, Lee (3) the KKHo International Charitable Foundation to Tatia Lee.
Introduction:
Suicide rate tends to peak in old age, and major depression is the most salient risk factor for late-life suicide. However, few studies have focused on the neuroscientific facet of suicide in the context of late-life depression (LLD).
Methods:
We recruited 114 participants of LLD (28 with history of suicide attempt and 86 without) and 47 elderly controls. They received MRI scanning and behavioral assessment. White matter hyperintensity (WMH) was quantified by an automated segmentation algorithm and graph theoretical analysis was applied to resting-state fMRI. We used ANCOVA to compare group difference in WMH loading and multivariate generalized linear model to compare global and local topological parameters in fMRI signals, controlling for demographics. Partial correlation was conducted between imaging parameters and behavioral data in group of suicide attempters.
Results:
We found significant higher WMH in suicide attempters than those of LLD without suicide attempts and elderly controls (F =7.091; p = 0.001). Suicide attempters also had increased betweenness centrality (BC) in right superior occipital gyrus (SOG) (Bonferroni corrected), right precuneus (False positive corrected) and right superior temporal gyrus (uncorrected) and decreased BC in left hippocampus (uncorrected). In suicide attempters, higher BC in right SOG correlated with higher WMH, higher depression severity, higher illness awareness and insight, and lower cognitive function (digit backward), while higher BC in right precuneus correlated with higher decrease awareness and insight and higher cognitive function (digit backward).
Conclusion:
Resonating with the vascular hypothesis in LLD, higher WMH was found in those having history of suicide attempts. However, the re-organized brain topology changes are related with divergent cognitive function and convergent heightened disease insight.
We present an experimental study on controlling the number of vortices and the torque in a Taylor–Couette flow of water for Reynolds numbers from 660 to 1320. Different flow states are achieved in the annulus of width $d$ between the inner rotating and outer stationary cylinders through manipulating the initial height of the water annulus. We show that the torque exerted on the inner cylinder of the Taylor–Couette system can be reduced by up to 20 % by controlling the flow at a state where fewer than the nominal number of vortices develop between the cylinders. This flow state is achieved by starting the system with an initial water annulus height $h_0$ (which nominally corresponds to $h_0/d$ vortices), then gradually adding water into the annulus while the inner cylinder keeps rotating. During this filling process the flow topology is so persistent that the number of vortices does not increase; instead, the vortices are greatly stretched in the axial (vertical) direction. We show that this state with stretched vortices is sustainable until the vortices are stretched to around 2.05 times their nominal size. Our experiments reveal that by manipulating the initial height of the liquid annulus we are able to generate different flow states and demonstrate how the different flow states manifest themselves in global momentum transport.
Six acidic dykes were discovered surrounding the Laiziling pluton, Xianghualing area, in the western Cathaysia Block, South China. A number of captured zircons are found in two of these acidic dykes. By detailed U–Pb dating, Lu–Hf isotopes and trace-element analysis, we find that these zircons have ages clustered at c. 2.5 Ga. Two acidic dyke samples yielded upper intersection point 206U/238Pb ages of 2505 ± 42 Ma and 2533 ± 22 Ma, and weighted mean 207Pb/206Pb ages of 2500 ± 30 Ma and 2535 ± 16 Ma. The majority of these zircons have high (Sm/La)N, Th/U and low Ce/Ce* ratios, indicating a magmatic origin, but some grains were altered by later hydrothermal fluid. Additionally, the magmatic zircons have high Y, U, heavy rare earth element, Nb and Ta contents, indicating that their host rocks were mainly mafic rocks or trondhjemite–tonalite–granodiorite rock series. Equally, their moderate Y, Yb, Th, Gd and Er contents also indicate that a mafic source formed in a continental volcanic-arc environment. These zircons have positive ϵHf(t) values (2.5–6.9) close to zircons from the depleted mantle, with TDM (2565–2741 Ma) and TDM2 (2608–2864 Ma) ages close to their formation ages, indicating that these zircons originated directly from depleted mantle magma, or juvenile crust derived from the depleted mantle in a very short period. We therefore infer that the Cathaysia Block experienced a crustal growth event at c. 2.5 Ga.